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ALMOST COMPLEX CURVES OF TYPE (III)

IN THE NEARLY KÄHLER 6-SPHERE
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Firstly, we prove that a complete almost complex curve of type (III) and of non-

negative sectional curvature immersed in nearly Kähler 6-sphere must be flat.

Secondly, we announce the results in [HU] about the first non-trivial example of
almost complex 2-torus of type(III) in nearly Kähler 6-sphere.

Introduction

It is well known that 6-dimensional standard sphere S6 has a nearly Kähler
structure(see [KN], pp139-140). We denote by J the nearly Kähler structure.
It is an interesting problem to classify J-invariant submanifolds of S6. Due
to a result of A. Gray[Gr], there is no 4-dimensional J-invariant submanifolds.
Thus, the only possibility of J-invariant submanifold is the case of the image of
Riemann surface by some immersion, which we call an almost comples curve(or
J-holomorphic curve). Let ϕ : S −→ S6 be an almost complex curve. If ϕ
is linearly full and the ellipses of curvature and the second curvature are cir-
cles, then ϕ is said to be superminimal. On the other hand, Bolton-Vrancken-
Woodward([BVW]) proved that if ϕ is linearly full in some totally geodesic Sm

in S6 then m = 2, 5 or 6. This, together with a general result on superminimal
surfaces by Calabi([Ca]), means that almost complex curves are divided into the
following four types :
(I) linearly full in S6 and superminimal,
(II) linearly full in S6 and non-superminimal,
(III) linearly full in some totally geodesic S5 in S6 (necessarily non-superminimal),

(IV) totally geodesic.
For type (I), Bryant([Br]) gave the construction using the so-called twistor method.
The automorphism group of the nearly Kähler structure of S6 is the exceptional
Lie group G2 and S6 may be represented as a homogeneous space G2/SU(3).

Key words and phrases. Nearly Kähler 6-sphere, almost complex curve, non-isotropic 2-tori.
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Let π : Q5 = G2/U(2) −→ S6 = G2/SU(3) be the P 2(C)-bundle associated to
the principal SU(3)-bundle G2 −→ G2/SU(3). Then, any almost complex curve
of type (I) can be lifted to some horizontal holomorphic curve in Q5. Moreover,
Bryant gave the representation formula of the horizontal holomorphic curves in
Q5. Recently, Hashimoto([Ha]) gave the representation formula more explicitly
and calculated the Gaussian curvature of almost complex curve of type (I). For
types (II) and (III), Bolton-Pedit-Woodward([BPW]) proved that ϕ can be lifted
to ϕ̃ : S −→ G2/T 2, where T 2 is the maximal torus of SU(3), and ϕ has a Toda-
framing F : S −→ G2, of which the integrable condition is some periodic Toda
equation. Consequently, any almost complex torus of type (II) or (III) in S6 can
be lifted to a primitive map of finite type into G2/T 2(for primitive map of finite
type, see [OU]). By a recent result in [OU], we find that almost complex torus of
type (II) or (III) is itself of finite type. However, any non-trivial example of such
torus has been unknown.

In this paper, we concentrate on almost complex curve of type (III). Firstly,
we prove that any complete almost complex curve of type (III) with non-negative
Gaussian curvature must be necessarily flat. Secondly, we announce some results
in [HU] on the construction of the differential geometric concrete example of
almost complex torus of type (III) and of all almost complex torus of type (III)
in terms of the Prym-theta functions.

1. Preliminaries

LetO be the Cayley number field and we identify R7 with the purely imaginary
part of O. Let H be the quaternion number field with the basis 1, i, j, k. Then,

any element of O is represented as
(

p1

p2

)
, where p1, p2 ∈ H. The product of two

elements
(

p1

p2

)
,

(
q1

q2

)
∈ O is defined by

(
p1

p2

)
·
(

q1

q2

)
=

(
p1q1 − q2p2

q2p1 + p2q1

)
,

where the conjugation is that of H. The conjugation of O is defined by

(
p1

p2

)
=

(
p1

−p2

)
,

where the conjugation of the entry in the right hand side is that of H. For

x =
(

p1

p2

)
∈ O, we have x · x =

(
p1p1 + p2p2

0

)
, which is real with respect to

the conjugation of O. If we define the norm by | x |=
√

p1p1 + p2p2 then we may
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verify the following fundamental relations :

| x | = 0 ⇐⇒ x =
(

0
0

)
(1.1)

| x · y | =| x || y |(1.2)

x · y = y · x for x,y ∈ O(1.3)

Note that x0 =
(

p1

p2

)
is purely-imaginary if and only if p1 is purely-imaginary.

Hence, the imaginary part of O, denoted by Im(O), consists of the elements of

the form x =
(

a1i + a2j + a3k
a4 + a5i + a6j + a7k

)
and the identification between Im(O) and

R7 is given by

Im(O) 3 x←→ xR =



a1

a2

a3

a4

a5

a6

a7


∈ R7.

If we denote by < , > the standard inner product on R7 then we see that for
x,y ∈ Im(O)

< xR,yR > = − 1
2

(x · y + y · x).

We define a vector cross product on R7 by

xR × yR =
1
2

(x · y − y · x),(1.4)

where the equality is the identification between R7 and Im(O). Then we have
yR×xR = −xR×yR. Let {e1, e2, · · · , e7} be the standard orthonormal basis of
(R7, < , >). The above identification means that

e1 =
(

i
0

)
, e2 =

(
j
0

)
, e3 =

(
k
0

)
,

e4 =
(

0
1

)
, e5 =

(
0
i

)
, e6 =

(
0
j

)
, e7 =

(
0
k

)
.

We then have

e1 × e2 = e3, e1 × e4 = e5, e2 × e4 = e6, e3 × e4 = e7.(1.5)
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Moreover we may verify the following relation.

u× (v × w) + (u× v)× w = 2 < u,w > v− < u, v > w− < w, v > u ,
(1.6)

where u, v, w ∈ R7. Conversely, the vector cross product may be defined as
a R-linear skew-symmetric homomorphism from R7 × R7 to R7 satisfying the
conditions (1.5) and (1.6). The group G2 of automorphisms of O is precisely the
group of isometries of R7 preserving the vector cross product.
Definition. An ordered orthonormal basis F1, F2, · · · , F7 of R7 is said to be a
G2-frame if

F1 × F2 = F3, F1 × F4 = F5, F2 × F4 = F6, F3 × F4 = F7.
(1.7)

Of course, the standard orthonormal basis of R7 is a G2-frame. It follows from
(1.6) that we have the following multiplication table :

× F1 F2 F3 F4 F5 F6 F7

F1 0 F3 −F2 F5 −F4 −F7 F6

F2 −F3 0 F1 F6 F7 −F4 −F5

F3 F2 −F1 0 F7 −F6 F5 −F4

F4 −F5 −F6 −F7 0 F1 F2 F3

F5 F4 −F7 F6 −F1 0 −F3 F2

F6 F7 F4 −F5 −F2 F3 0 −F1

F7 −F6 F5 F4 −F3 −F2 F1 0

The standard nearly Kähler structure J on the 6-dimensional unit sphere S6 is
given by

Ju = x× u, u ∈ TxS6, x ∈ S6.(1.8)

In fact, it follows from (1.6) that J2u = x × (x × u) = −u. Moreover, if we put
G(X, Y ) = (∇̃XJ)(Y ), then we obtain

G(X, Y ) = X × Y− < x×X, Y > x,

where ∇̃ is the Levi-Civita connection on S6. Since < u×v, w >=< u, v×w >, we
see that G(X, Y ) = −G(Y, X), which implies that J is a nearly Kähler structure.

Let ϕ : S −→ S6 be an almost complex curve. Then, the second fundamental
form α and the shape operator Aξ in the direction ξ ∈ T⊥S satisfy the following
equations : 

α(X, JY ) = Jα(X, Y ),
AJξ = JAξ = −AξJ,

∇⊥XJξ = G(X, ξ) + J∇⊥Xξ,

(∇α)(X, Y, JZ) = J(∇α)(X, Y, Z) + G(X, α(Y, Z)),

(1.9)
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where ∇⊥ is the normal connection of the normal bundle T⊥S of the immersion
ϕ. Assume that S does not contain any totally geodesic points. Let p be any
point of S and let V be an arbitrary unit tangent vector field on a neighborhood
W of p. Define a non-zero function µ =‖ α(V, V ) ‖, which does not depend on
the choice of V because {V, JV } forms a basis of TpW and if X = aV + bJV is
an arbitrary unit tangent vector then it follows from (1.9) that

‖ α(X, X) ‖2 =‖ (a2 − b2)α(V, V ) + 2abJα(V, V ) ‖2

= (a2 − b2)2 ‖ α(V, V ) ‖2 +4a2b2 ‖ Jα(V, V ) ‖2

=‖ α(V, V ) ‖2 .

Let U = JV . Then we have a G2-frame defined by

{
F1 = ϕ, F2 = ϕ∗(V ), F3 = ϕ∗(U) = Jϕ∗(V ), F4 = α(V, V )/µ,

F5 = Jα(V, V )/µ, F6 = F2 × α(V, V )/µ, F7 = F3 × α(V, V )/µ.

(1.10)

Lemma 1.1 (cf. [DV]). Set

(∇α)(V, V, V ) = µ(a1F4 + a2F5 + a3F6 + a4F7).

Then

(∇α)(V, V, U) = µ(−a2F4 + a1F5 + (a4 + 1)F6 − a3F7).

Moreover, the following statements are true :
(1) ϕ is of type (I) if and only if a3 = 0 and a4 = − 1

2 ,
(2) ϕ is of type (III) if and only if a2

3 + a2
4 + a4 = 0.

Proof. The first claim follows from the fourth equation of (1.9). Set z =
V − iU , which is a (1, 0)-vector of S. Since α(z, z) is a (1, 0)-vector by the
first equation of (1.9), we have < α(z, z), α(z, z) >= 0. This means that the
ellipse of curvatures is a circle. The ellipse of second curvatures is a circle if
< (∇α)(z, z, z), (∇α)(z, z, z) >= 0. Hence, ϕ is superminimal if and only if
< (∇α)(z, z, z), (∇α)(z, z, z) >= 0. We now calculate

(∇α)(z, z, z) = 2{(∇α)(V, V, V )− iJ(∇α)(V, V, V )}
− 2i{(∇α)(V, V, U)− iJ(∇α)(V, V, U)} − 2iµ{F6 − iF7}.(1.11)

Note that the third term of the right hand side of (1.11) is (0, 1)-vector by the
multiplication table. Therefore, we obtain

< (∇α)(z, z, z), (∇α)(z, z, z) > = −16µ2i(2a3 − (2a4 + 1)i) ,

(1.12)



34 SEIICHI UDAGAWA

which is zero if and only if a3 = 0 and a4 = − 1
2

, proving the assertion (1).

Finally we show (2). Since the normal space is spanned by

{α(V, V ), α(V,U), (∇α)(V, V, V ), (∇α)(V, V, U)},

we see that ϕ is of type (III) if and only if the components of (∇α)(V, V, V ) and
(∇α)(V, V, U) in the direction of the second normal space are propotional to each
other, which holds if and only if a3F6 + a4F7 is propotional to (a4 +1)F6− a3F7.
Therefore, ϕ is of type (III) if and only if a2

3 + a2
4 + a4 = 0. q.e.d.

2. Minimal surfaces in Sn

In this section, we prove a certain extension of the result in [HS]. As a corollary,
we obtain some result on complete almost complex curve of type (III) in S6. The
method is similar to that of Calabi in [Ca], but differes from it in delicate sense.

Let M be an oriented minimal surface in Sn. Let {e1, e2} be local fields of
orthonormal basis. Set z = 1√

2
(e1 − ie2) and z = 1√

2
(e1 + ie2). We define the

m-th second fundamental form σm using

σ2(z, z) = σ(z, z),

σm(
m−times︷ ︸︸ ︷
z, · · · , z) = (∇zσ

m−1)(
m−1−times︷ ︸︸ ︷
z, · · · , z )

= ∇⊥z σm−1(
m−1−times︷ ︸︸ ︷
z, · · · , z )− (m− 1)σm−1(∇zz,

m−2−times︷ ︸︸ ︷
z, · · · , z ).

Set Lm =< σm(
m−times︷ ︸︸ ︷
z, · · · , z), σ(z, z) >. We then have

Lemma 2.1. Assume that Lj ≡ 0 for 2 5 j 5 m for some m = 2. Then, the
following are true :

(∇zσ
m+1)(

m+1−times︷ ︸︸ ︷
z, · · · , z ) =

m∑
j=2

fjσ
j(

i−times︷ ︸︸ ︷
z, · · · , z),(1)

where f2, · · · , fm are locally defined C∞-functions.
(2) If m is even then we have Lm+1 ≡ 0, ∇zLm+2 ≡ 0 and

1
2

∆ | Lm+2 |2 =| ∇zLm+2 |2 +(m + 4)K | Lm+2 |2,(2.1)

where K is the Gaussian curvature of M .

Proof. (1) For m = 2 we have

(∇zσ
3)(z, z, z) = 2Kσ(z, z)−R⊥(z, z)σ(z, z)

= 2Kσ(z, z)− < σ(z, z), σ(z, z) > σ(z, z) ,
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where R⊥ is the curvature of the normal bundle and we have used the assumption
L2 ≡ 0. Hence, the case of m = 2 is verified. Suppose that the equation holds
for m = j. For m = j + 1, we have

(∇zσ
j+2)(

j+2−times︷ ︸︸ ︷
z, · · · , z )

=(∇z∇zσj+1)(
j+1−times︷ ︸︸ ︷
z, · · · , z ) + (j + 1)Kσj+1(

j+1−times︷ ︸︸ ︷
z, · · · , z )−R⊥(z, z)σj+1(

j+1−times︷ ︸︸ ︷
z, · · · , z )

=
j+1∑
i=2

fiσ
i(

i−times︷ ︸︸ ︷
z, · · · , z) + (j + 1)Kσj+1(

j+1−times︷ ︸︸ ︷
z, · · · , z )

− < σj+1(
j+1−times︷ ︸︸ ︷
z, · · · , z ), σ(z, z) > σ(z, z),

where we have used the assumption Lj+1 ≡ 0 and the assumption of the induc-
tion. Thus, the desired equation is proved. Next, we show (2). If Lj ≡ 0 for
2 5 j 5 m then

< σα(
α−times︷ ︸︸ ︷
z, · · · , z), σβ(

β−times︷ ︸︸ ︷
z, · · · , z) >≡ 0 for α + β 5 m + 2 with α, β = 2.

Therefore, we obtain

Lm+1 = (−1)
m
2 −1 < σ

m
2 +2(

m
2 +2−times︷ ︸︸ ︷
z, · · · , z ), σ

m
2 +1(

m
2 +1−times︷ ︸︸ ︷
z, · · · , z ) > .

On the other hand, for 2α = m + 2 we have

< σα+1(
α+1−times︷ ︸︸ ︷
z, · · · , z ), σα(

α−times︷ ︸︸ ︷
z, · · · , z) > = − < σα(

α−times︷ ︸︸ ︷
z, · · · , z), σα+1(

α+1−times︷ ︸︸ ︷
z, · · · , z ) >,

whence Lm+1 ≡ 0. Next we have

∇zLm+2 = ∇z < σm+2(
m+2−times︷ ︸︸ ︷
z, · · · , z ), σ(z, z) >=< ∇zσ

m+2(
m+2−times︷ ︸︸ ︷
z, · · · , z ), σ(z, z) >,

(2.2)

where we have used the minimality of M and the Codazzi equation, that is,
(∇zσ

2)(z, z) = (∇zσ
2)(z, z) = 0. It follows from the equation of Lemma 2.1-(1)

and (2.2) that ∇zLm+2 is a linear combinations of L2, · · · , Lm+1. Therefore, we
have ∇zLm+2 ≡ 0. Using ∇zLm+2 ≡ 0, we may compute ∇z∇z | Lm+2 |2 as
follows :

∇z∇z | Lm+2 |2 =| ∇zLm+2 |2 +∇z∇zLm+2 · Lm+2 ,

∇z∇zLm+2 = (m + 4)KLm+2 ,

where the second equation follows from the equation of Lemma 2.1-(1) and the
Ricci equation. q.e.d.

We now have
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Theorem 2.2. Let ϕ : M −→ Sn be an oriented complete minimal surface with
nonnegative Gaussian curvature K. If all the | σm |2 are bounded on M , then
either ϕ is superminimal or K ≡ 0 and congruent to T 2 −→ Sn constructed and
classified by Kenmotsu ([Ke]).

Proof. If K = 0 then the Gaussian equation implies that | L2 |2 is bounded
on M . It follows from Lemma 2.1-(2) that | L2 |2 is a bounded subharmonic
function, hence | L2 |2 is constant by Huber’s theorem ([Hu]). If K is positive
at some point of M , then L2 ≡ 0. It then follows from Lemma 2.1-(2), our
assumption and Huber’s theorem that Lm ≡ 0 for any m = 2. This is, in fact,
equivalent to saying that ϕ is superminimal(see [BVW]). q.e.d.

Remark. The case of n = 4 for Theorem 2.2 is due to [HS]. In that case, K = 0
implies that | σ2 |2 is bounded.

Corollary. Let ϕ : S −→ S6 be a complete almost complex curve with nonnega-
tive Gaussian curvature K. If ϕ is of type (III), then K ≡ 0.

Proof. If ϕ is of type (III), then a2
3 + a2

4 + a4 = 0 by Lemma 1.1. On the other
hand, L2 = L3 ≡ 0 and

< (∇α)(z, z, z), (∇α)(z, z, z) > = −2µ2i(2a3 − (2a4 + 1)i),

which implies that | L4 |2 is bounded on S. It follows from Lemma 2.1-(2)
that | L4 |2 is bounded subharmonic function on S, whence | L4 |2 is constant.
If L4 ≡ 0 then ϕ is superminimal. However, this is impossible by a result of
Calabi([Ca]) and Bolton-Vrancken-Woodward([BVW]). Hence, K ≡ 0 by Lemma
2.1-(2). q.e.d.

3. Kähler angle of horizontal surface in S5 and
examples of almost complex curves of type (III)

In this section, we announce some results in [HU].
Let M be a Riemann surface. Let ϕ : M −→ S5 ⊂ S6 be a conformal

immersion with eω =<
∂ϕ

∂z
,
∂ϕ

∂z
>, where z is a local complex coordinate system

of M . By some correspondense we may identify ϕ : M −→ S5 with ϕC : M −→
S5

C ⊂ C3. Denote by θ the Kähler angle of ϕ, i.e.,

< J
∂ϕ

∂x
,
∂ϕ

∂y
> = 2eω cos θ ,

where z = x + iy. We then have the following.

Lemma 3.1([HU]). If ϕC is horizontal with respect to the Hopf fibration S5
C −→

P 2(C) then

cos θ = Re{i det(ϕC e−
ω
2

∂ϕC

∂z
e−

ω
2

∂ϕC

∂z
)}.(3.1)
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where i =
√
−1.

Using this Lemma, we obtain the general method of constructing almst com-
plex curve of type (III) in S6.

Proposition 3.2([HU]). Let s0 : M −→ C3 be a smooth map and ω : M −→ R

a smooth function. Set s1 = e−
ω
2

∂s0

∂z
, s2 = e−

ω
2

∂s0

∂z
. If S = (s0 s1 s2) has

values in U(3) and satisfies detS = −i, then ϕ : M −→ S5 ⊂ S6 corresponding
to ϕC : M −→ S5

C ⊂ C3 defined by ϕC = s0 is a conformal immersion and an
almost complex curve with respect to J . The converse is also true.

In fact, S : M −→ U(3) is a Toda framing.

Proposition 3.3 ([HU]).

S−1 ∂S

∂z
=

 0 0 −e
ω
2

e
ω
2 ωz

2 0
0 ie−ω −ωz

2

 =: U,

and

S−1 ∂S

∂z
=

 0 −e
ω
2 0

0 −ωz

2 ie−ω

e
ω
2 0 ωz

2

 =: V = U,

where ωz =
∂ω

∂z
and ωz = ωz. The integrability condition of this system is given

by so-called Tzitzéica equation :

ωzz = e−2ω − eω.(3.2)

[The special solution of (3.2)] We assume that ω depends on only a variable
x, hence we write as ω = ω(x). The solution for this case is treated by Castro-
Urbano ([CU]). However, their choices of the coordinate z = x +

√
−1y and a

parameter of the solution ω(x) do not fit into our framework. We modify the
calculation a little bit. The details about it will be described in [HU].

Remark. Before the work of Castro-Urbano appeared, Ejiri([Ej]) had already
treated the equation (3.2) and observed the existence of periodic solutions of
(3.2) (cf. (7.5) in [Ej]). Ejiri proved the existence of countably many totally
real immersions of S1×Sn−1 into Pn(C) with arbitrary prescribed non-negative
constant mean curvature H (Corollary 8 in [Ej]). If we set n = 2 and H = 0 in
his result, we obtain countably many totally real minimal immersions of tori into
P 2(C).
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Consider the elliptic integral of first kind :

x =
∫ ϕ

0

dθ√
1− p2 sin2 θ

=: F (ϕ) , (− 5 p 5 1).

Then we define the Jacobi elliptic functions sn(x, p), cn(x, p) and dn(x, p) as
follows :

sn(x, p) := sinϕ, cn(x, p) := cos ϕ, dn(x, p) :=
√

1− p2 sin2 ϕ.

(3.3)

We then easily see that F (−ϕ) = −F (ϕ), F (ϕ + π) = F (ϕ) + F (π). Setting

ϕ = −π

2
, it follows that F (

π

2
) =

1
2

F (π), which is called the complete integral

of first kind and denoted by K(p) (or simply K if the value of p is fixed.) By the
same reason as that of K = K(p), we simply write sn(x), cn(x), dn(x) in place of
writing sn(x, p), cn(x, p), dn(x, p). Moreover, we see that{

sn(x + 2K) = sn(x + F (π)) = sin(ϕ + π) = − sin(ϕ) = −sn(x)

cn(x + 2K) = −cn(x) , dn(x + 2K) = dn(x) .

Now, if we put Y = eω(x) then (3.2) becomes to, after integration one time,

(Y ′)2 + 8Y 3 − 8aY 2 + 4 = 0,(3.4)

where Y ′ =
dY

dx
and a is a constant of the integration. We give an initial condition

for ω(x) by

eω(0) =
α

2
,

dω

dx
(0) = 0.

Since a Weierstrass p-function satisfies (3.4) and a Weirestrass p-function may be
described in terms of the Jacobi sn-function, our choice of the initial condition
of ω(x) means that we may put

Y =
α

2
(
1− q2sn2(rx, p)

)
,

for some real numbers p, q, r. In fact, this Y satisfies (3.4) if and only if
a =

1
2

α + 2α−2 , q2 =
α3 − 2− 2

√
α3 + 1

α3
,

r2 =
α3 − 2 + 2

√
α3 + 1

α2
, p2 =

αq2

r2
.

(3.5)
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[A solution of (3.1)] We fix the choice of real numbers p, q, r which satisfy (3.5).
Then we have α = 2. Consider an curve parametrized by x on S2 :

t
(√ r2

r1 + r2
dn(rx, p),

√
r1

r1 + r2
cn(rx, p),

√
r2p2 + r1

r1 + r2
sn(rx, p)

)(3.6)

where this is, in fact, a curve on S2 precisely when
r1 =

√
α3 + 1 + 1

α
, r2 =

√
α3 + 1− 1

α
,

r3 =
2
α

.

(3.7)

We deine ŝ0 as a S1-orbit of this curve as follows :

ŝ0 =

t
(√ r2

r1 + r2
eir1ydn(rx, p),

√
r1

r1 + r2
e−ir2ycn(rx, p),

√
r2p2 + r1

r1 + r2
e−ir3ysn(rx, p)

)
.

(3.8)

Define Ŝ by Ŝ = (ŝ0 e−
ω(x)

2
∂ŝ0

∂z
e−

ω(x)
2

∂ŝ0

∂z
). Then, a direst computation shows

that det(Ŝ) = 1. If we define s0 by

s0 = τ ŝ0, for τ = e
π
2 i+ 2n

3 πi, (n = 0, 1, 2),

then it follows from Proposition 3.2 that ϕ0 : R2 −→ S6 corresponding to ϕ0
C

defined by ϕ0
C = s0 defines an almost complex curve of type (III). The ϕ0

C is
written as follows :

ϕ0
C =

(√ r2

r1 + r2
(− sin(r1y) + i cos(r1y))dn(rx, p),√

r1

r1 + r2
(sin(r2y) + i cos(r2y))cn(rx, p),√

r2p2 + r1

r1 + r2
(sin(r3y) + i cos(r3y))sn(rx, p)

)
.

[Double-periodicity of ϕ0] Since the Jacobi elliptic functions sn(rx), cn(rx)
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and dn(rx) are invariant under the translation x −→ x +
4K

r
, ϕ0 is doubly-

periodic if and only if the ratio
2π

r1
:

2π

r2
:

2π

r3
is that of rational numbers. In

particular, if α = 3

√(m

n

)2 − 1 with n, m ∈ N, (n, m) = 1 and α = 2, then ϕ0 is

doubly-periodic and the lattice Γ of the 2-torus is given by

Γ = SpanR{
4K

r
e1 + n3

√(m

n

)2 − 1πe2} when n + m is even,

Γ = SpanR{
4K

r
e1 + 2n3

√(m

n

)2 − 1πe2} when n + m is odd,

where {e1, e2} is the standard basis of R2.

4. Further results

In fact, all the solutions of (3.1) for R2 as domain may be described by Prym-
theta function, i.e., a function on Prym variety defined using the theta-function.
Here, the Prym variety is a Jacobian torus of a compact Riemann surface modulo
some involution. This fact is already proved by Sharipov([Sh], [ChSh]). He
classified all minimal 2-tori in S5 ⊂ C3 which are complex normal. Here the
term gcomplex normalh means that the immersion is horizontal with respect to
the Hopf fibration S5

C −→ P 2(C). Hence, using our Proposition 3.2 we may
describe all the almost complex 2-tori of type (III) in S5 in terms of the Prym-
theta function (see [HU]).

References

[BPW] J. Bolton, F. Pedit and L. Woodward, Minimal surfaces and the affine Toda field model, J.

reine angew. Math. 459 (1995), 119-150.
[BVW] J. Bolton, L. Vrancken and L. Woodward, On almost complex curves in the nearly Kähler

6-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), 407-427.

[Br] R.L. Bryant, Submanifolds and special structures on the octonians, J. Differential Geom.
17 (1982), 185-232.

[Ca] E. Calabi, Minimal immersions of surfaces into Euclidean spheres, J. Differential Geom. 1

(1967), 111-125.
[CU] I. Castro and F. Urbano, New examples of minimal Lagrangian tori in the complex projective

plane, manuscripta math. 85(1994), 265-281.

[ChSh] I.Yu. Chetdantsev and R.A. Sharipov, Finite-gap solutions of the Bullough-Dodd-Zhiber-
Shabat equation, Theor. Math. Physics 82 : 1 (1990), 108-111.

[DV] F. Dillen and L. Vrancken, Totally real submanifolds in S6(1) satisfying Chen’s equality,

Trans. Amer. Math. Soc. 348 (1996), 1633-1646.
[Ej] N. Ejiri, A generalization of minimal cones, Trans. Amer. Math. Soc. 276 (1983), 347-360.

[Gr] A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20
(1969), 277-279.

[Ha] H. Hashimoto, Weierstrass Bryant formula of superminimal J-holomorphic

curves of a 6-dimensional sphere, a preprint.



ALMOST COMPLEX CURVES OF TYPE (III) 41

[HS] H. Hashimoto and K. Sekigawa, Minimal surfaces in a 4-dimensional sphere, Houston J.

Math. 21 (1995), 449-464.

[HU] H. Hashimoto, S. Udagawa et al, in preparation.
[Hu] A. Huber, On subharmonic functions and differential geometry in the large, Comment.

Math. Helv. 32 (1957), 13-72.
[Ke] K. Kenmotsu, On minimal immersions of R2 into Sn, J. Math. Soc. Japan 28 (1976),

182-191.

[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geomtry, volume II, John Wiley
& Sons.

[OU] Y. Ohnita and S. Udagawa, Harmonic maps of finite type into generalized flag manifolds

and twistor fibrations, a preprint.
[Sh] R.A. Sharipov, Minimal tori in the five-dimensional sphere in C3, Ther. Math. Physics 87

: 1 (1991), 363-369.

Department of Mathematics, School of Medicine, Nihon University, Itabashi,

Tokyo 173-0032, Japan

E-mail address: sudagawa@med.nihon-u.ac.jp


