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Abstract

In the path-integral framework we study a massive Thirring-like model in 2-dimensional space-time,
which contains fermions with arbitrary number (N) of different species. This model is an extension of that
of a previous paper (the Bukhvostov-Lipatov model), where we have considered two-species case. By this
extension we expect that we can expose more general structures of this kind of model. We obtain the equiva-
lent boson model with N species to our fermion model by mass perturbation expansion. We see that the bos-
on Lagrangian corresponds with the one which is directly obtained from the original fermion Lagrangian
by Coleman’s correspondences of free fermion bilinear operators with boson fields.

§1. Imtroduction

In previous papers we have studied relativistic bound states of a 1-space quantum mechani-
cal system containing different species of massive fermions in order to investigate the relativistic
effects for such.composite systems.! This model is an extended one from the model of two
kinds of fermions originally proposed by Gléckle, Nogami and Fukui (GNF).? The Hamiltoni-
an of this model is given by

n n
H=3, {—ia,.p,.+m/z,.}——~‘2’-§ (1—00;)8 (x—3,), (1.1)
= et

where i and j denote fermion species. It is essential in this model that different fermions interact
with each other through the J-function potentials, while fermions of the same kind do not inter-
act with each other directly. All the requirements of quantum mechanics and special relativity
are satisfied. We found an exact solution for n-body bound state which contains » different par-
ticles.

The GNF model is, however, based on the single-electron theory, where anti-particles are
not supposed to exist, and necessarily its Hamiltonian (1-1) is not positive-definite. One way to
overcome this defect would be to go into field theory. It is seen that the GNF model can be der-
ived from a massive Thirring-like model in 2-dimensional space-time, which we will give in the

*) B-mail address: jsakamot(@riko.shimane-u.ac.jp



28 Jiro SAKAMOTO - Yasuaki FUKUOKA

next section. This model for the case of two-species is known as Bukhvostov-Lipatov (BL)
model® in the context of the bosonization.

The bosonization technique is one of the powerful approaches to study a 2-dimensional fer-
mion system.? As Coleman has done in his pioneering work,?) with this technique one can ex-
pose hidden properties of such a fermion system though it may be applicable only for charge-
zero sectors of fermions, i.e. for sectors of pairs of fermion and anti-fermion. In a previous
paper® (I) using the path-integral method we have studied the bosonization of the BL model
with two-species fermions.

In this article we consider the bosonization of the N-species fermion model, which is a
direct extension of the BL model, in the path-integral framework. It is an easier but non-trivial
extension of the freedom of the bosonization technique. By this extension we expect that we can
expose more general structures of this model. As is shown below, BL model has a paradoxical
property that by a chiral transformation the fermion fields seem to get free and to have no inter-
actions among different species. So we should calculate directly the generating functional to
check the Coleman’s bosonization correspondences for this model.

We use the same notations as in I, i.e. in Minkowski space-time, g,,= (—1, +1) and &
= —go1=1. Gamma-matrices are given as p°= —yo=1i0y, ! =y1=0y, ys=7yo)1 =0, where oy, G,
and g, are the Pauli matrices.

§2. Model
Our initial Lagrangian is given by
N N 1
L= w@-my+ 3, Egjiujj”, 2.1
i=1 i>j=1

where i, j denote the fermion species and vector current j, is given by

Ju= Wiy Wi (2.2)
In (2-1) a fermion interacts with those of the different species and never with itself directly.
When N=2, we can change the sign of g by taking charge conjugation of one of the fermion spe-
cies. In fact we saw in I that the consequences for N=2 are symmetric for g«>—g. On the con-
trary, for the case N> 3, there is not such a symmetry, and therefore the sign of g has a physical
meaning for this case.

The quartic interaction part in (2-1) is rewritten as

N1 9 V9w, .
> - W= <ZJ,-,, -7 2wl (2.3)
i>j=1 i i
and this is equivalent to
9« . g g 1 ,
_Z“Z]wX”—TX/‘X”"“_Z‘Z (?A;”—Ji”> A,“l, (2.4)
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with using auxiliary vector fields X, and 4;,. Now we put
Bi[l:X[l_Ai/l! (2.5)

and integrate out over X, by the path-integral formulation to obtain

9 <. ,
?zi].liu 4(N l) <ZBI[I) +— Z (Bm) (2.6)

Here we should note that for N>3 the above expression contains direct coupling among the
same species of boson fields Bj, while fermion fields do not interact directly with themselves in
the original Lagrangian (2-1).

In 2-dimensional space-time, we can write vector fields B;, with two scalar fields ¢; and y; as

B,,,=8,,v3"¢,-+ 3,,)(,-. (2.7)

With these scalar fields we transform the fermion fields as
, ig
Wi —> Wi =exp {5 (—y5¢i+x,~)} Vi (2.8)

to rewrite the Lagrangian as

=3, 9 =mexp {igy5¢i})Wi,_4(N D { (Z 8,,x,> (Z a,,¢,->2}
2

g 9 g , _
g 2 G+ (g*z) 5 @)™ 2-9)

In the above expression the term (g2/87) (3¢)2 comes from det |exp (—igys¢) | in the path-in-
tegral measure following Fujikawa.” In I we have missed a factor 2 for this term. It is seen that
xi is decoupled from the other fields and can be integrated out. Then we obtain

L=, Wi(@—mexp {igysé; D wit 4(N D <Zay¢,> — <——1> 25 (0.9)%  (2:10)

where we write y; for ;. As mentioned in the previous section, one should note that the
coupling between y; and ¢; disappears when m=0, and the fermion fields become free. Then it
seems that the connected part of the corelation <jgjs,>, for an example, vanishes. This is,
however, not the case. To calculate such a correlation we should use the original fermion fields
and take the splitting technique to j,’s. We will discuss this point in the last section.

The generating functional of the Green functions is given by

=g H dw; dy; d¢; exp {zg dzxyeff}. (2-11)
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§3. Perturbative expansion

In order to calculate (2-11) by perturbation theory we choose #y=.2 4(m=0) of (2-10)
as the free Lagrangian. We find that the free fermion and boson propagators are given as

_ _Gijye (x—y)
<V/i(x)u/j(y)>_£(x__y37’ (31
1 2n
GG = (T} In ), (3-2)

where <{:--> denotes the vacuum expectation value of the time-ordered product. Parameter x is a
small infrared cutoff mass, which will be set to zero after the calculations.

Now, we calculate Z of (2-11) through the perturbative expansion with respect to m. We
note that all the odd order terms vanish because of traceless property of y-matrices and the su-
per selection rule for the boson field ¢, i.e. {exp iZ B;¢>=0 unless > §;=0 where g;= *+g.9>
The 2n-th order term of the expansion of Z is given as

(im) 2n

N 2n
Zuﬂ):(ZT)'S‘ 11 dw:dw; de; {g dx V_/;e"aysm,,,} exp {15. dx .Sfo}

i=1

G ([ agmerl) =

Using the identity

W ety =eWyl y+e "yl _y, (3-4)

where we put I'== (1%ys)/2, we expand (3-3) as

« 571 ittt i i n
Z0m = (jp) 2 AL N <{S dx (e, I +e oy, I }
(im) N rg’m ) - (2r)! x (e Iy, +e ol _y,)

2r;
X {S dx (e, I, y,+e "y, I_y,) } W eenenn

2ry
X {S dx ("I wy+e gyl _ WN)} >

. n n 5n. rytrteetry
=m* 3} e aca

X<]§E W (e, DTy (e, ) 0 (g, DT l//1(.)’1,1')>

X <1:ZII W2 (%, DT w2 (20, ) W (¥2, ) - w2 (3, x>> Xoveeees

X <exp ig [2 {1 (x1, 1) ‘—451()’1,1')}4‘2 {$2(x2, =2 (32,1)) }

+"'+§E {¢N(xN,i)_¢N(yN,i)}]>- (3-5)



The Extended Bukhvostov-Lipatov Model in the Path Integral Framework 31
With the fermion propagator (3-1) we can calculate a fermion part in the above (3-5) as

Tk
H (xk, i“‘xk,j)z(.Vk, i_yk,j) 2

i>j

ri 1
<,I=—_E i e, DT Wi (X, ) Wi, ) T= wie (i, i>>= (2n) , (3-6)

Tk
II (X, i~ Y6)?
hJ

and we obtain

im\* L an ntnt+n S
@n) — [ , nitn N
z (27[) n,r‘z.z'“.m (D)% (ra!)? HdXdy

I T2
H (xl, i_xl,j)z (.Vl, i_yl,j)2 H (xz, i"xz,j)z(h, i_y2,j) 2
i>j

i>j
z X

rn 2
IT Geyi—=3)? IT G i=32.)%
i i

X

v
IT Cxw, i— XN, )2 (N, i~y )

i>j

X e x
™ )
IT Cew,i—n,0)
i

x(expig [ 35 00,0 =400} + 33 G =t} 4 ) G)

Now, let us calculate the contractions among the boson fields with the same species in the above
expression to obtain

<exp ig [2 {¢k(xk,i) _¢k(yk,i)}]>=exp {_ng‘k <¢k(0)2>}
xexp=g" | 33 {0k Cxk )00 )+ e ) )= 53 o Db (020 |

i>j

=exp {—g;& <¢k(0)2>}

L (% i—xe D U( - ‘_zz
s exp gz(N—l) o E k, /c,;) W\ Yk, i T Vx, ,) 12 58)
(g—2n) {2n+g(N—1)} Ll ’

H (xk, i_yk,j)zﬂz

iJj

where we have used (3-2). Here we suppose that for a small distance the boson propagator is
properly regularized. We find that each fermion part in (3:7) has the same combination of the
coordinates {xx; Vii} as that in the above expression.

We, therefore, suppose that in the corresponding boson model the free boson propagator
gives such a fermion contribution besides the original boson one (3-2) as
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<¢,~’(x)¢,-’(y)>=<¢,-(x)¢,-(y)>—g—;ln (x—y)u?

1 2n 27
=g(g—2n) {Zn—l—g(N— 1) _?Ji’j} n (x=»)"%?, 3-9)

and that potential term is given by
m'*{cos g¢p,+cos g, + - +cos gy }. (3-10)

The 2n-th order term of the perturbative expansion of the generating functional for such a
model is calculated as

(im™)?n ) ) R
21(92"):__(2”), <{S dx(cos y¢;'+cos gé, +- - +cos g¢N)} >
— (717220 = 5"”1+fz+--~+rN
= (im") >

T Ty oy In (27'1) ! (2’2) 1. (27‘1\[)!

2rn 2r, 2rn
X < <5 dx cos g¢{) (S dx cos g¢2'> <S dx cos g¢~'> >

imlz 2n z 571 ntrt-try S
== ' dxd
< 2 ) T, T TN (rl!)z(rzl)z“'(r}\l!)z H xay

xemig | 35680 G0 =00 On b+ 35 o G =o' ) ] ).

2 TN ("1!)2"'(fN!)2

H (xl,i“xl,j)zllz()ﬁ,i_}’l,j)z/lz
X i>j X ces

IT Gey, =21, 0%
iJj

ngxdy

X <exp ig [2‘ {1 (x1,) =1 (3, i)}+"'+_:EN1 {ow(xn, 1) _¢N(yN,i>}:|>
x exp ng*{<¢;(0)>>—<{¢ (0)*>}. (3-11)

If we choose the renormalization of mass as
L MH§
m 2="n— exp — {Ke?> =<9}, (3-12)

then Eq.(3-11) is equal to (3+7). From the free boson propagator (3-9) and the potential term
(3-10) we find that the boson model with the Lagrangian

2

g sy , ,
-2”19:_“16”2 Z [—g+ (g_Zﬂ)éi,j]apqsi ¥ +m 2 Z cos 9@
0J 7

2
= _8g_n2 {ﬂ PN TDY 6¢/6¢/} +m' 3] cos gy (3-13)
i*j
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is equivalent to the fermion model of (2:1). We rescale the boson fields as

99 = V/ang/, (3-14)
to obtain
1
Ly=——7 2] (a¢,-")2—f—,, ) 3¢"0¢)" +m'* cos Vang'. (3-15)

i#j

We see that this Lagrangian is obtainable from the original fermion Lagrangian (2:1) by the
Coleman’s correspondences:

1
VbW <> 5 (0¢4)3, (3-16)
Wy <> —m" cos Jandy, (3-17)
1
Wy Ws < _ﬁ &0 by, @3- 18)

where suffix f denotes free fields for g=m=0.

§4. Discussion

We have calculated generating functional of the fermion model with n-species by mass per-
turbation and seen that it is equivalent to the boson model which is the extension of sine-Gor-
don model. As we mentioned just before, the boson Lagrangian is just obtainable from the fer-
mion Lagrangian by the Coleman’s correspondences (3-16)~(3-18) for the free massless
fields. This seems to show that these correspondences still hold in the Heisenberg picture i.e. for
g#0+m. We have pointed out, however, that the fermion interactions among different species
all vanish by the chiral transformation (2-8). Then {jj,(x)2,(»)> does not seem to be equal
to {g,p07¢1 (x) £4589¢2(y) ) for g#0. In the operator formalism, to calculate the former correla-
tion we must use the original fermion fields instead of transformed ones and split the field
products. We can see by such a splitting process that jj, get the explicit dependence on ¢;. It is an
interesting subject, therefore, how to derive the correspondences (3-16) ~ (3-18) in the path-in-
tegral formulation.

In our path-integral formulation the massive Thirring-like model is described as the system
of massless fermions interacting with massless bosons where the interaction part contains mass
parameter. While the bosonization technique may be applicable only for the charge-zero sec-
tors, it is an interesting subject to study the charged sectors, i.e. the bound states of some parti-
cles in our formulation.
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