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Introduction

A mathematical optimization problem is described by the following form:

(P )

{
Minimize f(x)
subject to x ∈ S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I}.

In particular, optimality conditions and duality theorems have been investigated
by many researchers in convex optimization problem.

Constraint qualifications of the following inequality system of (P):

σ = {gi(x) ≤ 0, i ∈ I},

are important technical assumptions for solving (P), which have been studied by
many researchers, see [3, 4, 8, 9, 10, 16]. One of the most important constraint
qualification is the basic constraint qualification (BCQ, for short). Recall that σ
satisfies BCQ at x̄ ∈ S if

NS(x̄) = coneco
∪

i∈I(x̄)

∂gi(x̄),

and it is well-known that BCQ is a necessary and sufficient condition to ensure
the equivalence between the optimality and the existence of Lagrange multipliers
for convex optimization problems, so that candidates for optimal solutions may
be found by using the existence of Lagrange multipliers, see [9, 16] for details.
The other important constraint qualification is the Farkas Minkowski property
(FM, for short), which is defined as follows

coneco
∪
i∈I

epig∗i + {0} × [0,+∞) is closed,

is a necessary and sufficient constraint qualification for the Lagrange duality the-
orem, and a sufficient condition of BCQ at every points of S, see [8, 3]. Moreover
the conical epigraph hull property (conical EHP, for short), which was defined as
follows

coneco
∪
i∈I

epig∗i is closed,

is well known as a sufficient condition of FM.
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In this thesis, we deal with constraint qualifications and characterizations of
solutions in convex optimization. Especially, we consider the following topics
mainly:

(I) Checking methods of BCQ.

(II) Constraint qualifications for locally Lipschitz inequality systems.

In order to check BCQ at x̄ ∈ S, we may calculate the characteristic cones of
conical EHP and FM instead of NS(x̄), I(x̄) and ∂gi(x̄), because BCQ holds at
every points of S when one of these cones is closed. However, when both cones
are not closed, it is unknown whether BCQ holds or not at a given point of S, and
methods of checking BCQ by using these cones have not been observed as far as we
know. This fact is a motivation for (I). Recently, the KKT optimality conditions
for a convex optimization problem, whose constraint functions are not necessarily
convex, was studied. In 2010, a convex optimization problem, whose objective
function is differentiable convex and constraint functions are differentiable but not
necessarily convex, was discussed and a constraint qualification for the optimality
condition was given by Lasserre, see [15]. In 2013, a convex optimization problem,
whose objective function is convex not necessarily differentiable and constraint
functions are locally Lipschitz but not necessarily convex or differentiable, was
discussed, and a constraint qualification for the optimality condition was given by
Dutta and Lalitha, see [5]. However, the constraint qualification is not necessarily
constraint qualification. This fact is a motivation for (II).

This thesis consists of four chapters. Chapter 1 deals with notation and pre-
liminaries in convex analysis. Chapter 2 deals with alternative theorems for a
separable convex inequality system. We show two alternative theorems for sep-
arable convex inequality system. In Section 2.1, we show a certain condition
is a necessary and sufficient one for an alternative theorem of separable convex
functions, and we give an interesting example. Based on the example, we prove
another alternative theorems in Section 2.2, Chapter 3 deals with checking meth-
ods of BCQ. We give a theorem which gives a method of checking BCQ via the
characteristic cones of conical EHP and FM. Also we give some examples of the
theorem are given with figures. Chapter 4 deals with constraint qualifications for
a locally Lipschitz inequality system. We give several constraint qualifications for
the KKT optimality condition, which are modifications of well-known constraint
qualifications of convex or nonlinear optimization, the Basic constraint qualifi-
cation (BCQ), Guignard’s constraint qualification, Abadie’s constraint qualifi-
cation, Cottle’s constraint qualification and the linearly independent constraint
qualification. We discuss all relations among these constraint qualifications, es-
pecially, we show that two of them are necessary and sufficient constraint qual-
ifications for the KKT optimality condition. In addition, we remark that the
Slater condition is not a constraint qualification for the optimality in this convex
optimization problem.
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Chapter 1

Preliminaries

In this chapter, we introduce some notation and preliminaries in convex analysis.
In this thesis, we deal with functions and sets on Rn. In section 1.1, we introduce
notions of convex set, convex function, and these properties. In section 1.2, we
introduce properties of locally Lipschitz function. In section 1.3, we introduce
important constraint qualifications and previous results in convex optimization.

1.1 Convex sets and functions

Definition 1.1. Let C be a subset of Rn,

(i) C is said to be convex if for each x, y ∈ C and α ∈ (0, 1), (1−α)x+αy ∈ C,

(ii) C is said to be a cone if C is non-empty set, and for each λ ≥ 0 and x ∈ C,
λx ∈ C.

Let C be a set in Rn. We denote the closure, the interior, the conical hull and
the convex hull of C by clC, intC, coneC and coC, respectively. Also, we denote
A + B = {a + b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A} and Λa = {λa | λ ∈ Λ} for
any A,B ⊆ Rn, a ∈ Rn Λ ⊆ R and λ ∈ R.

The following separation theorem has important roles in convex analysis.

Theorem 1.1. Let C be non-empty convex subset of Rn, and x /∈ clC. Then
there exist a ∈ Rn \ {0} and α ∈ R such that for each y ∈ C, ⟨a, x⟩ < α ≤ ⟨a, y⟩

Let f be a function from Rn to R∪{+∞}. The effective domain of f , denoted
by domf , is defined by

dom f = {x ∈ Rn | f(x) < +∞}.

f is said to be convex if for any x, y ∈ Rn and for any λ ∈ (0, 1),

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y),

1
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and f is said to be strictly convex if for any x, y ∈ domf with x ̸= y and for any
λ ∈ (0, 1),

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y).

Also, f is said to be quadratic if f is written by the following form:

f(x) =
1

2
⟨x,Ax⟩+ ⟨a, x⟩+ α, ∀x ∈ Rn,

where A ∈ Sn = {B ⊆ Rn×n | B is a symmetric matrix}, a ∈ Rn and α ∈ R. In
addition, a convex quadratic function f has the following property:

(i) f is convex if and only if A is positive semidefinite, and

(ii) f is strictly convex if and only if A is positive definite.

Also f is said to be separable if f is written by the following form:

f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn), ∀x1, . . . , xn ∈ R,

where f1, . . . , fn : R → R. f is convex if and only if f1, . . . , fn are convex. The
epigraph of f , denoted by epif , is defined by

epif = {(x, r) ∈ Rn × R | f(x) ≤ r}.

f : Rn → R∪{+∞} is said to be proper and lower semicontinuous (lsc, for short)
if epif is non-empty and closed set, respectively. In addition f is convex if and
only if epif a convex set. The conjugate function of f , f ∗ : Rn → R ∪ {+∞}, is
defined by

f ∗(u) = sup{⟨u, x⟩ − f(x) | x ∈ Rn},
where ⟨u, x⟩ denotes the inner product of two vectors u and x. The following
inequality always holds:

⟨u, x⟩ − f(x) ≤ f ∗(u),

which is called the Young-Fenchel inequality. Also, if f is separable convex, that
is, f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn), ∀x1, . . . , xn ∈ R, where f1, . . . , fn : R →
R, then

f ∗(y1 . . . , yn) = f ∗
1 (y1) + · · ·+ f ∗

n(yn), ∀y1, . . . , yn ∈ R.

The subdifferential of f at x ∈ Rn, denoted by ∂f(x), is defined by

∂f(x) = {ξ ∈ Rn | f(x) + ⟨ξ, y − x⟩ ≤ f(y),∀y ∈ Rn}.

From the Young-Fenchel inequality, it is clear that ξ ∈ ∂f(x) if and only if
⟨ξ, x⟩ − f(x) = f ∗(ξ). For non-empty convex set S ⊆ Rn, the indicator function
of S, denoted by δS : Rn → R ∪ {+∞}, is defined by

δS(x) =

{
0, if x ∈ S,

+∞, if x /∈ S.
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For proper lsc convex functions g, h : Rn → R ∪ {+∞}, the infimal convolution
of g with h, denoted by g ⊕ h, is defined by

(g ⊕ h)(x) := inf
x1+x2=x

{g(x1) + h(x2)}.

It is well known that if domg ∩ domh ̸= ∅, then

(g ⊕ h)∗ = g∗ + h∗ and (g + h)∗ = cl(g∗ ⊕ h∗). (1.1)

If one of g and h is continuous at some a ∈ domg ∩ domh, the closure operation
in the second equation of (1.1) is superfluous,

epi(g + h)∗ = epig∗ + epih∗, and (1.2)

∂(g + h)(x) = ∂g(x) + ∂h(x), for each x ∈ domg ∩ domh, (1.3)

see Theorem 2.8.7 in [27]. Let gi : Rn → R ∪ {+∞} be a proper lsc convex

function for each i ∈ I, and let λ ∈ R(I)
+ , that is, λ = (λi)i∈I such that λi ≥ 0 for

each i ∈ I, and with only finitely many λi different from zero. Assume that one
of gi, i ∈ I, is continuous at some a ∈

∩
i∈I dom gi. Then

∂

(∑
i∈I

λigi

)
(x) =

∑
i∈I

λi∂ gi(x),∀x ∈
∩
i∈I

dom gi, (1.4)

where 0 × (+∞) = 0. Let C be a set in Rn. The negative polar cone of C,
denoted by C−, is defined by

C− = {y ∈ Rn | ⟨y, x⟩ ≤ 0,∀x ∈ C}.

It is well-known that C− is a closed convex cone, and

C−− = (C−)− = clconecoC.

For any x ∈ C, the tangent cone of C at x, denoted by TC(x), is defined by

TC(x) = {y ∈ Rn | ∃{(xk, αk)} ⊆ C × R+ s.t. xk → x, αk(xk − x) → y},

where R+ = [0,+∞). The set TC(x̄) is a closed cone. The normal cone of C at
x, denoted by NC(x), is defined by NC(x) = (TC(x))

−. When C is a convex set,
it is well-known that

TC(x) = clcone(C − x) = NC(x)
−, and

NC(x) = (C − x)− = {ξ ∈ Rn | ⟨ξ, y − x⟩ ≤ 0, ∀y ∈ C}.
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1.2 Locally Lipschitz functions

A function g : Rn → R is said to be locally Lipschitz if for each x ∈ Rn, there
exist M > 0 and r > 0 such that |g(y)−g(z)| ≤ M∥y−z∥ for each y, z ∈ B(x, r),
where B(x, r) = {y ∈ Rn | ∥y − x∥ < r}.

Definition 1.2. Let g : Rn → R be a locally Lipschitz function,

(i) the Clarke directional derivative of g at x ∈ Rn in direction d ∈ Rn, denoted
by g◦(x, d), is given by

g◦(x, d) = lim sup
y→x

t↓0

g(y + td)− g(y)

t
,

(ii) the Clarke subdifferential of g at x, denoted by ∂◦g(x), is defined by

∂◦g(x) = {ξ ∈ Rn | ⟨ξ, d⟩ ≤ g◦(x, d), ∀d ∈ Rn}.

For each x ∈ Rn, the function g◦(x, ·) is a positively homogeneous convex
function. The set ∂◦g(x) is a non-empty, convex and compact subset of Rn.
Moreover the Clarke directional derivative is the support function of the Clarke
subdifferential, that is,

g◦(x, d) = max
ξ∈∂◦g(x)

⟨ξ, d⟩ .

When g is convex, then g is locally Lipschitz, g◦(x, ·) = g′(x, ·) and ∂◦g(x) =
∂g(x) for each x ∈ Rn, where

g′(x, d) = lim
t↓0

g(x+ td)− g(x)

t
.

In general, a locally Lipschitz function g is said to be regular at x if g is direc-
tionally differentiable at x in the all directions d and g◦(x, ·) = g′(x, ·), see [2].

1.3 Convex optimization

In this section, we consider a given infinite convex inequality system:

σ := {gi(x) ≤ 0, i ∈ I},

where I is an arbitrary, possibly infinite, index set, and gi : Rn → R∪ {+∞} are
lower semicontinuous (lsc) proper convex functions for all i ∈ I. Let S be the
solution set of σ, that is,

S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I}.
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Throughout the thesis, we assume the following general assumption

(H):

{
S ̸= ∅,
for each i ∈ I, there exists xi ∈ S such that gi is continuous at xi.

Constraint qualifications have important roles to solve convex optimization prob-
lems. The most famous constraint qualification is the Slater constraint qualifica-
tion as follows:

Definition 1.3. Assume that I is finite and gi are real-valued convex. The
inequality system σ is said to satisfy the Slater constraint qualification if

there exists x0 ∈ S such that for each i ∈ I, gi(x0) < 0.

The following useful conditions (I) and (II) of Theorem 1.2 are assured by the
Slater constraint qualification.

Theorem 1.2. Let I be finite set, gi be real-valued convex on Rn, i ∈ I, and
x̄ ∈ S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I}. Assume that σ satisfies the Slater
constraint qualification. Then the following statements hold:

(I) for each real-valued convex function f on Rn, the following statements are
equivalent:

(a) x̄ is a minimizer of the following optimization problem:{
min f(x)
s.t. gi(x) ≤ 0, i ∈ I,

(b) there exists λ ∈ RI
+ such that 0 ∈ ∂f(x̄)+

∑
i∈I λi∂gi(x̄) and λigi(x̄) =

0 for each i ∈ I.

(II) for each real-valued convex function f on Rn,

inf
x∈S

f(x) = max
λi≥0

inf
x∈Rn

{
f(x) +

∑
i∈I

gi(x)

}
.

Condition (b) of (I) is called the Karush-Kuhn-Tucker (KKT, for short) op-
timality condition. Condition (II) is a called the Lagrange duality theorem. The
Slater constraint qualification is a sufficient constraint qualification for the opti-
mality condition and the duality theorem in convex optimization problem. It is
easy to check whether the Slater constraint qualification holds or not. How-
ever, the Slater constraint qualification is often not satisfied for many prob-
lems. Constraint qualifications are have been studied by many researchers, see
[3, 4, 8, 9, 10, 16].

First, as study of (I), we introduce the basic constraint qualification (BCQ,
for short) and a previous result of BCQ.
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Definition 1.4. ([9, 16]) σ is said to satisfy the basic constraint qualification
(BCQ) at x̄ ∈ S if

NS(x̄) = coneco
∪

i∈I(x̄)
∂gi(x̄),

where I(x̄) = {i ∈ I | gi(x̄) = 0}.

Theorem 1.3. ([9, 16]) Let x̄ ∈ S. Then the following statements are equivalent:

(i) σ satisfies BCQ at x̄,

(ii) for each lsc proper convex function f on Rn such that domf ∩ S ̸= ∅ and
epiδ∗S + epif ∗ is closed, the following statements are equivalent:

(a) x̄ is a minimizer of the following optimization problem:{
min f(x)
s.t. gi(x) ≤ 0, i ∈ I,

(b) there exists λ ∈ R(I)
+ such that 0 ∈ ∂f(x̄)+

∑
i∈I λi∂gi(x̄) and λigi(x̄) =

0 for each i ∈ I.

By Theorem 1.3, BCQ is a necessary and sufficient condition for the optimality
condition.

Second, as study of (II), we introduce constraint qualifications for the La-
grange duality and previous result of these.

Definition 1.5. ([8, 16]) Assume that σ is satisfying (H). σ is said to satisfy
Farkas-Minkowski (FM) if

coneco
∪
i∈I

epig∗i + {0} × [0,+∞) is closed.

σ is said to satisfy the conical epigraph hull property (conical EHP) if

coneco
∪
i∈I

epig∗i is closed.

Especially, FM is a well-known necessary and sufficient constraint qualification
for the Lagrange duality theorem as follows:

Theorem 1.4. ([8]) Assume that σ is satisfying (H). Then the following state-
ments are equivalent:

(i) σ satisfies FM,
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(ii) for each lsc proper convex function f : Rn → R∪{+∞} with S∩domf ̸= ∅
and epif ∗ + epiδ∗S is closed, strong duality holds, that is,

inf
x∈S

f(x) = max
λ∈R(I)

+

inf
x∈Rn

{f(x) +
∑
i∈I

λigi(x)}.

The relationship of the constraint qualifications for convex optimality is shown
by the following proposition.

Proposition 1.1. ([8, 4] and Theorem 4.1 in [16]) Assume that σ is satisfying
(H). Then (i)⇒(ii)⇒(iii)⇒(iv).

(i) σ satisfies Slater constraint qualification,

(ii) σ satisfies conical EHP,

(iii) σ satisfies FM,

(iv) σ satisfies BCQ at every point of S.

Finally, the following two results are used in our results.

Theorem 1.5. (Theorem 4.1 in [3]) Let I be an arbitrary index set. For each
i ∈ I, let gi : Rn → R ∪ {+∞} be a proper lsc convex function. Let u ∈ Rn

and α ∈ R. Assume that {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I} is non-empty. Then the
following statements are equivalent:

(i) {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I} ⊆ {x ∈ Rn | ⟨u, x⟩ ≤ α},

(ii) (u, α) ∈ clconeco
∪
i∈I

epig∗i .

Theorem 1.6. ([19]) Let f be a real-valued convex function on Rn. If there
exists x0 ∈ Rn such that f(x0) < 0, then we have {x ∈ Rn | f(x) < 0} = int{x ∈
Rn | f(x) ≤ 0}.

Proof. The proof is shown by using Theorem 11 and Remark 1 in [19].



Chapter 2

Alternative theorems for
separable convex functions

In this chapter, we consider the following type alternative theorem: exactly one
of the following two statements is true:

(i) There exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0.

(ii) There exist λ1, . . . , λm ≥ 0 such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0,

where fi : Rn → R., i = 0, 1, . . . ,m. In 1902, Farkas established an alternative
theorem when fi, i = 0, 1, . . . ,m, are linear functions. This alternative theorem is
well-known as the Farkas Lemma and plays very important roles to have duality
results in mathematical programming problems. In 2009, Jeyakumar and Li
proved the following alternative theorem:

Theorem 2.1. ([12]) Let f0 : Rn → R be a sublinear function and let fi :
Rn → R, i = 1, . . . ,m, be separable sublinear functions. Then exactly one of the
following two statements is true:

(i) there exist x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

8
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f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Clearly, this result is a generalization of Farkas Lemma because linear function
is separable sublinear function.

On the other hand, Tseng showed some Lagrange duality theorem for sepa-
rable convex programming problems in 2009. If fi, i = 0, 1, . . . ,m, are separable
convex function, then

inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} = sup
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
,

where R+ = [0,∞), see [20]. In 2010, Jeyakumar and Li proved another Lagrange
strong duality theorem for separable convex programming problems under cer-
tain constraint qualification, see [13]. In this chapter, we show two alternative
theorems for separable convex functions. One is a generalization of Theorem2.1,
and the proof is given by using a result of [13] in Section 2.1. The other is a
generalization of the original Farkas Lemma, which is motivated from example
of Section 2.1, and the proof is given in Section 2.2. All results of this chapter is
based on [22].

2.1 A necessary and sufficient condition for an

alternative theorem of separable convex func-

tions

In this section, we give a necessary and sufficient condition for an alternative
theorem of separable convex functions.

Theorem 2.2. Let fi : Rn → R, i = 1, . . . ,m, be separable convex functions.
Then (A) and (B) are equivalent:

(A) epi inf
λi≥0

(
m∑
i=1

λifi

)∗

=
∪

λi≥0

epi

(
m∑
i=1

λifi

)∗

,

(B) for each convex function f0 : Rn → R, exactly one of the following two
statements is true:

(i) there exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i =, 1, . . . ,m such that for each x ∈ Rn,
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f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. We show that the following (I) and (II) are equivalent:

(I) for each convex function f0 : Rn → R, inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} =

max
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
,

(II) for each convex function f0 : Rn → R, exactly one of the following two
statements is true:

(i) there exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i =, 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

First we assume (I). Let f0 be a convex function from Rn to R. It is clear
that (i) and (ii) do not hold simultaneously. If (i) does not hold, then f1(x) ≤
0, . . . , fm(x) ≤ 0 implies f0(x) ≥ 0. This shows

inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} ≥ 0,

we have

max
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
≥ 0.

So, there exist µ ∈ Rm
+ such that for each x ∈ Rn

f0(x) +
m∑
i=1

µifi(x) ≥ 0.

Therefore (ii) holds, and then (II) holds.
Next we assume (II). Let f0 be a convex function from Rn to R, and put

p := inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m}.

It is clear that p < +∞. When p = −∞, (I) holds for any µ ∈ Rm
+ by using the

weak duality. When p is finite, put f̂0 = f0 − p, then

f1(x) ≤ 0, . . . , fm(x) ≤ 0 implies f̂0(x) ≥ 0,

that is, (i) does not hold, and then (ii) holds. So, there exist µ̂ ∈ Rm
+ such that

for each x ∈ Rn

f̂0(x) +
m∑
i=1

µ̂ifi(x) ≥ 0, that is, f0(x) +
m∑
i=1

µ̂ifi(x) ≥ p.
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Therefore

sup
µ∈Rn

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
≥ inf

x∈Rn

(
f0(x) +

m∑
i=1

µ̂ifi(x)

)
≥ p.

From this and the weak duality, (I) holds.

This theorem is a generalization of Theorem 2.1. It is impossible to find any
weaker conditions than (A) where (B) holds. However, the following example
shows us possibility of another alternative theorems.

Example 2.1. Let f1(x1, x2) = f11(x1)+f12(x2) be a separable function satisfying

f11(x1) =


1
2
(x1 + 1)2 (x1 < −1)

0 (−1 ≤ x1 ≤ 1)
1
2
(x1 − 1)2 (x1 > 1)

, and f12(x2) = |x2|.

Then we can calculate

f ∗
1 (y1, y2) =

1

2
y21 + |y1|+ δ[−1,1](y2)

and

(λ1f1)
∗(y1, y2) =

{
y21
2λ1

+ |y1|+ δ[−λ1,λ1](y2) (λ1 > 0),

δ{(0,0)}(y1, y2) (λ1 = 0).

Thus
epi inf

λ1≥0
(λ1f1)

∗ = {(x1, x2, α) | |x1| ≤ α} , but∪
λ1≥0

epi(λ1f1)
∗ = {(x1, x2, α) | |x1| < α}

∪
{(0, 0, 0)} .

Thus (A) of Theorem 2.2 does not hold.
Now, we consider linear functions f0(x1, x2) = ax1 + bx2, a, b ∈ R. In this

case, the alternative holds, that is, exactly one of the following two statements is
true:

(i) there exists x ∈ R2 such that f1(x) ≤ 0 and f0(x) < 0,

(ii) there exist λ1 ≥ 0 such that for each x ∈ R2, f0(x) + λ1f1(x) ≥ 0.

Because a ̸= 0 whenever (i) holds, and a = 0 whenever (ii) holds.
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2.2 Another alternative theorems of separable

convex functions

By inspiring Example 2.1, we have another alternative theorems.

Theorem 2.3. Let f0 : Rn → R be a convex function such that f0(0) = 0, and
let fi : Rn → R, i = 1, 2, . . . ,m be separable convex functions such that fi(0) = 0.
Then (C) implies (D):

(C) there exists δ > 0 such that for each x ∈ B(0, δ) and i = 1, . . . ,m,

f ′
i(0;x) = fi(x),

where B(0, δ) = {x ∈ Rn | ∥x∥ < δ},

(D) exactly one of the following two statements is true:

(i) there exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λ1, . . . , λm ≥ 0 such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. It can be checked easily that f ′
0(0; ·) is sublinear and f ′

i(0; ·), i = 1, . . . ,m
are separable sublinear. By Theorem 2.1, exactly one of the following two state-
ments is true:

(i′) there exist x ∈ Rn such that{
f ′
1(0;x) ≤ 0, . . . , f ′

m(0;x) ≤ 0,
f ′
0(0;x) < 0,

(ii′) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

f ′
0(0;x) +

m∑
i=1

λif
′
i(0;x) ≥ 0.

First, we prove that (i′) implies (i). Suppose that (i′) holds. Clearly, x ̸= 0. For
any i = 1, 2, . . . ,m and t ∈ (0, δ

2∥x∥ ], since tx ∈ B(0; δ),

fi(tx) = f ′(0; tx) = tf ′
i(0;x) ≤ 0.
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From f ′
0(0;x) < 0, there exists t0 > 0 such that for any t ∈ (0, t0],

f0(0 + tx)− f0(0)

t
< 0, that is f0(tx) < 0.

Put µ = min
{

δ
2||x|| , t0

}
, we have fi(µx) ≤ 0 for each i = 1, . . . ,m and f0(µx) < 0.

Thus (i) holds.
Next, we prove that (ii′) implies (ii). Since f0 is convex and f0(0) = 0,

f ′
0(0, ·) ≤ f0 holds because t 7→ f0(0+tx)−f0(0)

t
is non-increasing when t ↓ 0. In the

same reason, f ′
i(0, ·) ≤ fi holds for each i = 1, . . . ,m. So we have (ii).

Hence, the conclusion now follows as (i) and (ii) do not hold simultaneously.

Remark 2.1. A family of functions fi in Example 2.1 holds condition (C).

We showed an example (C) holds but (A) does not hold. That is, condition
(C) does not imply condition (A). Next we show an example (A) holds but (C)
does not hold.

Example 2.2. Let f1(x1, x2) = f11(x1)+f12(x2) be a separable function satisfying
f1j(xj) =

1
2
x2
j + |xj|. Then we can verify that f ∗

1 (y1, y2) = f ∗
11(y1) + f ∗

12(y2), and

f ∗
1j(yj) =


1
2
(yj + 1)2 (yj ∈ (−∞,−1)),

0 (yj ∈ [−1, 1]),
1
2
(yj − 1)2 (yj ∈ (1,∞)).

We can check that

epi

(
inf
λ≥0

(λf1)
∗
)

=
∪
λ≥0

epi (λf1)
∗ = R× [0,∞).

That is, (A) holds. But (C) does not hold. Indeed, for each δ > 0, (1
2
δ, 0) ∈

B((0, 0), δ) and f ′
1((0, 0); (

1
2
δ, 0)) = 1

2
δ < 1

8
δ2 + 1

2
δ = f1(

1
2
δ, 0).

Finally, we have the following alternative theorem:

Corollary 2.1. Let x̄ ∈ Rn, f0 : Rn → R be convex such that f0(x̄) = 0 and
fi : Rn → R, i = 1, 2, . . . ,m, be separable convex such that fi(x̄) = 0. Then (E)
implies (D):

(E) there exists δ > 0 such that for each x ∈ B(0, δ), and i = 1, . . . ,m,

f ′
i(x̄; x) = fi(x+ x̄)− fi(x̄),

(D) exactly one of the following two statements is true:

(i) there exists x ∈ Rn such that
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{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. For each i = 0, 1, . . . ,m, define gi a function from Rn to R by gi = fi(·+x̄).
Then we can verify that gi(0) = fi(x̄) = 0 and g′i(0;x) = f ′

i(x̄;x) hold for each
i = 0, 1, . . . ,m. This and Theorem 2.3 completes the proof.



Chapter 3

Alternative characterization of
BCQ

In convex optimization problem, in order to check BCQ at x̄ ∈ S, we may cal-
culate the characteristic cones of conical EHP and FM instead of NS(x̄), I(x̄)
and ∂gi(x̄). When one of these cones is closed, BCQ holds at every points of S.
However, when these cones are not closed, it is unknown whether BCQ holds or
not at a given point of S, and methods of checking BCQ by using these cones
have not been observed as far as we know.

In this chapter, we show a theorem which gives a method of checking BCQ
via the characteristic cones of conical EHP and FM. In addition, we studied
application for a specific class of functions. All results of this chapter is based on
[23, 24, 25].

3.1 Characterization of BCQ via the character-

istic cone of the conical EHP

In this section, let I be an index set. For each i ∈ I, let gi : Rn → R ∪ {+∞},
be lsc proper convex. Let S = {x ∈ Rn | gi(x) ≤ 0, i ∈ I}. For each x̄ ∈ S,
let V (x̄) = {(y, ⟨y, x̄⟩) ∈ Rn+1 | y ∈ Rn}. Before our main result, we give the
following definition:

Definition 3.1. ([1]) Let U and V be subset of Rn. We say that U is closed
regarding the set V if

(clU) ∩ V = U ∩ V .

Now, we give the characterization of BCQ at a point via the characteristic
cones of conical EHP and FM, by observing closedness regarding of these cones;
this theorem suggests another usage of these characteristic cones.

Theorem 3.1. ([25]) Let x̄ ∈ S. Assume that σ is satisfying (H). Then the
following statements are equivalent:

15
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(i) {gi(x) ≤ 0, i ∈ I} satisfies BCQ at x̄,

(ii) coneco
∪

i∈I epig
∗
i is closed regarding the set V (x̄),

(iii) coneco
∪

i∈I epig
∗
i + {0} × [0,+∞) is closed regarding the set V (x̄).

Proof. First we prove (i) ⇒ (ii). Let (y, β) ∈
(
clconeco

∪
i∈I epig

∗
i

)
∩ V (x̄). From

(y, β) ∈ V (x̄), β = ⟨y, x̄⟩, that is, (y, ⟨y, x̄⟩) ∈ clconeco
∪

i∈I epig
∗
i . By Theorem

1.5,
⟨y, x⟩ ≤ ⟨y, x̄⟩ for each x ∈ S,

that is y ∈ NS(x̄). From (i), y ∈ coneco
∪

i∈I(x̄) ∂gi(x̄) and then there exist a

finite subset J ⊆ I(x̄), λi ≥ 0 and yi ∈ ∂gi(x̄) (i ∈ J) such that y =
∑

i∈J λiyi.
For each i ∈ J , since i ∈ I(x̄) and yi ∈ ∂gi(x̄), we have

g∗i (yi) = gi(x̄) + g∗i (yi) = ⟨yi, x̄⟩ ,

then (yi, ⟨yi, x̄⟩) ∈ epig∗i . Therefore,

(y, β) =
∑

i∈J λi(yi, ⟨yi, x̄⟩)
∈ coneco

∪
i∈J epig

∗
i

⊆ coneco
∪

i∈I epig
∗
i .

Since (y, β) = (y, ⟨y, x̄⟩) ∈ V (x̄), we have (y, β) ∈
(
coneco

∪
i∈I epig

∗
i

)
∩ V (x̄),

and consequently coneco
∪

i∈I epig
∗
i is closed regarding the set V (x̄).

Next we prove (ii)⇒(iii). Let (y, β) ∈
(
cl
(
coneco

∪
i∈I epig

∗
i + {0} × [0,+∞)

))
∩

V (x̄). From (y, β) ∈ V (x̄), β = ⟨y, x̄⟩, that is, (y, ⟨y, x̄⟩) ∈ cl
(
coneco

∪
i∈I epig

∗
i + {0} × [0,+∞)

)
.

When y = 0, (y, β) = (0, 0) ∈
(
coneco

∪
i∈I epig

∗
i + {0} × [0,+∞)

)
∩V (x̄). When

y ̸= 0, there exists {(yk, βk)} ⊆ coneco
∪

i∈I epig
∗
i + {0} × [0,+∞) such that

(yk, βk) → (y, β) and yk ̸= 0 for each k ∈ N. For each k ∈ N, there exist a
non-empty finite set Jk ⊆ I, λi

k > 0, (xi
k, α

i
k) ∈ epig∗i , i ∈ Jk, and rk ≥ 0 such

that (yk, βk) =
∑

i∈Jk λ
i
k(x

i
k, α

i
k) + (0, rk) and

∑
i∈Jk λ

i
k > 0. We have

(yk, βk) =
∑

i∈Jk λ
i
k(x

i
k, α

i
k +

1∑
i∈Jk

λi
k
rk)

∈ coneco
∪

i∈Jk epig
∗
i

⊆ coneco
∪

i∈I epig
∗
i .

Thus, (y, β) ∈
(
clconeco

∪
i∈I epig

∗
i

)
∩ V (x̄). From (ii),

(y, β) ∈
(
coneco

∪
i∈I epig

∗
i

)
∩ V (x̄)

⊆
(
coneco

∪
i∈I epig

∗
i + {0} × [0,+∞)

)
∩ V (x̄),

that is, coneco
∪

i∈I epig
∗
i + {0} × [0,+∞) is closed regarding the set V (x̄).

Finally, we prove (iii)⇒(i). Let y ∈ NS(x̄). When y = 0, y = 0 ∈ coneco
∪

i∈I(x̄) ∂gi(x̄).
When y ̸= 0, by using Theorem 1.5,

(y, ⟨y, x̄⟩) ∈ clconeco
∪
i∈I

epig∗i ,
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and then (y, ⟨y, x̄⟩) ∈ cl
(
coneco

∪
i∈I epig

∗
i + {0} × [0,+∞)

)
. Since coneco

∪
i∈I epig

∗
i+

{0}×[0,+∞) is closed regarding the set V (x̄) from (iii), (y, ⟨y, x̄⟩) ∈ coneco
∪

i∈I epig
∗
i+

{0} × [0,+∞). So, there exist a non-empty finite set J ⊆ I, λi > 0, (xi, αi) ∈
epig∗i , i ∈ J , and r ≥ 0 such that (y, ⟨y, x̄⟩) =

∑
i∈J λi(xi, αi) + (0, r). For each

i ∈ J and x ∈ Rn, we have

⟨xi, x⟩ − gi(x) + gi(x̄) ≤ ⟨xi, x⟩ − gi(x) ≤ αi

⟨xi, x− x̄⟩+ gi(x̄) ≤ ⟨xi, x− x̄⟩ ≤ gi(x) + αi − ⟨xi, x̄⟩ .

Thus, for each x ∈ Rn,∑
i∈J

λi(⟨xi, x− x̄⟩+ gi(x̄)) ≤
∑
i∈J

λi ⟨xi, x− x̄⟩ ≤
∑
i∈J

λi(gi(x) + (αi − ⟨xi, x̄⟩))

⟨y, x− x̄⟩+
∑
i∈J

λigi(x̄) ≤ ⟨y, x− x̄⟩ ≤
∑
i∈J

λigi(x)− r ≤
∑
i∈J

λigi(x).

Hence, y ∈ ∂(
∑

i∈J λigi)(x̄) and 0 =
∑

i∈J λigi(x̄) by putting x = x̄. From λi > 0
and gi(x̄) ≤ 0 for each i ∈ J , we have J ⊆ I(x̄). Therefore,

y ∈ ∂(
∑

i∈J λigi)(x̄)
=

∑
i∈J λi∂gi(x̄) (from (1.4))

⊆ coneco
∪

i∈J ∂gi(x̄)
⊆ coneco

∪
i∈I(x̄) ∂gi(x̄).

This completes the proof.

By using Theorem 3.1, we can check BCQ holds or not at every x ∈ S by
using the characteristic cone of conical EHP. Especially, when n ≤ 2, the figure
of the cone is useful and effective for the purpose, see the following examples.

Example 3.1. Let g1 : R → R be a function as follows:

g1(x) =


1
2
x2 − x if x ∈ (−∞, 0],
0 if x ∈ (0, 1),

1
2
(x− 1)2 if x ∈ [1,+∞).

Then S = [0, 1]. We check whether BCQ holds or not at each point of S. The
conjugate of g1 is as follows:

g∗1(x) =


1
2
(x+ 1)2 if x ∈ (−∞,−1],

0 if x ∈ (−1, 0),
1
2
x2 + x if x ∈ [0,+∞).

Also,

coneepig∗1 = {(y, r) ∈ R2 | y ≤ 0, r ≥ 0} ∪ {(y, r) ∈ R2 | y > 0, r > y},

clconeepig∗1 = {(y, r) ∈ R2 | y ≤ 0, r ≥ 0} ∪ {(y, r) ∈ R2 | y > 0, r ≥ y}.
Then conical EHP does not hold; also FM does not hold. On the other hand, for
each x̄ ∈ S,
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clconeepig∗1 ∩ V (x̄) =


(−∞, 0]× {0} if x̄ = 0,

{(0, 0)} if x̄ ∈ (0, 1),
{(y, r) | 0 ≤ y, y ≤ r} if x̄ = 1,

and

coneepig∗1 ∩ V (x̄) =

{
(−∞, 0]× {0} if x̄ = 0,

{(0, 0)} if x̄ ∈ (0, 1].

Therefore, BCQ holds at each point of [0, 1), but BCQ doesn’t hold at 1 from
Theorem 3.1, see Figure 3.1 which is reprinted from [25].

cone epi g

V(1)

V(1/2)

V(0)0

*
1

Figure 3.1: (Example 3.1)

Example 3.2. Let g2 : R2 → R be a function as follows: g2(x1, x2) = g21(x1) +
g22(x2), where

g2j(xj) =


1
2
(xj + 1)2 if xj ∈ (−∞,−1],

0 if xj ∈ (−1, 1),
1
2
(xj − 1)2 if xj ∈ [1,+∞).

Then, S = [−1, 1]2. Since g2 is a separable function, g∗2(y1, y2) = g∗21(y1) +
g∗22(y2) =

1
2
y21 + |y1|+ 1

2
y22 + |y2|,

epig∗2 = {(y1, y2, r) ∈ R3 | (|y1|+ 1)2 + (|y2|+ 1)2 ≤ 2(r + 1)},

coneepig∗2 = {(y1, y2, r) ∈ R3 | |y1|+ |y2| < r} ∪ {(0, 0, 0)},
and

clconeepig∗2 = {(y1, y2, r) ∈ R3 | |y1|+ |y2| ≤ r}.
Then conical EHP does not hold; also FM does not hold. It is easy to check that
coneepig∗2 ∩ V (x̄) = {(0, 0, 0)} for each x̄ ∈ S, and x̄ ∈ intS = (−1, 1)2 if and
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only if clconeepig∗2 ∩V (x̄) = {(0, 0, 0)}. On the other hand, clconeepig∗2 ∩V (x̄) ̸=
{(0, 0, 0)} for each x̄ ∈ bdS. Indeed, for each x̄ = (x̄1, x̄2) ∈ bdS, there exists
i0 ∈ {1, 2} such that |x̄i0 | = 1. Put

yi =

{
x̄i if |x̄i| = 1,
0 if |x̄i| ̸= 1.

Then (y1, y2, x̄1y1 + x̄2y2) ∈ clconeepig∗2 ∩ V (x̄) \ {(0, 0, 0)}, that is, clconeepig∗2 ∩
V (x̄) ̸= {(0, 0, 0)}. By using Theorem 3.1, BCQ holds at each point of intS, but
BCQ doesn’t hold at each point of bdS, see Figure 3.2 which is reprinted from
[25]. However, in this case, it is not easy whether BCQ holds or not at every point

0

(1,1)

cone epi g*
2

V(1,1)

Figure 3.2: (Example 3.2)

of S from the definition of BCQ, because the calculation of NS(x̄) and ∂g2(x̄) for
every x̄ ∈ S often need time. Indeed, ∂g2(x̄1, x̄2) = {(0, 0)} for each x̄ ∈ S, but

NS(x̄1, x̄2) =



{(0, 0)} if (x̄1, x̄2) ∈ intS,
R+ × {0} if x̄1 = 1, x̄2 ∈ [−1, 1],

R2
+ if x̄1 = 1, x̄2 = 1,

{0} × R+ if x̄1 ∈ [−1, 1], x̄2 = 1,
−R+ × R+ if x̄1 = −1, x̄2 = 1,
−R+ × {0} if x̄1 = −1, x̄2 ∈ [−1, 1],

−R2
+ if x̄1 = −1, x̄2 = −1,

{0} × −R+ if x̄1 ∈ [−1, 1], x̄2 = −1,
R+ ×−R+ if x̄1 = 1, x̄2 = −1.

In next example, we check BCQ in the special case of n ≥ 2.

Example 3.3. Let g3 : Rn → R be a function as follows:

g3(x) = 1/8(⟨v, x⟩ − | ⟨v, x⟩ |)2 + 1

2
(| ⟨w, x⟩ | − ⟨w, x⟩),
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where v, w ∈ Rn with ∥v∥ = ∥w∥ = 1 and {v, w} is linearly independent. Then,
S = {x ∈ Rn | ⟨v, x⟩ ≥ 0, ⟨w, x⟩ ≥ 0}. Put f1(x) = 1/8(⟨v, x⟩ − | ⟨v, x⟩ |)2 and
f2(x) =

1
2
(| ⟨w, x⟩ | − ⟨w, x⟩), we have g3 = f1 + f2 and

epig∗3 =

{
(sv + tv, r) ∈ Rn+1

∣∣∣∣ 12s2 ≤ r, s ∈ (−∞, 0], t ∈ [−1, 0]

}
because epi(f1+f2)

∗ = epif ∗
1 +epif ∗

2 , f
∗
1 (y) =

1
2
(⟨v, y⟩)2+δ(−∞,0]v(y), and f ∗

2 (y) =
δ[−1,0]w(y). Hence,

coneepig∗3 = {(−sv − tw, r) ∈ Rn+1 | t ≥ 0, s, r > 0} ∪ {(−tw, r) ∈ Rn+1 | t, r ≥ 0},

and
clconeepig∗3 = {(−sv − tw, r) ∈ Rn+1 | s, t, r ≥ 0}.

Then conical EHP does not hold; also FM does not hold. For each x̄ ∈ S,

coneepig∗3 ∩ V (x̄) =

{
{(0, 0)} if ⟨v, x̄⟩ ≥ 0, ⟨w, x̄⟩ > 0,

(−∞, 0]w × {0} if ⟨v, x̄⟩ ≥ 0, ⟨w, x̄⟩ = 0.

and

clconeepig∗3∩V (x̄) =


{(0, 0)} if ⟨v, x̄⟩ > 0, ⟨w, x̄⟩ > 0,

(−∞, 0]v × {0} if ⟨v, x̄⟩ = 0, ⟨w, x̄⟩ > 0,
(−∞, 0]w × {0} if ⟨v, x̄⟩ > 0, ⟨w, x̄⟩ = 0,

((−∞, 0]v + (−∞, 0]w)× {0} if ⟨v, x̄⟩ = 0, ⟨w, x̄⟩ = 0.

Therefore, BCQ holds at each point of {x ∈ Rn | ⟨v, x⟩ > 0, ⟨w, x⟩ ≥ 0}, but BCQ
doesn’t hold at each point of {x ∈ Rn | ⟨v, x⟩ = 0, ⟨w, x⟩ ≥ 0} from Theorem 3.1.
In particular, if n = 2, ⟨v, w⟩ = 0, then coneepig∗3 is as follows: Figure 3.3 is

0 v

w

cone epi g*
3

Figure 3.3: (Example 3.3)

reprinted from [25].
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3.2 Application to convex quadratic functions

In this section, we consider the convex optimization problem:

(P)

{
minimize f(x)
subject to g(x) ≤ 0,

where f : Rn → R, is a convex function, and gi : Rn → R, i ∈ I, are convex
quadratic functions. The purpose of this section is to study Theorem 3.1 by a
specific class of functions which are presented by quadratic. We show results to
check the BCQ without calculating g∗.

Lemma 3.1. Let g : Rn → R be a convex function, and assume that S = {x ∈
Rn | g(x) ≤ 0} be a non-empty set. If g(x) ≥ 0 for each x ∈ Rn, then g∗(0) = 0
and S = ∂g∗(0).

Proof. The proof is easy and omitted.

Theorem 3.2. Let g : Rn → R be a convex quadratic function that is not
identically zero. Suppose that S = {x ∈ Rn | g(x) ≤ 0} is a non-empty set. Then
the following statements are equivalent:

(i) for each x ∈ Rn, g(x) ≥ 0,

(ii) for each x ∈ S, {g} doesn’t satisfy the BCQ at x,

(iii) there exists x0 ∈ S such that {g} doesn’t satisfy the BCQ at x0.

Proof. The implication (ii)⇒(iii) is clear. Since the Slater condition assures BCQ
holds at every feasible point, see [11], then (iii)⇒(i) is clear.

Now, we turn to the proof of (i)⇒(ii), and assume (i). Let u ∈ S. By
Lemma 3.1, g∗(0) = 0 and S = ∂g∗(0). Put

B = {(y, β) ∈ Rn × R | ⟨(u,−1), (y, β)⟩ = 0}.

Then,

B ∩ epig∗ ⊆ {(0, 0)}. (3.1)

In fact, assume that there exists (ξ, α) ∈ B ∩ epig∗ such that (ξ, α) ̸= (0, 0). By
u ∈ ∂g∗(0) and g∗(0) = 0, for each (η, β) ∈ epig∗,

⟨u, η⟩ ≤ g∗(η) ≤ β. (3.2)

Since (ξ, α) ∈ B ∩ epig∗, we have ⟨u, ξ⟩ ≤ g∗(ξ) ≤ α and ⟨u, ξ⟩ = α, that is
⟨u, ξ⟩ = g∗(ξ) = α. It is clear that ξ ̸= 0, if not (ξ, α) = (0, 0). From g(u) = 0,
we have g(u) + g∗(ξ) = ⟨u, ξ⟩, so u ∈ ∂g∗(ξ). Therefore 0, ξ ∈ ∂g(u). This shows
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g∗ is subdifferentiable on co{0, ξ}, then g∗ is strictly convex on co{0, ξ} by using
Theorem 26.3 in [17]. For any λ ∈ (0, 1), we have

g∗(λξ) = g∗((1− λ)0 + λξ)
< (1− λ)g∗(0) + λg∗(ξ)
= λ ⟨u, ξ⟩
= ⟨u, λξ⟩ .

From (3.2), ⟨u, λξ⟩ ≤ g∗(λξ) because (λξ, g∗(λξ)) ∈ epig∗. This is a contradiction.
From (3.1), we have

{y ∈ Rn | (y, ⟨y, u⟩) ∈ coneepig∗} ⊆ {0}. (3.3)

Actually, let y ∈ Rn satisfy (y, ⟨y, u⟩) ∈ coneepig∗. There exist λ ≥ 0 and
(x, α) ∈ epig∗ such that (y, ⟨y, u⟩) = λ(x, α). If λ = 0, then y = 0. If λ > 0, we
have

(
1

λ
y,

⟨
1

λ
y, u

⟩
) ∈ epig∗ and

⟨
(u,−1), (

1

λ
y,

⟨
1

λ
y, u

⟩
)

⟩
= 0.

Thus, ( 1
λ
y,
⟨
1
λ
y, u
⟩
) ∈ B ∩ epig∗. From (3.1), we have y = 0.

Since g is a quadratic convex function, there exist A ∈ Sn
+, a ∈ Rn, α ∈ R such

that g(x) = 1
2
⟨x,Ax⟩+ ⟨a, x⟩+α for each x ∈ Rn, Put L = {x ∈ Rn | Ax = 0}⊥,

then

L ⊆ {y ∈ Rn | (y, ⟨y, u⟩) ∈ clconeepig∗}. (3.4)

Actually, let z ∈ L. There exists a unique symmetric positive semi-definite
matrix A∗ ∈ Sn such that AA∗ = A∗A = P , where P is the matrix of the linear
transformation which projects Rn orthogonally onto L, and for this A∗ one has

g∗(y) =
1

2
⟨y − a,A∗(y − a)⟩ − α + δL(y − a) for each y ∈ Rn,

see Section 12 in [17]. From g∗(0) = 0, we have

g∗(y) =
1

2
⟨y, A∗y⟩ − 1

2
⟨y,A∗a+ a⟩+ δL(y), for each y ∈ Rn.

For each k ∈ N, ( 1
k
z, g∗( 1

k
z)), (− 1

k
z, g∗(− 1

k
z)) ∈ epig∗ because z ∈ L and L is

subspace of Rn. From (3.2), we have
⟨
u, 1

k
z
⟩
≤ g∗( 1

k
z) and

⟨
u,− 1

k
z
⟩
≤ g∗(− 1

k
z),

that is
−g∗(− 1

k
z) ≤

⟨
1
k
z, u
⟩
≤ g∗( 1

k
z),

−kg∗(− 1
k
z) ≤ ⟨z, u⟩ ≤ kg∗( 1

k
z).

From −kg∗(− 1
k
z) = − 1

2k
⟨z, A∗z⟩ − 1

2
⟨z, A∗a+ a⟩ and kg∗( 1

k
z) = 1

2k
⟨z, A∗z⟩ −

1
2
⟨z, A∗a+ a⟩, we have−kg∗(− 1

k
z) → −1

2
⟨z, A∗a+ a⟩ and kg∗( 1

k
z) → −1

2
⟨z, A∗a+ a⟩.

Thus ⟨z, u⟩ = −1
2
⟨z, A∗a+ a⟩. Therefore (z, kg∗( 1

k
z)) → (z, ⟨z, u⟩). From (z, kg∗( 1

k
z)) ∈

coneepig∗, (z, ⟨u, z⟩) ∈ clconeepig∗.



23

In addition, L ̸= {0} since g is not identically zero and (i). From this, (3.3)
and (3.4),

{y ∈ Rn | (y, ⟨y, u⟩) ∈ coneepig∗} ̸= {y ∈ Rn | (y, ⟨y, u⟩) ∈ clconeepig∗}.

By Theorem 3.1, {g} doesn’t satisfy the BCQ at u, and thus (ii) holds. This
completes the proof.

By Theorem 1.3, Theorem 3.1 and Theorem 3.2, we have the following corol-
lary.

Corollary 3.1. Let g : Rn → R be a convex quadratic function that is not
identitically zero. Suppose that S = {x ∈ Rn | g(x) ≤ 0} is a non-empty set.
Then the following statements are equivalent:

(i) there exists x0 ∈ Rn such that f(x0) < 0,

(ii) there exists x1 ∈ S such that {g} satisfies the BCQ at x1,

(iii) for each x ∈ S, {g} satisfies the BCQ at x,

(iv) for each x̄ and f : Rn → R, convex, the following statements are equivalent:

(a) x̄ is a minimizer of the following optimization problem:{
minimize f(x)
subject to g(x) ≤ 0,

(b) there exists λ ≥ 0 such that 0 ∈ ∂f(x̄) + λ∂g(x̄).

Example 3.4. Let g(x) = x2 + 2x. Then S = {x ∈ R | g(x) ≤ 0} = [−2, 0], and
g(−1) = −1 < 0. Thus (i) of Corollary 3.1 holds. So, the BCQ holds at every
point of S.

Example 3.5. Let g(x1, x2) = 1
2
x1.Then, S = {0} × R, and for each x ∈ Rn,

g(x) ≥ 0. Thus (i) of Corollary 3.1 doesn’t hold. So, the BCQ doesn’t hold at
every point of S.
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3.3 Application results of alternative criteria in

convex composite functions

Throughout this section, constraint convex functions gi are given as

gi = hi ◦ vi = hi(vi(·)),

where hi : R → R is a convex function for each i ∈ I and we denote the inner
product of vi ∈ Rn and y ∈ Rn by vi(y) as a function of y for each fixed vi. we
observe σ by using the result of [25]

Theorem 3.3. Let g be a real-valued convex function on Rn, h be a real-valued
convex function on R, and v ∈ Rn \ {0}. Assume that g = h ◦ v and ∥v∥ = 1.
Then g∗ = h∗ ◦ v + δ[v] where [v] = {αv | α ∈ R}.

Proof. Let y ∈ Rn. If y ∈ [v], there exists α ∈ R such that y = αv. So, we have

g∗(y) = supx∈Rn{y(x)− g(x)}
= supx∈Rn{αv(x)− h(v(x))}
= supt∈R supv(x)=t{αv(x)− h(v(x))}
= supt∈R{αt− h(t)}
= h∗(α).

From ∥v∥ = 1, α = v(y). Thus, g∗(y) = (h∗ ◦ v) (y). If y /∈ [v], put p = v(y)v.
For each t ∈ R, t = v(tv). For each k ∈ N, put xk = tv + k(y − p), we have
v(xk) = t. For each t ∈ R,

supv(x)=t y(x) ≥ supk∈N y(xk)
= supk∈N y(tv + k(y − p))
= supk∈N ky(y − p) + tv(y)
= supk∈N k{y(y)− y(p)}+ tv(y)
= supk∈N k{∥y∥2 − y(v(y)v)}+ tv(y)
= supk∈N k{∥y∥2 − v(y)y(v)}+ tv(y)
= supk∈N k{∥y∥2 − v(y)v(y)}+ tv(y)
= supk∈N k(∥y∥2∥v∥2 − (v(y))2) + tv(y).

By Cauchy-Schwartz inequality and y /∈ [v], 0 < ∥y∥2∥v∥2 − (v(y))2. Then
g∗(y) = +∞. Indeed,

g∗(y) = supx∈Rn{y(x)− g(x)}
= supx∈Rn{y(x)− h(v(x))}
= supt∈R supv(x)=t{y(x)− h(t)}
≥ supv(x)=0 y(x)− h(0)

≥ supk∈N
k

∥v∥2 (∥y∥
2∥v∥2 − (v(y))2)− h(0)

= +∞.
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Hence,
g∗ = h∗ ◦ v + δ[v].

Example 3.6. Let g : Rn → R be a function as follows:

g(x) =
1

2
((v(x))2 + v(x) + |v(x)|),

where v ∈ Rn \ {0} and ∥v∥ = 1. Put h(t) = 1
2
(t2 + t+ |t|). Then g = h ◦ v and

S = {x ∈ Rn | v(x) = 0}.

h∗(s) =


1
2
s2 if s ∈ (−∞, 0)
0 if s ∈ [0, 1)

1
2
(s− 1)2 if s ∈ [1,+∞),

g∗(y) =


1
2
(v(y))2 if y ∈ (−∞, 0)v
0 if y ∈ [0, 1)v

1
2
(v(y)− 1)2 if y ∈ [1,+∞)v

+∞ if otherwise.

So,
coneepig∗ = Rv × [0,+∞) \ (−∞, 0)v × {0},

clconeepig∗ = Rv × [0,+∞).

σ does not satisfy FM. For each x̄ ∈ S,

coneepig∗ ∩ V (x̄) = [0,+∞)v × {0},

clconeepig∗ ∩ V (x̄) = Rv × {0}.

Thus, σ does not satisfy BCQ at each x ∈ S.

Example 3.7. Let g : Rn → R be a function as follows:

g(x) =


−1− v(x) if v(x) < −1

0 if −1 ≤ v(x) < 1
1
2
(v(x)− 1)2 if 1 ≤ v(x),

where v ∈ Rn \ {0} and ∥v∥ = 1. Put h(t) =


−1− t if t ∈ (−∞,−1)

0 if t ∈ [−1, 1)
1
2
(t− 1)2 if t ∈ [1,+∞).

Then g = h ◦ v, S = {x ∈ Rn | −1 ≤ v(x) ≤ 1} and intS ̸= ∅.

h∗(s) =


−s if s ∈ [−1, 0)

1
2
s2 + s if s ∈ [0,+∞)
+∞ if s ∈ (−∞,−1),
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g∗(y) =


−v(y) if y ∈ [−1, 0)v

1
2
(v(y))2 + v(y) if y ∈ [0,+∞)v

+∞ if otherwise.

So,

coneepig∗ = {(αv, r) ∈ Rn+1 | |α| ≤ r} \ {(αv, r) ∈ R3 | 0 < α < r},

clconeepig∗ = {(αv, r) ∈ Rn+1 | α ∈ R, |α| ≤ 0}.

For each x̄ ∈ S,

coneepig∗ ∩ V (x̄) =


{(0, 0)} if x̄ ∈ intS
{(0, 0)} if v(x̄) = 1

(−∞, 0]{(v, 1)} if v(x̄) = −1,

clconeepig∗ ∩ V (x̄) =


{(0, 0)} if x̄ ∈ intS

[0,+∞){(v, 1)} if v(x̄) = 1
(−∞, 0]{(v, 1)} if v(x̄) = −1.

Thus, σ does not satisfy BCQ at each x ∈ {x ∈ Rn | v(x) = 1}, and σ satisfies
BCQ at each x ∈ intS ∪ {x ∈ Rn | v(x) = −1}.

Example 3.8. Let g1, g2 : R2 → R be two functions as follows:

g1(x1, x2) =


−1− x1 if x1 ∈ (−∞,−1)

0 if x1 ∈ [−1, 1)
1
2
(x1 − 1)2 if x1 ∈ [1,+∞),

g2(x1, x2) =


1
2
(x2 + 1)2 if x2 ∈ (−∞,−1)

0 if x2 ∈ [−1, 1)
−1 + x2 if x2 ∈ [1,+∞).

Put v1 = (1, 0), v2 = (0, 1),

h1(t) =


−1− t if t ∈ (−∞,−1)

0 if t ∈ [−1, 1)
1
2
(t− 1)2 if t ∈ [1,+∞),

and

h2(t) =


1
2
(t+ 1)2 if t ∈ (−∞,−1)

0 if t ∈ [−1, 1)
−1 + t if t ∈ [1,+∞),

where i = 1, 2. Then gi = h ◦ vi, i = 1, 2, S = [−1, 1]2 and intS ̸= ∅.

h∗
1(s) =


−s if s ∈ [−1, 0]

1
2
s2 + s if s ∈ [0,+∞)
+∞ if s ∈ (−∞,−1),
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h∗
2(s) =


1
2
s2 − s if s ∈ (−∞, 0]
s if s ∈ [0, 1]

+∞ if s ∈ (1,+∞),

g∗1(y1, y2) =


−y1 if (y1, y2) ∈ [−1, 0]× {0}

1
2
y21 + y1 if (y1, y2) ∈ [0,+∞)× {0}
+∞ if otherwise,

g∗2(y1, y2) =


1
2
y22 − y2 if (y1, y2) ∈ {0} × (−∞, 0]
y2 if (y1, y2) ∈ {0} × [0, 1]
+∞ if otherwise.

So,

coneco(epig∗1 ∪ epig∗2) = {(y1, y2, r) ∈ R3 | |y1|+ |y2| < r}
∪{(y1, y2, r) ∈ R3 | y1 ≤ 0, y2 ≥ 0,−y1 + y2 = r},

clconeco(epig∗1 ∪ epig∗2) = {(y1, y2, r) ∈ R3 | |y1|+ |y2| ≤ r}.

σ does not satisfy FM. For each (x1, x2) ∈ {−1} × (−1, 1] ∪ [−1, 1) × {1},
coneco(epig∗1 ∪ epig∗2) is closed regarding the set V (x1, x2). Thus, σ satisfies
BCQ at each (x1, x2) ∈ intS ∪{−1}× (−1, 1]∪ [−1, 1)×{1}. For each (x1, x2) ∈
bdS \ ({−1} × (−1, 1] ∪ [−1, 1) × {1}), coneco(epig∗1 ∪ epig∗2) is not closed re-
garding the set V (x1, x2). Thus, σ does not satisfy BCQ at each (x1, x2) ∈
bdS \ ({−1} × (−1, 1] ∪ [−1, 1)× {1}).

Example 3.9. Let I = [−1
2
π, 1

2
π). We consider for each θ ∈ I, gθ : R2 → R

defined by

gθ(x) =


1− vθ(x) if vθ(x) ≤ −1

0 if −1 < vθ(x) ≤ 1
1
2
(vθ(x)− 1)2 if 1 < vθ(x).

Put vθ = (cos θ, sin θ) for each θ ∈ I and

h(t) =


−t− 1 if t ∈ (−∞,−1)

0 if t ∈ [−1, 1)
1
2
(t− 1)2 if t ∈ [1,+∞).

Then gθ = h ◦ vθ and S = {x ∈ Rn | ∥x∥ ≤ 1},

h∗(s) =


+∞ if s ∈ (−∞,−1)
−s if s ∈ [−1, 0)

1
2
s2 + s if s ∈ [0,+∞),

g∗θ(y) =


vθ(−y) if y ∈ [−1, 0)vθ

1
2
(vθ(y))

2 + vθ(y) if y ∈ [0,+∞)vθ
+∞ if y ∈ R2 \ [−1,+∞)vθ.
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So,

coneco
∪

θ∈I epigθ = {(−α cos θ,−α sin θ, r) ∈ R3 | 0 ≤ α = r, θ ∈ [−1
2
π, 1

2
π)}

∪{(y1, y2, r) ∈ R3 | ∥(y1, y2)∥ < r},
clconeco

∪
θ∈I epigθ = {(y1, y2, r) ∈ R3 | ∥(y1, y2)∥ ≤ r}.

σ does not satisfy FM. For each (x1, x2) ∈ {(− cos θ,− sin θ) | θ ∈ [−1
2
π, 1

2
π)},

coneco
∪

θ∈I epigθ is closed regarding the set V (x1, x2). Thus σ satisfies BCQ at
each (x1, x2) ∈ intS ∪ {(− cos θ,− sin θ) | θ ∈ [−1

2
π, 1

2
π)}. For each (x1, x2) ∈

bdS \ {(− cos θ,− sin θ) | θ ∈ [−1
2
π, 1

2
π)}, coneco

∪
θ∈I epigθ is not closed re-

garding the set V (x1, x2). Thus σ does not satisfy BCQ at each (x1, x2) ∈
bdS \ {(− cos θ,− sin θ) | θ ∈ [−1

2
π, 1

2
π)}.



Chapter 4

Constraint qualifications for
locally Lipschitz inequality
systems

Recently, the KKT optimality conditions for a convex optimization problem,
whose constraint set S is described by the inequality constraints but every con-
straint functions are not necessarily convex, was studied. In 2013, a convex
optimization problem, whose objective function is convex not necessarily differ-
entiable and constraint functions are locally Lipschitz but not necessarily convex
or differentiable, was discussed, and a constraint qualification for the optimality
condition was given by Dutta and Lalitha, see [5]. In this chapter, we investigate
several constraint qualifications, which are modifications of well-known constraint
qualifications, for the KKT optimality in condition the convex optimization prob-
lem (P), which was discussed by Dutta and Lalitha in [5], and compare our results
and previous ones. All results of this chapter is based on [26].

4.1 Definition of constraint qualifications for a

locally Lipschitz systems

In this section, we consider the following convex optimization problem:

(P )

{
min f(x)
s.t. x ∈ S,

where f is a real-valued convex function on Rn and S is a convex set. Throughout
this section we assume that the feasible set S is given as

S = {x ∈ Rn | gi(x) ≤ 0, i ∈ I},

where gi, i ∈ I = {1, . . . ,m}, are real-valued locally Lipschitz functions on Rn and
gi is regular at every x ∈ S and every i ∈ I(x), where I(x) = {i ∈ I | gi(x) = 0}.

29
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The following theorem is shown by Dutta and Lalitha in [5].

Theorem 4.1. ([5]) Let gi : Rn → R, i ∈ I = {1, . . . ,m}, be locally Lipschitz
functions, and let x̄ ∈ S = {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I}. Assume that S is a
convex set, all gi are regular at x̄, the Slater condition holds, that is, there exists
x0 ∈ Rn such that gi(x0) < 0 for each i ∈ I, and 0 /∈ ∂◦gi(x̄) for each i ∈ I(x̄).
Then for each real-valued convex function f on Rn, the following statements are
equivalent:

(i) for each x ∈ S, f(x̄) ≤ f(x),

(ii) there exists λ ∈ RI
+ such that 0 ∈ ∂f(x̄) +

∑
i∈I λi∂

◦gi(x̄) and for each
i ∈ I, λigi(x̄) = 0.

Condition (ii) of this theorem is the KKT optimality condition of the problem
(P).

In this section, we discuss the following conditions:

(A) NS(x̄) = coneco
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄)(∂
◦gi(x̄)

−) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(C) there exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈
∂◦gi(x̄),

(D) the Slater condition holds, that is, there exists x0 ∈ Rn such that gi(x0) < 0
for each i ∈ I, and 0 /∈ ∂◦gi(x̄), for each i ∈ I(x̄),

(E) 0 /∈ co
∪

i∈I(x̄) ∂
◦gi(x̄),

(F) intS ̸= ∅ and 0 /∈ ∂◦gi(x̄), i ∈ I(x̄),

(G) for each yi ∈ ∂◦gi(x̄), i ∈ I(x̄), {yi}i∈I(x̄) is linearly independent.

4.2 Observations of constraint qualifications

At first, we provide the following lemma, which is important to show our results:

Lemma 4.1. Let x̄ ∈ S. Then for each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ 0.

That is, ∂◦gi(x̄) ⊆ NS(x̄) for each i ∈ I(x̄).
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Proof. For each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ g◦i (x̄, x− x̄).

From the regularity of gi at x̄,

⟨ξi, x− x̄⟩ ≤ g′i(x̄, x− x̄) = lim
t↓0

gi(x̄+ t(x− x̄))− gi(x̄)

t
.

Since x̄+ t(x− x̄) ∈ S for each t ∈ (0, 1) and i ∈ I(x̄), we have g′i(x̄, x− x̄) ≤ 0,
so ⟨ξi, x− x̄⟩ ≤ 0.

Now we show a result that conditions (A) and (B) are necessary and suffi-
cient constraint qualifications for the optimality conditions in convex optimization
problem (P).

Theorem 4.2. Let x̄ ∈ S. Then the following statements are equivalent:

(A) NS(x̄) = coneco
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄) (∂
◦gi(x̄)

−) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(O) for each real-valued convex function f on Rn, the following statements are
equivalent:

(i) f(x) ≥ f(x̄) for each x ∈ S,

(ii) there exists λ ∈ RI
+ such that 0 ∈ ∂f(x̄)+

∑
i∈I λi∂

◦gi(x̄) and for each
i ∈ I, λigi(x̄) = 0.

Proof. First, we prove (A)⇔(B). It is clear that (A) holds if and only if NS(x̄) =
coneco

∪
i∈I(x̄) ∂

◦gi(x̄) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed. From convexity of S,

we haveNS(x̄)
− = TS(x̄). Therefore, it is enough to show that (

∩
i∈I(x̄)(∂

◦gi(x̄)
−))− =

coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This equality is given by the following property:∩

i∈I

(A−
i ) = (

∪
i∈I

Ai)
− for any Ai ⊆ Rn(i ∈ I).

Next, we prove (A)⇒(O). Let f be a real-valued convex function on Rn. The
proof that (ii) implies (i) is easy and omitted. Conversely, assume (i). For each
x ∈ S, since x̄+ α(x− x̄) ∈ S for each α ∈ (0, 1),

f(x̄) ≤ f(x̄+ α(x− x̄)),

that is,
0 ≤ f ′(x̄, x− x̄) = max

ξ∈∂f(x̄)
⟨ξ, x− x̄⟩ .



32

Therefore 0 ≤ infx∈S maxξ∈∂f(x̄) ⟨ξ, x− x̄⟩. According to Sion’s minimax theorem
(see e.g. [18, 14]), we can invert the infimum and the maximum, and we get
0 ≤ maxξ∈∂f(x̄) infx∈S ⟨ξ, x− x̄⟩. Then there exists η ∈ ∂f(x̄) such that

⟨−η, x− x̄⟩ ≤ 0 for each x ∈ S.

Thus, −η ∈ NS(x̄). From (A), −η ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). Then there exist

µi ≥ 0 and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that −η =
∑

i∈I(x̄) µiξi. Put

λi =

{
µi if i ∈ I(x̄),
0 if i ∈ I \ I(x̄),

for each i ∈ I. Then it is clear that λigi(x̄) = 0 for each i ∈ I. Moreover,

−η =
∑
i∈I(x̄)

λiξi =
∑
i∈I

λiξi ∈
∑
i∈I

λi∂
◦gi(x̄).

Hence, 0 = η + (−η) ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄). Finally, we prove (O)⇒(A),

coneco
∪

i∈I(x̄) ∂
◦gi(x̄) ⊆ NS(x̄) is shown by using Lemma 4.1. Conversely, let

η ∈ NS(x̄). Then
⟨−η, x̄⟩ ≤ ⟨−η, x⟩ for each x ∈ S.

Put f = ⟨−η, ·⟩, then f is a convex function, and (i) of (O) holds. So, (ii) of (O)
holds. Hence, there exists λ ∈ RI

+ such that{
0 ∈ ∂f(x̄) +

∑
i∈I λi∂

◦gi(x̄),
λigi(x̄) = 0 for each i ∈ I.

From ∂f(x̄) = {−η} and 0 ∈ ∂f(x̄) +
∑

i∈I ∂
◦gi(x̄), η ∈

∑
i∈I λi∂

◦gi(x̄). Since
λigi(x̄) = 0 for each i ∈ I, we have∑

i∈I

λi∂
◦gi(x̄) =

∑
i∈I(x̄)

λi∂
◦gi(x̄) ⊆ coneco

∪
i∈I(x̄)

∂◦gi(x̄).

Thus, η ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof.

Remark 4.1. (1) We remark that Theorem 4.2 holds even if the index set I is
infinite. In this case, (ii) of (O) is as follows: there exist a finite subset J ⊆ I(x̄)
and λ ∈ RJ

+ such that 0 ∈ ∂f(x̄)+
∑

i∈I λi∂
◦gi(x̄) and for each i ∈ I, λigi(x̄) = 0.

(2) When all gi are convex, then condition (A),

NS(x̄) = coneco
∪

i∈I(x̄)

∂gi(x̄),

is called basic constraint qualification (BCQ).
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(3) When all gi are continuously differentiable at x̄ and S is not necessarily
convex, then condition (A),

NS(x̄) = coneco
∪

i∈I(x̄)

{∇gi(x̄)},

which is equivalent to

clcoTS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0,∀i ∈ I(x̄)},

is called Guignard’s constraint qualification, and condition (B),

TS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0, ∀i ∈ I(x̄)},

is called Abadie’s constraint qualification, see [21]. In this case, both Guignard’s
and Abadie’s constraint qualifications are necessary and sufficient constraint qual-
ifications for optimality condition of (P).

Next we show a result that condition (C) is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). When all gi
are continuously differentiable at x̄, condition (C), that is,

there exists y0 ∈ Rn such that ⟨∇gi(x̄), y0⟩ < 0 for each i ∈ I(x̄),

is called Cottle’s constraint qualification, see [21]. To show the result, we give
the following lemma:

Lemma 4.2. Let Λ be an index set, and let Aλ ⊆ Rn, λ ∈ Λ, be non-empty
convex sets. If

∩
λ∈Λ intAλ ̸= ∅, then cl

∩
λ∈Λ intAλ =

∩
λ∈Λ clAλ.

Proof. The equality cl
∩

λ∈ΛAλ =
∩

λ∈Λ clAλ is shown straightforwardly and omit-
ted. Since clintAλ = clAλ for each λ ∈ Λ, the equality of this lemma holds.

Theorem 4.3. Let x̄ ∈ S. Then (C) implies (B).

Proof. Assume (C). There exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄)
and ξi ∈ ∂◦gi(x̄). That is, for each i ∈ I(x̄),

g◦i (x̄, y0) = max
ξ∈∂◦gi(x̄)

⟨ξi, y0⟩ < 0.

Since g◦i (x̄, ·) is a real-valued convex function on Rn and g◦i (x̄, y0) < 0, by using
Theorem 1.6,

int{y ∈ Rn | g◦i (x̄, y) ≤ 0} = {y ∈ Rn | g◦i (x̄, y) < 0}.

Also, it is clear that ∂◦gi(x̄)
− = {y ∈ Rn | g◦i (x̄, y) ≤ 0}. Thus,

int∂◦gi(x̄)
− = {y ∈ Rn | g◦i (x̄, y) < 0} ∋ y0. (4.1)
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Consequently, we have
∩

i∈I(x̄) int(∂
◦gi(x̄)

−) ̸= ∅. By using Lemma 4.2, we have

cl
∩

i∈I(x̄)

int(∂◦gi(x̄)
−) =

∩
i∈I(x̄)

cl(∂◦gi(x̄)
−) =

∩
i∈I(x̄)

(∂◦gi(x̄)
−). (4.2)

Next, we show ∩
i∈I(x̄)

int(∂◦gi(x̄)
−) ⊆ TS(x̄). (4.3)

Let y ∈
∩

i∈I(x̄) int(∂
◦gi(x̄)

−). For each i ∈ I(x̄), from (4.1) and the regularity of

gi at x̄, we have g′i(x̄, y) < 0. Then, there exists ti > 0 such that gi(x̄ + ty) < 0
for each t ∈ (0, ti]. Moreover, for each i ∈ I \ I(x̄), from the continuity of gi and
gi(x̄) < 0, there exists ti > 0 such that gi(x̄ + ty) < 0 for each t ∈ (0, ti]. Put
t0 = min{ti | i ∈ I}, for each t ∈ (0, t0)

for each i ∈ I, gi(x̄+ ty) < 0. (4.4)

Then x̄+ty ∈ S for each t ∈ (0, t0]. For each k ∈ N, put xk = x̄+ t0
k
y and αk =

k
t0
.

Then {αk(xk − x̄)} ⊆ cone(S − x̄) and αk(xk − x̄) → y, that is, y ∈ TS(x̄). Thus
(4.3) holds. By using (4.2) and (4.3), we have∩

i∈I(x̄)

(∂◦gi(x̄)
−) ⊆ TS(x̄).

The converse inclusion TS(x̄) ⊆
∩

i∈I(x̄)(∂
◦gi(x̄)

−) holds from Lemma 4.1.

Finally, we prove that coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed, that is,

clconeco
∪

i∈I(x̄)

∂◦gi(x̄) ⊆ coneco
∪

i∈I(x̄)

∂◦gi(x̄).

We may assume that I(x̄) ̸= ∅. Let y ∈ clconeco
∪

i∈I(x̄) ∂
◦gi(x̄). There exists

{yk} ⊆ coneco
∪

i∈I(x̄) ∂
◦gi(x̄) such that yk → y. For each k ∈ N , there exist

λk = (λk
i )i∈I(x̄) ∈ RI(x̄)

+ and xk = (xk
i )i∈I(x̄) ∈

∏
i∈I(x̄) ∂

◦gi(x̄) such that yk =∑
i∈I(x̄) λ

k
i x

k
i . From (C), there exists y0 ∈ Rn such that g◦i (x̄, y0) < 0. Put

r = maxi∈I(x̄) g
◦
i (x̄, y0). For each i ∈ I(x̄),

⟨
xk
i , y0

⟩
≤ r < 0. Thus, ⟨yk, y0⟩ ≤

r
∑

i∈I(x̄) λ
k
i . Since ⟨yk, y0⟩ → ⟨y, y0⟩,

⟨y, y0⟩ − 1 < ⟨yk, y0⟩ ≤ r
∑
i∈I(x̄)

λk
i

hold for sufficiently large k, that is,

∥λk∥ ≤
∑
i∈I(x̄)

λk
i ≤

⟨y, y0⟩ − 1

r
(=: K).
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Therefore, {(λk, xk)} ⊆ clB(0, K) ×
∏

i∈I(x̄) ∂
◦gi(x̄). From the compactness of

clB(0, K) ×
∏

i∈I(x̄) ∂
◦gi(x̄), there exist (λ, x) = (λi, xi)i∈I(x̄) ∈ clB(0, K) ×∏

i∈I(x̄) ∂
◦gi(x̄) and a subsequence {(λkj , xkj)} of {(λk, xk)} such that (λkj , xkj) →

(λ, x). Moreover, we have λi ≥ 0, xi ∈ ∂◦gi(x̄), i ∈ I(x̄), and y =
∑

i∈I(x̄) λixi.

Thus, y ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof.

Remark 4.2. (1) The converse of Theorem 4.3 is not true in general, see Exam-
ple 4.1.

(2) From (4.4), (C) implies the Slater condition. However, the converse is not
true in general, see Example 4.2.

(3) In Example 4.2, the Slater condition does not imply (A). Therefore, the
Slater condition is not a constraint qualification for the optimality conditions in
convex optimization problem (P).

Example 4.1. Let g : R → R be a function defined by

g(x) = |x|.

Then S = {0}, TS(0) = {0} and ∂◦g(0) = [−1, 1]. So that, ∂◦g(0)− = {0}
and ∂◦g(0) is closed. Thus (B) holds. On the other hand, for each y ∈ R,

y
|y|+1

∈ ∂◦g(0) and y
|y|+1

y ≥ 0, and then (C) does not hold.

Example 4.2. Let g : R2 → R be a function defined by

g(x1, x2) =


x1 + x2 if x1 ≥ 0, x2 ≥ 0,
∥(x1, x2)∥+ x2 if x1 ≥ 0, x2 < 0,
∥(x1, x2)∥+ x1 if x1 < 0, x2 ≥ 0,
−x1x2 if x1 < 0, x2 < 0.

Then S = −R2
+, S is convex, g is regular at (0, 0) and the Slater condition holds.

On the other hand, NS(0, 0) = R2
+ and cone∂◦g(0, 0) = {(0, 0)} ∪ intR2

+. Hence,
(A) does not hold. Thus (C) does not hold.

Next we consider the relationship of (C), (D), (E) and (F). From Theorem 4.1,
condition (D), given by Dutta and Lalitha, is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). Conditions (E)
and (F) are motivated by (C) and (D), respectively.

We show the relationship of (C), (D), (E) and (F) as follows:

Theorem 4.4. Let x̄ ∈ S. Then (C), (D), (E) and (F) are equivalent.

Proof. First, we prove (C) implies (D). Assume (C). There exists y0 ∈ Rn such
that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄). It is clear that 0 /∈ ∂◦gi(x̄) for
each i ∈ I(x̄). In addition, Slater condition holds from (2) of Remark 4.2. Thus
(D) holds.
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Next, we prove (D) implies (F). Assume (D). Then 0 /∈ ∂◦gi(x̄) for each
i ∈ I(x̄), and it is easy to show that intS is non-empty from Slater condition and
the continuity of all gi. Thus (F) holds.

Next, we prove (F) implies (E). Assume that (E) dos not hold. Then, there
exist λi ∈ R+ and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that{ ∑

i∈I(x̄) λi = 1,∑
i∈I(x̄) λiξi = 0.

From (F), we have ξi ̸= 0 for each i ∈ I(x̄). Also from (F), there exists x0 ∈ Rn

and r > 0 such that B(x0, r) ⊆ S. For each i ∈ I(x̄), since x0 + r
2∥ξi∥ξi ∈

B(x0, r) ⊆ S, then for each i ∈ I(x̄), ∂◦gi(x̄) ⊆ NS(x̄) from Lemma 4.1, that is,
ξi ∈ NS(x̄). So for each i ∈ I(x̄),

⟨ξi, x0 − x̄⟩+ r

2
∥ξi∥ =

⟨
ξi, x0 +

r

2∥ξi∥
ξi − x̄

⟩
≤ 0.

Therefore,

r

2

∑
i∈I(x̄)

λi∥ξi∥ =

⟨∑
i∈I(x̄)

λiξi, x0 − x̄

⟩
+

r

2

∑
i∈I(x̄)

λi∥ξi∥ ≤ 0.

From
∑

i∈I(x̄) λi = 1 and ξi ̸= 0 for each i ∈ I(x̄),

0 <
r

2

∑
i∈I(x̄)

λi∥ξi∥.

This is a contradiction.
Finally, we prove (E) implies (C). Assume (E). Since co

∪
i∈I(x̄) ∂

◦gi(x̄) is a

non-empty closed convex set and 0 /∈ co
∪

i∈I(x̄) ∂
◦gi(x̄) from (E), there exists

y0 ∈ Rn such that ⟨ξ, y0⟩ < 0 for each ξ ∈ co
∪

i∈I(x̄) ∂
◦gi(x̄) from Theorem 1.1.

Thus, ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄). Therefore (C) holds. This
completes the proof.

Finally, we consider the relationship of (E) and (G). When all gi are contin-
uously differentiable at x̄, condition (G), that is

{∇gi(x̄)}i∈I(x̄) is linearly independent,

is called the linearly independent constraint qualification, see [6, 21].

Theorem 4.5. Let x̄ ∈ S. Then (G) implies (E).
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Proof. Assume that (E) does not hold. Then, there exist λi ∈ R+ and xi ∈
∂◦gi(x̄), i ∈ I(x̄), such that { ∑

i∈I(x̄) λi = 1,∑
i∈I(x̄) λixi = 0.

Thus (G) does not hold.

The converse of Theorem 4.5 is not true in general. See the following example:

Example 4.3. Let g1, g2 : R → R be functions as follows:

g1(x) = (x− 1)(x+ 1), g2(x) =
1

2
(x− 1)(x+ 1).

Then S = [−1, 1], intS ̸= ∅, I(1) = {1, 2}, ∂◦g1(1) = {2} and ∂◦g2(1) = {1}.
Thus (F) holds. On the other hand, it is clear that {2, 1} is not linearly indepen-
dent. Hence (G) does not hold.

4.3 Conclusion

In this chapter, we have presented constraint qualifications for KKT optimality
condition in a convex optimization problem under locally Lipschitz constraints
which was discuss by Dutta and Lalitha in [5], and compared our results to
previous ones. First, we introduced two necessary and sufficient constraint qual-
ifications for KKT optimality condition. Moreover we proposed constraint qual-
ifications, and discussed the relationship of these constraint qualifications. On
the other hand, it was shown that the Slater condition was not a constraint
qualification in this optimization. The following figure shows the relationship of
the constraint qualifications, which were introduced in this paper, for optimality
conditions:

(G)

(E) (D) (A)

(B)

Slater

(F) (C)

The figure is reprinted from [26].
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