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Introduction

A mathematical optimization problem is described by the following form:

(P) Minimize f(z)
subject tox € S ={x e R" | ¢g;(x) <0, Vi € ['}.

In particular, optimality conditions and duality theorems have been investigated
by many researchers in convex optimization problem.
Constraint qualifications of the following inequality system of (P):

o= {gi(x) <0,iel},

are important technical assumptions for solving (P), which have been studied by
many researchers, see [3, 4, 8, 9, 10, 16]. One of the most important constraint
qualification is the basic constraint qualification (BCQ), for short). Recall that o
satisfies BCQ at = € S if

Ng(Z) = coneco U 09:(7),

i€l (z)

and it is well-known that BC(Q is a necessary and sufficient condition to ensure
the equivalence between the optimality and the existence of Lagrange multipliers
for convex optimization problems, so that candidates for optimal solutions may
be found by using the existence of Lagrange multipliers, see [9, 16] for details.
The other important constraint qualification is the Farkas Minkowski property
(FM, for short), which is defined as follows

conecoLJepig;k + {0} x [0, 400) is closed,
iel
is a necessary and sufficient constraint qualification for the Lagrange duality the-
orem, and a sufficient condition of BCQ at every points of S, see [8, 3]. Moreover
the conical epigraph hull property (conical EHP, for short), which was defined as
follows
coneco U epig; is closed,
icl

is well known as a sufficient condition of FM.



In this thesis, we deal with constraint qualifications and characterizations of
solutions in convex optimization. Especially, we consider the following topics
mainly:

(I) Checking methods of BCQ.

(IT) Constraint qualifications for locally Lipschitz inequality systems.

In order to check BCQ at & € S, we may calculate the characteristic cones of
conical EHP and FM instead of Ng(Z), I(Z) and 0g¢;(Z), because BCQ holds at
every points of S when one of these cones is closed. However, when both cones
are not closed, it is unknown whether BCQ holds or not at a given point of .S, and
methods of checking BCQ by using these cones have not been observed as far as we
know. This fact is a motivation for (I). Recently, the KKT optimality conditions
for a convex optimization problem, whose constraint functions are not necessarily
convex, was studied. In 2010, a convex optimization problem, whose objective
function is differentiable convex and constraint functions are differentiable but not
necessarily convex, was discussed and a constraint qualification for the optimality
condition was given by Lasserre, see [15]. In 2013, a convex optimization problem,
whose objective function is convex not necessarily differentiable and constraint
functions are locally Lipschitz but not necessarily convex or differentiable, was
discussed, and a constraint qualification for the optimality condition was given by
Dutta and Lalitha, see [5]. However, the constraint qualification is not necessarily
constraint qualification. This fact is a motivation for (II).

This thesis consists of four chapters. Chapter 1 deals with notation and pre-
liminaries in convex analysis. Chapter 2 deals with alternative theorems for a
separable convex inequality system. We show two alternative theorems for sep-
arable convex inequality system. In Section 2.1, we show a certain condition
is a necessary and sufficient one for an alternative theorem of separable convex
functions, and we give an interesting example. Based on the example, we prove
another alternative theorems in Section 2.2, Chapter 3 deals with checking meth-
ods of BCQ. We give a theorem which gives a method of checking BCQ via the
characteristic cones of conical EHP and FM. Also we give some examples of the
theorem are given with figures. Chapter 4 deals with constraint qualifications for
a locally Lipschitz inequality system. We give several constraint qualifications for
the KKT optimality condition, which are modifications of well-known constraint
qualifications of convex or nonlinear optimization, the Basic constraint qualifi-
cation (BCQ), Guignard’s constraint qualification, Abadie’s constraint qualifi-
cation, Cottle’s constraint qualification and the linearly independent constraint
qualification. We discuss all relations among these constraint qualifications, es-
pecially, we show that two of them are necessary and sufficient constraint qual-
ifications for the KKT optimality condition. In addition, we remark that the
Slater condition is not a constraint qualification for the optimality in this convex
optimization problem.
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Chapter 1

Preliminaries

In this chapter, we introduce some notation and preliminaries in convex analysis.
In this thesis, we deal with functions and sets on R™. In section 1.1, we introduce
notions of convex set, convex function, and these properties. In section 1.2, we
introduce properties of locally Lipschitz function. In section 1.3, we introduce
important constraint qualifications and previous results in convex optimization.

1.1 Convex sets and functions

Definition 1.1. Let C be a subset of R”,
(i) C issaid to be convex if for each z, y € C'and o € (0, 1), (1—a)z+ay € C,

(ii) C' is said to be a cone if C' is non-empty set, and for each A > 0 and = € C,
Ax e C.

Let C be a set in R™. We denote the closure, the interior, the conical hull and
the convex hull of C' by clC', intC', coneC' and coC', respectively. Also, we denote
A+B={a+b|lac Abe B}, \A={Xa|a € A} and Aa = {Xa | A € A} for
any AABCR" aeR" ACRand A € R.

The following separation theorem has important roles in convex analysis.

Theorem 1.1. Let C' be non-empty convex subset of R", and z ¢ clC. Then
there exist a € R"\ {0} and a € R such that for each y € C, (a,2) < a < (a,y)

Let f be a function from R™ to RU{+o00}. The effective domain of f, denoted
by domf, is defined by

dom f = {z € R"| f(x) < +o0}.
f is said to be convex if for any z,y € R™ and for any A € (0, 1),

ST =Nz +Xy) < (1 =N f(x) + Af(y),

1



and f is said to be strictly convex if for any x,y € domf with z # y and for any
A€ (0,1),
UL =Nz +Ay) < (1= A)f(2) + Af(y).

Also, f is said to be quadratic if f is written by the following form:

f(z) = % (x, Ax) + (a,x) + o, Vo € R",

where A € S" = {B C R™" | B is a symmetric matrix}, a € R” and o € R. In
addition, a convex quadratic function f has the following property:

(i) f is convex if and only if A is positive semidefinite, and
(ii) f is strictly convex if and only if A is positive definite.

Also f is said to be separable if f is written by the following form:

flzy, .o xn) = filzy) + -+ fulzn), Vo, ...,z €R,

where fi,..., f, : R — R. f is convex if and only if fi,..., f, are convex. The
epigraph of f, denoted by epif, is defined by

epif = {(z,7) e R" xR | f(z) <r}.

f:R" - RU{+o0} is said to be proper and lower semicontinuous (Isc, for short)
if epif is non-empty and closed set, respectively. In addition f is convex if and
only if epif a convex set. The conjugate function of f, f*: R" — RU {400}, is
defined by

f*(u) = sup{(u, ) — f(z) | v € R"},
where (u,z) denotes the inner product of two vectors u and x. The following
inequality always holds:

which is called the Young-Fenchel inequality. Also, if f is separable convex, that

is, f(z1,...,2n) = fi(xy) + -+ fulzn), Ve, ..., 2, € R, where f1,..., [, : R —
R, then

Fryn) = i)+ + fa(yn), Yyr, ... yn € R
The subdifferential of f at x € R", denoted by 0f(z), is defined by

Of (@) ={ e R" | f(x) + (&, y —x) < f(y),Vy € R"}.

From the Young-Fenchel inequality, it is clear that £ € Of(z) if and only if
(&, z) — f(x) = f*(§). For non-empty convex set S C R", the indicator function
of S, denoted by dg : R™ = R U {+0o0}, is defined by

0, if ze€b,
Os() = { +oo, if x ¢S



For proper lsc convex functions g, h : R" — R U {400}, the infimal convolution
of g with h, denoted by g @ h, is defined by

(g h)(z) = inf {g(z1)+ h(z2)}.

x1+To=2

It is well known that if domg N domh # (), then
(g h)" =g +h"and (g+ h)" =cl(g" ® h"). (1.1)

If one of g and h is continuous at some a € domg N domh, the closure operation
in the second equation of (1.1) is superfluous,

epi(g + h)* = epig” + epih”, and (1.2)

d(g + h)(x) = dg(x) + Oh(x), for each x € domg N domh, (1.3)

see Theorem 2.8.7 in [27]. Let g; : R® — R U {400} be a proper Isc convex

function for each 7 € I, and let A € RSFI), that is, A = (\;);esr such that A\; > 0 for
each i € I, and with only finitely many \; different from zero. Assume that one
of g;, 1 € I, is continuous at some a € (,.; dom g;. Then

0 (Z )\igi> (x) = Z \i0 gi(z),Vz € ﬂdom i, (1.4)
i€l i€l i€l

where 0 X (+00) = 0. Let C be a set in R™. The negative polar cone of C,
denoted by C~, is defined by

C™={yeR"|(y,x) <0,Vz e (C}.
It is well-known that C'~ is a closed convex cone, and
C~ = (C7)” = clconecoC.
For any x € C, the tangent cone of C' at z, denoted by T¢(z), is defined by
To(x) ={y e R" | H(zx,ax)} € C xRy s.t. o — x,ap(xy, — ) =y},

where R, = [0,4+00). The set T(Z) is a closed cone. The normal cone of C' at
x, denoted by N¢(z), is defined by Neo(z) = (Te(x))”. When C'is a convex set,
it is well-known that

Te(z) = clecone(C — x) = No(z)~, and

No(z) = (C—z)” ={{eR" [ ({,y—z) <0,Vy € C}.



1.2 Locally Lipschitz functions

A function ¢g : R" — R is said to be locally Lipschitz if for each x € R", there
exist M > 0 and r > 0 such that |g(y) —g(2)| < M||y— z|| for each y, z € B(z,r),
where B(z,r) ={y e R" | |ly — z|| <r}.

Definition 1.2. Let g : R®™ — R be a locally Lipschitz function,

(i) the Clarke directional derivative of g at z € R" in direction d € R", denoted
by ¢°(x,d), is given by

4 (2, d) = limsup 9y +td) — g(y)

v t ’
tl0

(ii) the Clarke subdifferential of g at z, denoted by 0°g(z), is defined by

°g(x) ={& e R" | (£,d) < ¢°(x,d),Vd € R"}.

For each z € R", the function ¢°(x,-) is a positively homogeneous convex
function. The set 9°¢g(x) is a non-empty, convex and compact subset of R™.
Moreover the Clarke directional derivative is the support function of the Clarke
subdifferential, that is,

°(x,d) = max (&, d).
o (d) = e (€,d)
When ¢ is convex, then g is locally Lipschitz, ¢°(z,) = ¢'(z,-) and 9°g(x) =
Jg(x) for each x € R™, where

1oy i 9@+ td) = g(x)
g'(z,d) = ItIE)l ; :

In general, a locally Lipschitz function g is said to be regular at x if ¢ is direc-
tionally differentiable at z in the all directions d and ¢°(x,-) = ¢/(z, -), see [2].

1.3 Convex optimization
In this section, we consider a given infinite convex inequality system:
0 :={gi(x) <0,i e},

where [ is an arbitrary, possibly infinite, index set, and g; : R” — RU {+oc} are
lower semicontinuous (Isc) proper convex functions for all ¢ € I. Let S be the
solution set of o, that is,

S={xeR"|g(x) <0,Viel}



Throughout the thesis, we assume the following general assumption

@ { G

for each 7 € I, there exists x; € S such that g; is continuous at x;.

Constraint qualifications have important roles to solve convex optimization prob-
lems. The most famous constraint qualification is the Slater constraint qualifica-
tion as follows:

Definition 1.3. Assume that [ is finite and ¢; are real-valued convex. The
inequality system o is said to satisfy the Slater constraint qualification if

there exists xo € S such that for each i € I, g;(zo) < 0.

The following useful conditions (I) and (II) of Theorem 1.2 are assured by the
Slater constraint qualification.

Theorem 1.2. Let [ be finite set, g; be real-valued convex on R”, ¢ € I, and
eSS ={reR"|g(r) <0,Vie I} Assume that o satisfies the Slater
constraint qualification. Then the following statements hold:

(I) for each real-valued convex function f on R", the following statements are
equivalent:

(a) z is a minimizer of the following optimization problem:

{ min f(z)

s.t. gi(z) <0,1€ 1,

(b) there exists A € R’ such that 0 € df(Z)+,.; M0gi(T) and N\;g;(T) =
0 for each i € I.

(IT) for each real-valued convex function f on R™,

inf f(x) = max inf {f(a:) + Zgz(x)} .

z€S ;>0 zERn .
el

Condition (b) of (I) is called the Karush-Kuhn-Tucker (KKT, for short) op-
timality condition. Condition (II) is a called the Lagrange duality theorem. The
Slater constraint qualification is a sufficient constraint qualification for the opti-
mality condition and the duality theorem in convex optimization problem. It is
easy to check whether the Slater constraint qualification holds or not. How-
ever, the Slater constraint qualification is often not satisfied for many prob-
lems. Constraint qualifications are have been studied by many researchers, see
3, 4, 8,9, 10, 16].

First, as study of (I), we introduce the basic constraint qualification (BCQ),
for short) and a previous result of BCQ.



Definition 1.4. ([9, 16]) o is said to satisfy the basic constraint qualification
(BCQ) at © € S'if

Ng(z) = coneco |J 0¢;(7),
iel(z)

where I(z) ={i € I | g;(Z) = 0}.
Theorem 1.3. ([9, 16]) Let € S. Then the following statements are equivalent:

(i) o satisfies BCQ at z,

(ii) for each lsc proper convex function f on R" such that domf NS # () and
epidg + epif* is closed, the following statements are equivalent:

(a) Z is a minimizer of the following optimization problem:

{ min f ()

s.t. gi(z) <0,1€ 1,

(b) there exists \ € ]R(f) such that 0 € Of(Z)+>_,.; \i0gi(T) and \ig;(Z) =
0 for each 7 € 1.

By Theorem 1.3, BCQ is a necessary and sufficient condition for the optimality
condition.

Second, as study of (II), we introduce constraint qualifications for the La-
grange duality and previous result of these.

Definition 1.5. ([8, 16]) Assume that o is satisfying (H). o is said to satisfy
Farkas-Minkowski (FM) if

conecoLJepig;-k + {0} x [0, +00) is closed.
i€l

o is said to satisfy the conical epigraph hull property (conical EHP) if

coneco U epig; is closed.
iel

Especially, FM is a well-known necessary and sufficient constraint qualification
for the Lagrange duality theorem as follows:

Theorem 1.4. ([8]) Assume that o is satisfying (H). Then the following state-
ments are equivalent:

(i) o satisfies FM,



(ii) for each lsc proper convex function f : R" — RU{+o00} with SNdomf # ()
and epif* + epidg is closed, strong duality holds, that is,

inf f(x) = max inf {f(x)+ Z Nigi(z)}.

€S )‘ERS»I) zeR™ el
(2
The relationship of the constraint qualifications for convex optimality is shown
by the following proposition.

Proposition 1.1. ([8, 4] and Theorem 4.1 in [16]) Assume that o is satisfying
(H). Then (i)=(ii)=-(iii)=(iv).

(i) o satisfies Slater constraint qualification,
(ii) o satisfies conical EHP,
(iii) o satisfies FM,
(iv) o satisfies BCQ at every point of S.
Finally, the following two results are used in our results.

Theorem 1.5. (Theorem 4.1 in [3]) Let I be an arbitrary index set. For each
i€l let g; : R" - RU{+oc} be a proper Isc convex function. Let u € R"
and o € R. Assume that {z € R" | g;(z) < 0,Vi € I} is non-empty. Then the
following statements are equivalent:

() {z €R"| gi(z) <O,¥i € I} C {w € R | (u,2) <},

(i) (u, ) € cleconeco | epig;.
i€l
Theorem 1.6. ([19]) Let f be a real-valued convex function on R". If there
exists zp € R™ such that f(zg) <0, then we have {z € R" | f(x) < 0} = int{x €
R™ | f(z) < 0}.

Proof. The proof is shown by using Theorem 11 and Remark 1 in [19]. ]



Chapter 2

Alternative theorems for
separable convex functions

In this chapter, we consider the following type alternative theorem: exactly one
of the following two statements is true:

(i) There exists © € R" such that

{ fi(z) <0,..., fin(z) <0,

(ii) There exist Aj,..., A\, > 0 such that for each x € R",
fo(x) + 22 Nifi(x) >0,
i=1

where f; : R" — R., i = 0,1,...,m. In 1902, Farkas established an alternative
theorem when f;, 7 =0,1,...,m, are linear functions. This alternative theorem is
well-known as the Farkas Lemma and plays very important roles to have duality
results in mathematical programming problems. In 2009, Jeyakumar and Li
proved the following alternative theorem:

Theorem 2.1. ([12]) Let f; : R® — R be a sublinear function and let f; :
R" — R, 7=1,...,m, be separable sublinear functions. Then exactly one of the
following two statements is true:

(i) there exist x € R” such that

{ filz) <0,..., fu(z) <0,
fo(l’) < 0,

(ii) there exist \; > 0, ¢ =1,...,m such that for each =z € R™,



Clearly, this result is a generalization of Farkas Lemma because linear function
is separable sublinear function.

On the other hand, Tseng showed some Lagrange duality theorem for sepa-
rable convex programming problems in 2009. If f;, ¢ =0,1,..., m, are separable
convex function, then

inf{ fo(x) | fi(x) <0,i=1,...,m} = sup ian

HERT zER? (fo(l’) + ;M2f1($>) )
where Ry = [0, 00), see [20]. In 2010, Jeyakumar and Li proved another Lagrange
strong duality theorem for separable convex programming problems under cer-
tain constraint qualification, see [13]. In this chapter, we show two alternative
theorems for separable convex functions. One is a generalization of Theorem2.1,
and the proof is given by using a result of [13] in Section 2.1. The other is a
generalization of the original Farkas Lemma, which is motivated from example
of Section 2.1, and the proof is given in Section 2.2. All results of this chapter is
based on [22].

2.1 A necessary and sufficient condition for an
alternative theorem of separable convex func-
tions

In this section, we give a necessary and sufficient condition for an alternative
theorem of separable convex functions.

Theorem 2.2. Let f; : R®™ — R, i = 1,...,m, be separable convex functions.
Then (A) and (B) are equivalent:

(A) epi inf (i /\zfz) = {J epi (i )\zfz) ;
Ai20 \;=1 Ai>0 i=1

(B) for each convex function fy : R™ — R, exactly one of the following two
statements is true:

(i) there exists x € R"™ such that

{ fl<x> S O,,fm<£L‘> S Oa
fo(I) <O,

(i) there exist \; > 0, i =,1,...,m such that for each x € R",
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Proof. We show that the following (I) and (II) are equivalent:
(I) for each convex function fy : R" — R, inf{fo(z) | fi(z) <0,i=1,...,m} =
max inf (fo(ac) + > szz(x)) )
i=1

PER™ zeR™

(IT) for each convex function fy : R® — R, exactly one of the following two
statements is true:

(i) there exists x € R™ such that

{ filz) <0,..., fm(z) <0,
fo(x) <0,

(ii) there exist \; >0, i =,1,...,m such that for each x € R",
Jo(z) + > Aifi(z) > 0.
i=1

First we assume (I). Let fy be a convex function from R™ to R. It is clear
that (i) and (ii) do not hold simultaneously. If (i) does not hold, then f;(z) <
0,..., fm(x) <0 implies fo(x) > 0. This shows

inf{ fo(x) | fi(x) <0,i=1,...,m} >0,

we have

PERT zER™

max_ inf ( folx) + ﬁ:jl " fi(m)) >0,

So, there exist u € R such that for each x € R"
Jo@) + 3 pifi(x) 2 0.

Therefore (ii) holds, and then (II) holds.

Next we assume (II). Let fy be a convex function from R” to R, and put

It is clear that p < +00. When p = —oo, (I) holds for any p € R7’ by using the
weak duality. When p is finite, put fo = fo — p, then

fi(x) <0,..., fm(x) < 0 implies fo(z) > 0,

that is, (i) does not hold, and then (ii) holds. So, there exist /i € R such that
for each z € R"

folx) + f:lmfxx) > 0, that is, fo(z) + f:lmfxx) > p.
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Therefore

sup inf (o) + £ i) = int (foto)+ £ jusi))

MGRZ zeR” - zeR” i=1
From this and the weak duality, (I) holds. O

This theorem is a generalization of Theorem 2.1. It is impossible to find any
weaker conditions than (A) where (B) holds. However, the following example
shows us possibility of another alternative theorems.

Example 2.1. Let fi(z1,x2) = fi1(21)+ fi2(22) be a separable function satisfying

%(ZL’l + 1)2 (Z)’Jl < —1)
fll(x1> = 0 (—]_ S I S 1) s and flg(él'g) = ‘IQ'
(1 —1)2 (z1>1)

Then we can calculate

. 1
[y, y2) = =yi + [va] + 0= 1,1 (y2)

2
and
* y—%+|y1|+5—x M (2) (A >0)
(Afi) (v y2) = { 20 [~A1A1) ,
040,03 (Y1, ¥2) (A = 0).
Thus

epi)\in>f0()\1f1)* ={(z1,22,a) | [11] < a}, but

U epi()‘lfl)* = {(:E17$27a) | |:L‘1| < a}U{<07070)}

A1>0

Thus (A) of Theorem 2.2 does not hold.
Now, we consider linear functions fo(x1,x2) = axy + bxg, a,b € R. In this

case, the alternative holds, that is, exactly one of the following two statements is
true:

(i) there exists x € R? such that fi(x) <0 and fo(z) <0,
(i) there exist A\; > 0 such that for each z € R?, fo(x) + Ay f1(z) > 0.

Because a # 0 whenever (i) holds, and a = 0 whenever (ii) holds.
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2.2 Another alternative theorems of separable
convex functions
By inspiring Example 2.1, we have another alternative theorems.

Theorem 2.3. Let fy : R® — R be a convex function such that f,(0) = 0, and
let f; : R" - R, i =1,2,...,m be separable convex functions such that f;(0) = 0.
Then (C) implies (D):

(C) there exists § > 0 such that for each x € B(0,d) and i = 1,...,m,
fi(0;2) = fi(),
where B(0,0) = {z € R" | ||z|| < ¢},
(D) exactly one of the following two statements is true:

(i) there exists z € R™ such that

{ fi(2) 0., fulz) <0,
fo(l’) < O,

(i) there exist Ai,..., A, > 0 such that for each 2 € R™,
i=1

Proof. 1t can be checked easily that f}(0;-) is sublinear and f/(0;-),i=1,...,m
are separable sublinear. By Theorem 2.1, exactly one of the following two state-
ments is true:

(") there exist x € R™ such that

fi(0;2) <0,..., fr.(0;2) <0,
fo(0;2) <0,

(i') there exist A\; > 0,7 = 1,...,m such that for each x € R",
fo(0s2) + 52 Aifi(0;2) = 0.
i=1

First, we prove that (i') implies (i). Suppose that (i’) holds. Clearly,  # 0. For

any i =1,2,...,m and t € (0, QH‘;”], since tz € B(0;0),

filtz) = f(0;tx) = tf(0;2) < 0.
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From f§(0;x) < 0, there exists ¢ty > 0 such that for any ¢ € (0, to],

fo(0+tx) — fo(0)
t

< 0, that is fo(tx) < 0.

Put ¢ = min {ﬁﬂfo}, we have f;(uz) < 0foreachi=1,...,mand fo(ux) <O0.
Thus (i) holds.

Next, we prove that (ii’) implies (ii). Since fy is convex and fy(0) = 0,
£4(0,+) < fo holds because t — M is non-increasing when ¢ | 0. In the
same reason, f/(0,-) < f; holds for each i = 1,...,m. So we have (ii).

Hence, the conclusion now follows as (i) and (ii) do not hold simultaneously.

[
Remark 2.1. A family of functions f; in Example 2.1 holds condition (C).

We showed an example (C) holds but (A) does not hold. That is, condition
(C) does not imply condition (A). Next we show an example (A) holds but (C)
does not hold.

Example 2.2. Let fi(z1,x2) = fi1(21)+ fi2(22) be a separable function satisfying
f1j(x;) = 323 + |2;]. Then we can verify that ff(y1,52) = f11(y1) + fi2(y2), and

(y; +1)* (y; € (o0, —1)),
(yj € [_171])7

ffj(%‘) =
(y; —1)* (y; € (1,00)).

o= O o=

We can check that

epi (inf (>\f1)*> = J epi (Afi)" =R x [0, 00).

A0 A>0

That is, (A) holds. But (C) does not hold. Indeed, for each § > 0, (16,0) €
B((0,0),6) and £;((0,0); (10,0)) = 16 < 16 + 16 = f;(L6,0).

Finally, we have the following alternative theorem:

Corollary 2.1. Let z € R", fy : R* — R be convex such that fy(Z) = 0 and
fi :R" - R, i=1,2,...,m, be separable convex such that f;(z) = 0. Then (E)
implies (D):

(E) there exists § > 0 such that for each x € B(0,6), and i =1,...,m,
fi(@;x) = filr + 7) = fil2),
(D) exactly one of the following two statements is true:

(i) there exists z € R™ such that
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{ fi(z) <0,..., fn(z) <0,
fo(x) <0,

(ii) there exist \; >0, i =1,...,m such that for each z € R",
Jo(z) + - Aifi(x) > 0.
i=1
Proof. Foreachi=0,1,...,m, define g; a function from R™ to R by ¢; = fi(-+ 7).

Then we can verify that ¢;(0) = fi(Z) = 0 and ¢.(0;x) = f/(Z;x) hold for each
1=20,1,...,m. This and Theorem 2.3 completes the proof. ]



Chapter 3

Alternative characterization of

BCQ

In convex optimization problem, in order to check BCQ at x € S, we may cal-
culate the characteristic cones of conical EHP and FM instead of Ng(z), I(Z)
and 0g¢;(Z). When one of these cones is closed, BCQ holds at every points of S.
However, when these cones are not closed, it is unknown whether BCQ holds or
not at a given point of S, and methods of checking BCQ by using these cones
have not been observed as far as we know.

In this chapter, we show a theorem which gives a method of checking BCQ
via the characteristic cones of conical EHP and FM. In addition, we studied
application for a specific class of functions. All results of this chapter is based on
(23, 24, 25].

3.1 Characterization of BC(Q) via the character-
istic cone of the conical EHP

In this section, let I be an index set. For each i € I, let g; : R" — RU {+o0},
be lsc proper convex. Let S = {x € R" | g;(z) < 0,7 € I}. For each Z € 5,
let V(z) = {(y, {y,z)) € R"™ | y € R"}. Before our main result, we give the
following definition:

Definition 3.1. ([1]) Let U and V be subset of R". We say that U is closed
regarding the set V' if
(clU)ynV =UnNnV.

Now, we give the characterization of BCQ at a point via the characteristic
cones of conical EHP and FM, by observing closedness regarding of these cones;
this theorem suggests another usage of these characteristic cones.

Theorem 3.1. ([25]) Let £ € S. Assume that o is satisfying (H). Then the
following statements are equivalent:

15
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(i) {gi(z) <0,i € I} satisfies BCQ at z,
(ii) conecolJ,.;epig; is closed regarding the set V(Z),
(iii) coneco|J,c; epig; + {0} x [0, 400) is closed regarding the set V' (z).

Proof. First we prove (i) = (ii). Let (y,3) € (clconecoJ,; epig;) NV (Z). From
(y,B8) € V(z), B = (y,7), that is, (y,(y, 7)) € clconecolJ,.; epig;. By Theorem
1.5,

(y,x) < (y,z) for each x € S,

that is y € Ns(z). From (i), y € conecolJ;cr(z) 09i(Z) and then there exist a
finite subset J C I(Z), A\; > 0 and y; € 0g;(7) (i € J) such that y = >"._; \y;.
For each i € J, since i € I(z) and y; € dg;(z), we have

9: (Yi) = 9:(7) + 9; (i) = (vs, 7) ,
then (y;, (y;, Z)) € epig;. Therefore,

(yvﬁ) ZieJ )‘i(yiv <yiaf>)

€ coneco |, epig;
C coneco | J,.; epig;.

Since (y,8) = (y,(y,Z)) € V(z), we have (y,) € (conecolJ,; epig;) N V(Z),
and consequently coneco | J,.; epig; is closed regarding the set V(z).
Next we prove (ii)=>(iii). Let (y, ) € (cl (coneco ;s epig; + {0} x [0,+00)))N

V(z). From (y, 8) € V(z), 8 = (y,7), that is, (y, (y, Z)) € cl (coneco | J,; epig; + {0} x [0, 400)).
When y = 0, (y, 8) = (0,0) € (coneco|J,; epig; + {0} x [0,400)) NV (Z). When

y # 0, there exists {(yx, Br)} € conecol],;epig; + {0} x [0,+00) such that

(yg, Br) — (y,5) and y, # 0 for each &k € N. For each k € N, there exist a

non-empty finite set J; C I, X > 0, (z%,at) € epigf, i € Ji, and 7, > 0 such

that (yr, Br) = D ic s, Mo(hs @f) 4+ (0,74) and 35, Ay > 0. We have

(s Be) - = i, Ml 0+ =)
€ coneco ;. ; epig;
C coneco | J;c; epig;.

Thus, (y, 8) € (clconeco |, ; epigy) NV (z). From (ii),

(y,B) € (coneco Uier epig;‘) NV (z)
- (coneco U, epig; + {0} x [0, +oo)) NV (z),

that is, coneco | J,.; epig; + {0} x [0, +00) is closed regarding the set V().
Finally, we prove (iii)=-(i). Lety € Ng(Z). Wheny =0, y = 0 € coneco ;¢ (5 09:(2).
When y # 0, by using Theorem 1.5,

(y,(y,T)) € clconeco U epig;,
iel
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and then (y, (y, Z)) € cl (coneco J,; epig; + {0} x [0, 4+00)). Since conecoJ;; epig;+
{0}x[0, +00) is closed regarding the set V() from (iii), (y, (y, Z)) € coneco|J,.; epig;+
{0} x [0,+00). So, there exist a non-empty finite set J C I, \; > 0, (z;, ;) €
epig;, i € J, and r > 0 such that (y, (y,Z)) = >_,c; Ai(®i, ;) + (0,7). For each

1€ J and x € R", we have

(zi, ) — gi(x) + 9:()
(i, x — ) + g:(T)
Thus, for each x € R",

YAz —7) +9:i(7) < Y Ni(wnr—7) < Y0 i) + (u — (20, 7))

ieJ icJ ieJ

(y, 2 =)+ > Nigi(®) < (y,x — ) < D Agi(z) —r < >0 Nigi(a).

ieJ ieJ icJ

Qg

(x5, ) — gi(x)
(x;,x — T)

IAINA

<
<

Hence, y € 0(3_,c; Aigi)(Z) and 0 = Y. ; A\igi(Z) by putting z = Z. From ); > 0
and ¢;(z) < 0 for each i € J, we have J C I(Z). Therefore,

O ies Xigi)(T)

Y ies Ni0gi(T) (from (1.4))
coneco | J,.; 09(T)

coneco ;e sz 09 ().

Y

NN I m

This completes the proof. O

By using Theorem 3.1, we can check BCQ holds or not at every x € S by
using the characteristic cone of conical EHP. Especially, when n < 2, the figure
of the cone is useful and effective for the purpose, see the following examples.

Example 3.1. Let g; : R — R be a function as follows:

se?—x  if x e (—o0,0],
g1(z) = 0 if x€(0,1),
Sz —1)2 if zell,+oo).

Then S = [0,1]. We check whether BCQ holds or not at each point of S. The
conjugate of g; is as follows:

f(z+1)?% if x€(—oo,—1],
gi(x) = 0 if e (-1,0),
122+z  if z€]0,+00).

Also,
coneepigi = {(y,7) € R* | y < 0,7 > 0y U{(y,r) € R* | y > 0,7 >y},
cleoneepigi = {(y,r) € R* |y < 0,7 > 0} U{(y,r) €R? |y > 0,7 > y}.

Then conical EHP does not hold; also FM does not hold. On the other hand, for
eachz € S,
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(—o0,0] x {0} if =0,
clconeepig; NV (z) = {(0,0)} if 7 e(0,1),
{(yar)‘()SyaySr} if z=1

and

- [ (=o0,0] x {0} if z=
coneepigi NV (z) = { £(0,0)} i e

Therefore, BCQ holds at each point of [0,1), but BCQ doesn’t hold at 1 from
Theorem 3.1, see Figure 3.1 which is reprinted from [25].

cone epi gj

N

V(1)

V(1/2)

0 V(0)

Figure 3.1: (Example 3.1)

Example 3.2. Let g : R*> — R be a function as follows: go(x1, ) = go1(21) +
g22(2), where

(x;+1)* if z; € (—oc0,—1],

g2j(xj> = 0 lf .’L'j c (—1, 1),

(l’j — 1)2 lf .fll'j € [1, +OO)

N

N[

Then, S = [—1,1]?. Since g, is a separable function, g¢;(yi,y2) = g5, (y1) +
Paa(y2) = 3yt + |yl + 503 + [gel,

epigy = {(y1,y2,7) € R? | (|tn] +1)* + (Jyo| + 1)* < 2(r + 1)},

coneepigy = {(y1,2,7) € R® | [y1| + |y2| < 7} U{(0,0,0)},

and
cleconeepigy = {(y1,y2,7) € R® | |y1] + |y2| < 7).

Then conical EHP does not hold; also FM does not hold. It is easy to check that
coneepig; NV (z) = {(0,0,0)} for each # € S, and Z € intS = (—1,1)? if and
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only if clconeepigsi NV (z) = {(0,0,0)}. On the other hand, clconeepigs NV (z) #
{(0,0,0)} for each z € bdS. Indeed, for each T = (Z1,Z2) € bdS, there exists
ip € {1,2} such that |z;,| = 1. Put

_oE i |z;| =1,

YT 00 i @] £ 1
Then (y1, Yo, T1y1 + Tay2) € cleconeepigs NV (z) \ {(0,0,0)}, that is, clconeepigs N
V(z) # {(0,0,0)}. By using Theorem 3.1, BCQ holds at each point of intS, but

BCQ doesn’t hold at each point of bdS, see Figure 3.2 which is reprinted from
[25]. However, in this case, it is not easy whether BCQ holds or not at every point

cone epi g,

V(L,1)

1.3)

Figure 3.2: (Example 3.2)

of S from the definition of BCQ, because the calculation of Ng(z) and 0gq(Z) for
every T € S often need time. Indeed, 0ga(Z1,Z2) = {(0,0)} for each T € S, but

( {(0,0)} if (Z1,79) € intS,
Ry x {0} if z =12 €[-1,1],

R? if 7 =1,z,=1,
{0} xRy if 7 € [-1,1],39 = 1,
Ng(Z1,72) =< —Ri xRy if 73 =-1,20=1,
—R, x {0} if 7 =-1,7,€[-1,1],
—R? if 7 =-1,z=—1,

+
{O} X —R+ if T € [—1, 1},%2 = —1,
R+ X —R+ lf j']_ - 17(%2 — —1

\

In next example, we check BCQ in the special case of n > 2.

Example 3.3. Let g3 : R® — R be a function as follows:

gs(x) = 1/8((v, ) — | {v,z) )* + %(I (w,2) | = (w, z)),
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where v, w € R™ with ||v]| = [Jw|| = 1 and {v, w} is linearly independent. Then,
S={reR"| (v,z) >0,{(w,z) >0} Put fi(z) = 1/8({v,z) — | (v,z)])* and
fo(z) = %(| (w,x) | — (w,x)), we have g3 = f1 + f» and

1
epig; = {(sv +tv,r) € R**! 532 <rs€(—0,0,te€ [—1,0]}
because epi(fi+f2)* = epifi +epifs, fi(y) = 5((v,4))*+0(-cc00(y), and f3(y) =
5[71,0]10(?/)' Hence,
coneepigy = {(—sv—tw,r) € R"™ |t >0,s7>0}U{(~tw,r) € R | ¢, r >0},

and
clconeepigy = {(—sv — tw,r) € R"*! | s,¢t,7 > 0}.

Then conical EHP does not hold; also FM does not hold. For each z € S,

coneepigs V@) = { _ SGOF 20 s )
and
{(0,0)} it (v,7) >0, (w,7) >0,
deoneepfi V@ = (WS (>0 (<0
((—00,0]v 4+ (=00, 0lw) x {0} if (v,z)=0,(w,z)=0.

Therefore, BCQ holds at each point of {z € R" | (v,z) > 0, (w,z) > 0}, but BCQ
doesn’t hold at each point of {x € R" | (v,z) =0, (w,z) > 0} from Theorem 3.1.
In particular, if n = 2, (v,w) = 0, then coneepig; is as follows: Figure 3.3 is

cone epi g3

w
Figure 3.3: (Example 3.3)

reprinted from [25].
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3.2 Application to convex quadratic functions
In this section, we consider the convex optimization problem:

(P) minimize  f(x)
subject to  g(z) <0,

where f : R” — R, is a convex function, and ¢; : R® — R, ¢ € I, are convex
quadratic functions. The purpose of this section is to study Theorem 3.1 by a
specific class of functions which are presented by quadratic. We show results to
check the BCQ without calculating g*.

Lemma 3.1. Let g : R* — R be a convex function, and assume that S = {z €
R™ | g(z) < 0} be a non-empty set. If g(z) > 0 for each z € R”, then ¢*(0) =0
and S = 0g*(0).

Proof. The proof is easy and omitted. m

Theorem 3.2. Let g : R — R be a convex quadratic function that is not
identically zero. Suppose that S = {x € R" | g(z) < 0} is a non-empty set. Then
the following statements are equivalent:

(i) for each x € R™, g(z) > 0,
(ii) for each z € S, {g} doesn’t satisfy the BCQ at z,
(iii) there exists xy € S such that {g} doesn’t satisfy the BCQ at .

Proof. The implication (ii)=>(iii) is clear. Since the Slater condition assures BCQ
holds at every feasible point, see [11], then (iii)=-(i) is clear.

Now, we turn to the proof of (i)=-(ii), and assume (i). Let u € S. By
Lemma 3.1, ¢*(0) = 0 and S = dg*(0). Put

B={(y,8) e R" xR [ ((u,=1),(y,8)) = 0}.
Then,
B nepig" C {(0,0)}. (3.1)

In fact, assume that there exists (£, «) € B Nepig* such that (£, «) # (0,0). By
u € 0g*(0) and ¢g*(0) = 0, for each (n, 5) € epig*,

(u,m) < g"(n) < B. (3.2)

Since (§,«) € B Nepig*, we have (u,&) < ¢*(§) < a and (u,§) = «, that is
(u,&) = g* (&) = a. It is clear that £ # 0, if not (£, a) = (0,0). From g(u) = 0,
we have g(u) + ¢*(&) = (u, &), so u € dg*(€). Therefore 0,& € dg(u). This shows
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g* is subdifferentiable on co{0, £}, then g* is strictly convex on co{0, £} by using
Theorem 26.3 in [17]. For any X € (0,1), we have
1

9" (AE) i}(( — A0+ A

< (1=X2)g"(0) + Ag™(¢)
= A <u’ >
= <u7 AE >
From (3.2), (u, A§) < g*(A) because (A, g*(A)) € epig*. This is a contradiction.

From (3.1), we have

{y € R" | (y, (y,u)) € coneepig”} C {0}. (3.3)

Actually, let y € R™ satisfy (y,(y,u)) € coneepig*. There exist A > 0 and
(x,a) € epig* such that (y, (y,u)) = AM(z,a). If A =0, then y =0. If A > 0, we

have . ) ) )
(Xya <X?J,U>) € €p1g and <(U, _1)7 (Xy7 <Xy7 U>)> = 0.

Thus, (%y, <§y, u>) € B Nepig*. From (3.1), we have y = 0.

Since g is a quadratic convex function, there exist A € S, a € R", a € R such
that g(2) = 3 (x, Az) + (a, ) + o for each z € R", Put L = {z € R" | Az = 0},
then

LC{yeR"|(y,(y,u)) € clconeepig”}. (3.4)

Actually, let z € L. There exists a unique symmetric positive semi-definite
matrix A* € S™ such that AA* = A*A = P, where P is the matrix of the linear
transformation which projects R™ orthogonally onto L, and for this A* one has

1
g (y) = 3 (y—a,A"(y —a)) —a+05(y — a) for each y € R",

see Section 12 in [17]. From ¢*(0) = 0, we have

1

g (y) =5

1
5 —(y,A%a+ a) + 0.(y), for each y € R".

For cach k € N, (£2,9%(32)), (—£2, 9" (—12)) € epig because z € L and L is
subspace of R". From (3.2), we have <u, kz> < g*(+2) and <u, —%z> < g*(_%z),

that is
—g*(—12) < (37u) < g*(%Z),
—kg*(—%z) < (zu) < kg*(lz).
From —kg*(—12) = —5 (2, A*2) — %(z A*a+a) and kg*(32) = <z A*z) —
3 (2, A*a + a), we have —kg*(—12) — —3 (2, A*a+a> and kg* (% ) = —1(z,A*a+a).
Thus (z,u) = —1 (2, A*a + a). Therefore (z,kg*(32)) = (2, (z,u)). F (z,kg*(%z)) €

coneepig*, (z, (u, z)) € clconeepig*.
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In addition, L # {0} since g is not identically zero and (i). From this, (3.3)
and (3.4),

{y € R" | (y, (y,u)) € coneepig"} # {y € R" | (y, (y,u)) € clconeepig™}.

By Theorem 3.1, {g} doesn’t satisfy the BCQ at u, and thus (ii) holds. This
completes the proof. O

By Theorem 1.3, Theorem 3.1 and Theorem 3.2, we have the following corol-
lary.

Corollary 3.1. Let ¢ : R® — R be a convex quadratic function that is not
identitically zero. Suppose that S = {x € R" | g(z) < 0} is a non-empty set.
Then the following statements are equivalent:

(i) there exists zo € R™ such that f(zg) < 0,
(ii) there exists z; € S such that {g} satisfies the BCQ at 1,
(iii) for each z € S, {g} satisfies the BCQ at x,
(iv) for each z and f : R™ — R, convex, the following statements are equivalent:

(a) 7 is a minimizer of the following optimization problem:

minimize  f(x)
subject to  g(x) <0,

(b) there exists A > 0 such that 0 € 9f(Z) + A\dg(T).

Example 3.4. Let g(x) = 2% + 2x. Then S = {z € R | g(x) < 0} = [-2,0], and
g(—1) = =1 < 0. Thus (i) of Corollary 3.1 holds. So, the BCQ holds at every
point of S.

Example 3.5. Let g(x1,25) = %xl.Then, S = {0} x R, and for each z € R",
g(x) > 0. Thus (i) of Corollary 3.1 doesn’t hold. So, the BCQ doesn’t hold at
every point of S.
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3.3 Application results of alternative criteria in
convex composite functions

Throughout this section, constraint convex functions g; are given as
9i = hiov; = hi(vi(")),

where h; : R — R is a convex function for each ¢ € I and we denote the inner
product of v; € R™ and y € R™ by v;(y) as a function of y for each fixed v;. we
observe o by using the result of [25]

Theorem 3.3. Let g be a real-valued convex function on R", h be a real-valued
convex function on R, and v € R™\ {0}. Assume that g = howv and ||v| = 1.
Then g* = h* o v + d}y) where [v] = {av | @ € R}.

Proof. Let y € R™. If y € [v], there exists a € R such that y = av. So, we have

g (y) = sup,era{y(z) —g(2)}

= Sup,epn{av(x) — h(v(z))}

= SUDP;eR SUP, ()= {av(7) — h(v(z))}
= sup,giat — h(t)}

= h*(a).

From |v|| = 1, @ = v(y). Thus, ¢*(y) = (h*ov) (y). If y & [v], put p = v(y)v.
For each t € R, t = v(tv). For each k € N, put =y = tv + k(y — p), we have
v(xg) =t. For each t € R,

SUPjen Y(Tk)

supgen y(tv + k(y — p))
supgen ky(y — p) + tv(y)
supgen K{y(y) —y(p)} + tv(y)

Supv(:p):t y(fB)

v

= supgen F{IYI° — y(v(y)v)} +tu(y)
= supgen K IYII° = v(y)y(v)} + tu(y)
= SupkeNk{HyHQ_ (y)v(y)} +tu(y)
= supgen Kyl 0] = (v(y))?) + tu(y).

By Cauchy-Schwartz inequality and y ¢ [v], 0 < [ly[]*|[v||* — (v(y))®>. Then
g*(y) = +o0. Indeed,

9 (y) = supera{y(z) —g(2)}
= Sup,ern{y(z) — h(v(2))}
= SUDyeR SUD, ()= {y(z) — h(t)}
> SUP, (=0 Y(2) — (0)
> supgey (1912101 = (v(9))?) = 2(0)

+o0.
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Hence,
g =h"ow +5M.

Example 3.6. Let g : R — R be a function as follows:

1

9(x) = 5 ((v())* +v(@) + [o(2)]),

where v € R™\ {0} and ||v|| = 1. Put h(t) = 2(t* + t + |¢|). Then g = hov and
S={xeR"|v(z)=0}.

152 if s€(—00,0)
h*(s) = 0 it sel0,1)
S(s—1)2 if sell,+o0),
;(v()? if Y€ (—o0, 0
o 0 it yel01)
TW=Y L) -1 i ye L+
+00 if otherwise.

So,
coneepig® = Rv x [0, +00) \ (—o0,0)v x {0},

clconeepig® = Ru X [0, 400).
o does not satisfy FM. For each z € S,

coneepig® NV (z) = [0, +o00)v x {0},
cleconeepig® NV (z) = Rv x {0}.
Thus, o does not satisfy BCQ at each x € S.

Example 3.7. Let g : R® — R be a function as follows:

—1—w(x) if wvx)<-1
g(z) = 0 if —1<wv(z)<1
Jw@) =12 it 1 <u(a),

1t if te(—oo,—1)
where v € R™\ {0} and |jv|| = 1. Put h(t) = 0 if te[-1,1)

st—1)2 if tell,+oo).
Then g =hov, S={r e R"| -1 <ov(z) <1} and intS # 0.

—s if se[-1,0)
h'(s) =1 2s?+s if s€0,+00)
+oo if s€(—o0,—1),
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—v(y) if yel[-1,0
g (y) =< s(w)*+oly) if yel0,+oo)v
+00 if otherwise.

So,
coneepig® = {(av,r) € R"™ | |a| <7} \ {(av,7) e R* |0 < a < 7},

cleconeepig® = {(awv,r) € R"™ | a € R, |a| < 0}.
For each 7 € S,

{(0,0)} if zeintS
coneepig® NV (z) = {(0,0)} if o(z)=1
(oo, 0{(0, )} i v(z) = 1,
{(0,0)} if 7 eintS
cleconeepig* NV (z) = [0,400){(v,1)} if o(z)=1
(—o0,0l{(v, 1)} if w(z)=-L1.

Thus, o does not satisfy BCQ at each z € {z € R" | v(z) = 1}, and o satisfies
BCQ at each z € intS U {z € R | v(z) = —1}.

Example 3.8. Let g1, g» : R? — R be two functions as follows:

—1—z if =z €(—o00,—1)
gi(z1,22) = 0 if x;€[-1,1)
(ry —1)* if =z €[1,+00),

N | #—

(g + 1) if 3 € (—o00,—1)
gg(l'l,xg) = 0 if To € [—1, 1)
—1+4+ 29 if xy€ [1,+OO)

o=

Put v; = (1,0), vo = (0, 1),

—1—t if te(—o0,—1)
hi(t) = 0 it tel-1,1)
st—1) if tell,4o00),

and
Tt+1)?2 if te(—oo0,—1)
ho(t) = 0 if te[-1,1)
-1+t if tel,+00),

where i = 1,2. Then g; = howv;, i = 1,2, S = [—1,1]? and intS # (.
—s if se[-1,0]

hi(s) =< 2s?+s if s€0,+00)
+oo if s€(—o0,—1),
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1P —s if se(—o0,0]
hi(s) = s if sel0,1]

+oo if se(1,4+0),
— it (y1,92) € [-1,0] x {0}

gy, y2) =% syi4+wy it (y1,942) €[0,+00) x {0}
400 if otherwise,
s —ye it (y1,42) € {0} x (—00,0]
9 (1, y2) = Ys it (y1,92) € {0} x [0,1]
+00 if  otherwise.

So,

coneco(epig; Uepigs) = {(y1,y2,7) € R® | |y1| + |y2| < 7}
U{(y1,92,7) ER® | y1 < 0,40 >0, —y1 +y2 =7},
cleconeco(epigi U epigs) = {(y1,y2,7) € R? | |yn| + |2 < 1}

o does not satisfy FM. For each (z1,20) € {—1} x (=1,1] U [-1,1) x {1},
coneco(epig] U epigs) is closed regarding the set V(xy,x). Thus, o satisfies
BCQ at each (z1,25) € ntSU{—1} x (—=1,1]U[-1,1) x {1}. For each (z1,2) €
bdS \ ({1} x (=1,1] U [-1,1) x {1}), coneco(epig; U epigs) is not closed re-
garding the set V(z1,23). Thus, o does not satisfy BCQ at each (xy,z5) €

bdS\ ({1} x (—=1,1]U[=1,1) x {1}).

Example 3.9. Let [ = [—im, im). We consider for each 6 € I, g5 : R* —» R
defined by
1 —vy(x) if  wp(x) < -1
go(z) = 0 if —1<uw(x)<1
$(vp(z) —1)? if 1 < wy(x).

Put vy = (cos @, sin @) for each 6 € I and

—t—1 if te(—o0,—1)
h(t) = 0 if tel-1,1)

Tt—1)2 if tell,+oo).
Then gy = howvy and S = {z € R" | ||z]| < 1},

+oo if s€(—o0,—1)
h*(s) = —s if se[-1,0)
ss2+s if  se(0,+00),

ve(—vy) if yel[-1,0)vg
(vo(y))* +va(y) if y € [0, +oo)vy
+00 if yeR?\[-1,+00)vs.

N

9% (y) =



28

So,

coneco Jyepige = {(—acosf, —asinb,r) eR? |0 <a=r0¢€ [—im in)}
U{(y1,92.7) € R |||y, )| < 1}
cleoneco e, epigo = {(y1,92,7) € R | [|[(y1,52)[| <7}
o does not satisfy FM. For each (z1,22) € {(—cosf,—sind) | § € [—3m, 37)},
coneco |y, epige is closed regarding the set V(x1,2;). Thus o satisfies BCQ at

each (z1,25) € intS U {(—cosf,—sinb) | § € [—4m, +7)}. For each (z1,25) €

bdS \ {(—cosf,—sind) | 6 € [—3m, 5m)}, conecolJ,c;epigs is not closed re-

garding the set V(zy,x2). Thus o does not satisfy BCQ at each (x1,z5) €
bdS \ {(—cosf, —sind) | § € [—3m, 27}

2772



Chapter 4

Constraint qualifications for
locally Lipschitz inequality
systems

Recently, the KKT optimality conditions for a convex optimization problem,
whose constraint set S is described by the inequality constraints but every con-
straint functions are not necessarily convex, was studied. In 2013, a convex
optimization problem, whose objective function is convex not necessarily differ-
entiable and constraint functions are locally Lipschitz but not necessarily convex
or differentiable, was discussed, and a constraint qualification for the optimality
condition was given by Dutta and Lalitha, see [5]. In this chapter, we investigate
several constraint qualifications, which are modifications of well-known constraint
qualifications, for the KK'T optimality in condition the convex optimization prob-
lem (P), which was discussed by Dutta and Lalitha in [5], and compare our results
and previous ones. All results of this chapter is based on [26].

4.1 Definition of constraint qualifications for a
locally Lipschitz systems

In this section, we consider the following convex optimization problem:

(P) { min f(z)

st. x €S,

where f is a real-valued convex function on R™ and S is a convex set. Throughout
this section we assume that the feasible set S is given as

S={zeR"|gl(x) <0,iel},

where g;, 1 € [ = {1,...,m}, are real-valued locally Lipschitz functions on R" and
g; is regular at every x € S and every i € I(z), where I(z) = {i € I | g;(z) = 0}.

29
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The following theorem is shown by Dutta and Lalitha in [5].

Theorem 4.1. ([5]) Let ¢; : R = R, i € I = {1,...,m}, be locally Lipschitz
functions, and let z € S = {z € R" | ¢g;(x) < 0,Vi € I}. Assume that S is a
convex set, all g; are regular at Z, the Slater condition holds, that is, there exists
xo € R™ such that g;(x¢) < 0 for each i € I, and 0 ¢ 9°g;(z) for each i € I(Z).
Then for each real-valued convex function f on R"”, the following statements are
equivalent:

(i) for each x € S, f(7) < f(x),

(ii) there exists A € R. such that 0 € 9f(z) + >,.; \i0°¢:(Z) and for each

Condition (ii) of this theorem is the KKT optimality condition of the problem

(P).

In this section, we discuss the following conditions:
(A) Ns(z) = coneco ;¢ () 9°9:(7),
(B) Ts(Z) = ies#)(9°9:(%)7) and coneco Uz 9°9:(7) is closed,

(C) there exists yo € R"™ such that (&,yo) < 0 for each i € I(z) and §; €
9°9:(7),

(D) the Slater condition holds, that is, there exists g € R™ such that g;(xo) < 0
for each i € I, and 0 ¢ 0°¢;(z), for each i € I(Z),

(E) 0¢ COUzEI 9°g:(z),
(F) intS # 0 and 0 ¢ 9°g;(7), i € I(7),

(G) for each y; € 0°¢;(Z), i € I(Z), {¥i}ici(z) is linearly independent.

4.2 Observations of constraint qualifications

At first, we provide the following lemma, which is important to show our results:

Lemma 4.1. Let € S. Then for each i € (%), & € 0°¢;(Z) and z € S,

That is, 0°¢g;(Z) € Ng(z) for each i € I(Z).
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Proof. For each i € I(Z), & € 0°¢;(z) and x € S,
(v —x) <gi (2,2 —2).
From the regularity of g; at z,

(i,v —7) < gi(T, 0 —7) = lm gi(7 +t(x —t;z-)) — gi(7)

Since T + t(x — x) € S for each t € (0,1) and i € I(z), we have g/(Z,z — %) <0,
so (&, x—x) <0. O

Now we show a result that conditions (A) and (B) are necessary and suffi-
cient constraint qualifications for the optimality conditions in convex optimization
problem (P).

Theorem 4.2. Let ¥ € S. Then the following statements are equivalent:
(A) Ns(@) = coneco ¢z 0°9:(Z),
(B) Ts(Z) = Nicsz) (0°9:(x)7) and coneco ;¢ y(z) 0°9:(Z) is closed,

(O) for each real-valued convex function f on R", the following statements are
equivalent:

(i) f(z) > f(z) for each z € S,

(ii) there exists A € RL such that 0 € 9f(Z) +>_,.; Mi0°¢;(Z) and for each
Proof. First, we prove (A)<(B). It is clear that (A) holds if and only if Ng(z) =
coneco (e z) 9°9:(2) and coneco J;c ) 0°9i(Z) is closed. From convexity of S,
we have Ng(z)~ = Ts5(z). Therefore, it is enough to show that (e (0°6:(%)7))” =
coneco (U () 9°9i(2). This equality is given by the following property:

ﬂ(Ai_) = (U A;)” for any A; CR"(i € I).

i€l i€l

Next, we prove (A)=(0). Let f be a real-valued convex function on R". The
proof that (ii) implies (i) is easy and omitted. Conversely, assume (i). For each
x €S, since T+ a(x —z) € S for each o € (0,1),

f(@) < [z + a(z — 7)),
that is,

0< f(z,zr—7)= max ({,x —1I).
< Plaa )= mas (€0
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Therefore 0 < inf,cs maxecsyr(z) (€, ¢ — ). According to Sion’s minimax theorem
(see e.g. [18, 14]), we can invert the infimum and the maximum, and we get
0 < maxecof(z) infzes (€, ¢ — Z). Then there exists n € 9f(z) such that

(—m,x — ) <0 for each z € S.

Thus, —n € Ns(z). From (A), —n € conecolJ;c;z 0°¢i(Z). Then there exist
w; > 0and & € 0°g;(Z), i € 1(Z), such that —n = Zlg@) ;& Put

T 0 i iel\I(@),

for each ¢ € I. Then it is clear that \;g;(Z) = 0 for each i € I. Moreover,

—n= > NG =) NG ED N ().
i€l (z) iel iel
Hence, 0 = n+ (—n) € 0f(Z) + >.,c; X0°¢i(T). Finally, we prove (O)=(A),
coneco ;e y(z) 0°9i(2) C Ns(@) is shown by using Lemma 4.1. Conversely, let
n € Ng(Z). Then
(—n,z) < (—n,z) for each x € S.

Put f = (—n,-), then f is a convex function, and (i) of (O) holds. So, (ii) of (O)
holds. Hence, there exists \ € Ri such that

0 € 0f(Z) + D ies Xi0°9:i(7),
A\igi(Z) = 0 for each i € I.

From 0f(z) = {-n} and 0 € Of(%) + > _,.;0°9:(T), n € > ,c; Mi0°gi(T). Since
Aigi(Z) = 0 for each i € I, we have

Z)\ 0°g; (T Z Xi0°g;(T) C coneco U 0°gi(Z).

el 1€I(z) 1€I(T)

Thus, n € coneco | J 0°g;(Z). This completes the proof. O

i€I(z)

Remark 4.1. (1) We remark that Theorem 4.2 holds even if the index set [ is

infinite. In this case, (ii) of (O) is as follows: there exist a finite subset J C I(Z)

and A € R such that 0 € 0f(z) +_,.; Mi0°¢;(Z) and for each i € I, \;g;(Z) = 0.
(2) When all g; are convex, then condition (A),

Ng(Z) = coneco U 0g:(Z),
iel(z)

is called basic constraint qualification (BCQ).
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(3) When all g; are continuously differentiable at z and S is not necessarily
convex, then condition (A),

Ng(z) = coneco U {Vai(2)},

iel(z)
which is equivalent to
cleoTs(z) = {x € R" | (Vgi(Z),z) <0,Vi € I[(Z)},
is called Guignard’s constraint qualification, and condition (B),
Ts(z) ={z € R" | (Vg;(z),x2) <0,Vie I(x)},

is called Abadie’s constraint qualification, see [21]. In this case, both Guignard’s
and Abadie’s constraint qualifications are necessary and sufficient constraint qual-
ifications for optimality condition of (P).

Next we show a result that condition (C) is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). When all g;
are continuously differentiable at z, condition (C), that is,

there exists yo € R™ such that (Vg;(Z),y0) < 0 for each i € I(z),

is called Cottle’s constraint qualification, see [21]. To show the result, we give
the following lemma:

Lemma 4.2. Let A be an index set, and let Ay C R", A € A, be non-empty
convex sets. If (., intAy # 0, then cl(),, intAy = [,c4 clAn.

Proof. The equality cI(,., Ax = () ea clA is shown straightforwardly and omit-
ted. Since clintA) = clA, for each A € A, the equality of this lemma holds. [

Theorem 4.3. Let £ € S. Then (C) implies (B).

Proof. Assume (C). There exists yp € R"™ such that (&;,y0) < 0 for each i € I(z)
and & € 0°¢;(%). That is, for each i € I(Z),

°(z, = max (&, < 0.
9; (T, o) geaogi(j)@ Yo)

Since ¢7(Z,-) is a real-valued convex function on R™ and ¢f(Z,yo) < 0, by using
Theorem 1.6,

int{y € R" | g/(7,y) < 0} = {y € R" | g7(7,y) < O}.
Also, it is clear that 0°¢;(Z)” = {y € R" | ¢¢(z,y) < 0}. Thus,

intd°g;(z)” = {y e R" | ¢7(z,y) <0} > wo. (4.1)
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Consequently, we have [,y int(9°¢;(z)~) # 0. By using Lemma 4.2, we have

1€l(z)
cl ﬂ int(9°g;(z)7) = [ d(@g:(z)") = () (8°9:(2)"). (4.2)
i€l(z i€l(z) i€l(z)
Next, we show
() int(8°g:(2)") C Ts(). (4.3)
iel(z)

Let y € (N;es(z int(9°9:(z)7). For each i € I(z), from (4.1) and the regularity of
g; at T, we have ¢i(Z,y) < 0. Then, there exists ¢; > 0 such that ¢;(Z + ty) < 0
for each t € (0,t;]. Moreover, for each i € I \ I(Z), from the continuity of ¢g; and
gi(Z) < 0, there exists ¢; > 0 such that ¢;(z + ty) < 0 for each t € (0,¢;]. Put
ty = mln{tZ | i € I}, for each t € (0, 1)

for each i € I, g;(Z + ty) < 0. (4.4)

Then Z+ty € S for each t € (0,ty]. Foreach k € N, put ), = 2+ % 2y and oy = ’“

Then {ay(xp — )} C cone(S — z) and ag(xp — ) — y, that is, y € Ts(Z). Thus
(4.3) holds. By using (4.2) and (4.3), we have

() (°g:(@)7) € Ts(2).

i€l(z)

The converse inclusion Ts(Z) C (V;cy(z)(0°9:(Z) ") holds from Lemma 4.1.
Finally, we prove that conecoJ,. 1) 0°g;(Z) is closed, that is,

clconeco U 0°g;(Z) C coneco U 0°g:(Z).

1€l(x) i€1(T)
We may assume that I(z) # 0. Let y € clconecoJ;c;(z 0°9:(%). There exists
{yr} C conecolUc ) 9°9i(2) such that y, — y. For each k € N, there exist
o= (Wicrm € REY and 2% = (28)icrq) € [Licsz) 0°9:() such that y, =
D ici(@) Nk From (C), there exists yo € R™ such that 97 (Z,y0) < 0. Put
T = MmaX;er(z) 95 (T, Yo). For each i € (), <:Uf,y0> < r < 0. Thus, (yx,y) <
" iera M- Since (Yk, yo) — (¥, o),

(Y, 90) =1 <Yk, y0) <7 Z AY

i€l(z)
hold for sufficiently large k, that is,

(Y, 90) — 1
HA’“H<ZA’“ DL (= K).

i€l(Z
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Therefore, {(A\¥,2%)} C clB(0, K) x [Ticr(z) 0°9:(z). From the compactness of
clB(0, K) X [Licp 0°9:(Z), there exist ( z) = (N, %i)icr@ € clB(0, K) X
[Tici(z) 9°9:(%) and a subsequence {(\Fi, %)} of {(AF, %)} such that (A%, 2%) —
(A, :L’) Moreover, we have \; > 0, x; € 0°¢;(Z), i € I( ), and y = ZZGI i
Thus, y € coneco J;cy(z 0°¢:(Z). This completes the proof. O

Remark 4.2. (1) The converse of Theorem 4.3 is not true in general, see Exam-
ple 4.1.

(2) From (4.4), (C) implies the Slater condition. However, the converse is not
true in general, see Example 4.2.

(3) In Example 4.2, the Slater condition does not imply (A). Therefore, the
Slater condition is not a constraint qualification for the optimality conditions in
convex optimization problem (P).

Example 4.1. Let g : R — R be a function defined by

g(z) = |z|.

Then S = {0}, Ts(0) = {0} and 9°g(0) = [—1,1]. So that, 9°¢(0)~ = {0}
and 0°g(0) is closed. Thus (B) holds. On the other hand, for each y € R,

T € 9°9(0 ) and pirry = 0, and then (C) does not hold.

Example 4.2. Let g : R? = R be a function defined by

1+ o if ZlleO,ZEQZO,
”(1’171’2)" + X9 if r1 > 0,19 < O,
|(x1, z2)|| + 21 if 21 <0,29 >0,
—T1T2 if x < 0,272 < 0.

g($1,$2> -

Then S = —RR?%, S is convex, g is regular at (0,0) and the Slater condition holds.
On the other hand, Ng(0,0) = R% and coned®g(0,0) = {(0,0)} U intR?. Hence,
(A) does not hold. Thus (C) does not hold.

Next we consider the relationship of (C), (D), (E) and (F). From Theorem 4.1,
condition (D), given by Dutta and Lalitha, is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). Conditions (E)

and (F) are motivated by (C) and (D), respectively.
We show the relationship of (C), (D), (E) and (F) as follows:

Theorem 4.4. Let z € S. Then (C), (D), (E) and (F) are equivalent.

Proof. First, we prove (C) implies (D). Assume (C). There exists yo € R" such
that (&;,y0) < 0 for each ¢ € I(Z) and &; € 0°g;(Z). It is clear that 0 ¢ 0°g;(z) for
each ¢ € I(Z). In addition, Slater condition holds from (2) of Remark 4.2. Thus
(D) holds.
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Next, we prove (D) implies (F). Assume (D). Then 0 ¢ 0°¢g;(z) for each
i € I(z), and it is easy to show that int.S is non-empty from Slater condition and
the continuity of all g;. Thus (F) holds.

Next, we prove (F) implies (E). Assume that (E) dos not hold. Then, there
exist \; € Ry and & € 0°¢;(7), i € I(Z), such that

{ Zie[(:ﬁ) Ai =1,
Zie](a';) Aiki =0

From (F), we have & # 0 for each i € I(Z). Also from (F), there exists o € R”
and r > 0 such that B(zg,7) C S. For each i € I(Z), since xg + METS €

B(xg,r) C S, then for each i € I(Z), 0°¢;(T) C Ng(Z) from Lemma 4.1, that is,
& € Ng(z). So for each i € I(Z),

_ r _
(&i,20 — T) + §||£z-|| = <€Z, To+ —— 2”5%” a:> <0.

Therefore,

52 A||&||—<Z Aiis %o — > Z Allgill = 0.

zEI(z i€l ZEI

From 3,/ A = 1 and & # 0 for each i € I(2),

0<3 Z Adll&ll-

’LEI

This is a contradiction.

Finally, we prove (E) implies (C). Assume (E). Since colJ;c;z 9°6i(Z) is a
non-empty closed convex set and 0 ¢ colJ;cyz 9°9:(7) from (E) there exists
yo € R™ such that (£, yo) < 0 for each £ € co Ule[ _, 0°g;(z) from Theorem 1.1.
Thus, (&, y0) < 0 for each ¢ € I(Z) and &; € 0°¢g;(z ) Therefore (C) holds. This
completes the proof. n

Finally, we consider the relationship of (E) and (G). When all g; are contin-
uously differentiable at z, condition (G), that is

{V4:(Z)}icr(z) is linearly independent,
is called the linearly independent constraint qualification, see [6, 21].

Theorem 4.5. Let £ € S. Then (G) implies (E).
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Proof. Assume that (E) does not hold. Then, there exist \; € Ry and x; €
0°g;(Z), i € 1(Z), such that

{ Eie[(i) Ai =1,
Zie[(i) Aiw; = 0.

Thus (G) does not hold. O
The converse of Theorem 4.5 is not true in general. See the following example:

Example 4.3. Let g1, 9> : R — R be functions as follows:

9i() = (2 = D+ 1), 02(0) = 5z~ (e + 1)

Then S = [—1,1], intS # 0, I(1) = {1,2}, 9°¢1(1) = {2} and 9°g(1) = {1}.
Thus (F) holds. On the other hand, it is clear that {2,1} is not linearly indepen-
dent. Hence (G) does not hold.

4.3 Conclusion

In this chapter, we have presented constraint qualifications for KKT optimality
condition in a convex optimization problem under locally Lipschitz constraints
which was discuss by Dutta and Lalitha in [5], and compared our results to
previous ones. First, we introduced two necessary and sufficient constraint qual-
ifications for KKT optimality condition. Moreover we proposed constraint qual-
ifications, and discussed the relationship of these constraint qualifications. On
the other hand, it was shown that the Slater condition was not a constraint
qualification in this optimization. The following figure shows the relationship of
the constraint qualifications, which were introduced in this paper, for optimality
conditions:

® D) (A)

©

Q) © (B)

Slater

X

The figure is reprinted from [26].
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