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Abstract

Studying the system of a spin—1/2 particle and a spin—1/2 anti-particle with combinations of the Fermi-
type interactions (including the spin-spin interaction) and methods to deal with divergent integrals, we ob-
tain two JP=0" bound-state solutions and examine electromagnetic form factors of them. Main results are
the following: (I) One of the obtained solutions is a positronium-like bound state. It is obtained by taking
the cut-off momentum K to be finite, and the em form factor of it has striking features due to K. The cutting
off the momentum is found to be unfacourable for understanding available experimental data on the pion
em form factor. (II) The other of the obtained solutions is found to be a Nambu-Goldstone boson. It is
able to be obtained by taking K of K—cc and performing a renormalization operation by virtue of a form
factor in the basic equation. The em form factor of it is consistent with experimental data at large Q%'s.
This bound-state solution is very interesting.

§1. Introduction

Recently Cardarelli, Grach, Narodetskii, Pace, Salmé and Simula (CGNPSS) have
presented a theoretical pion electromagnetic (em) form factor under the presence of the God-
frey-Isgur (GI) effective g7 interaction? motivated by QCD and found to be reproducible for
masses of observed mesons. They have described the pion as a pseudoscalar S-wave meson and
solved their equation for the wave function by expanding the wave function onto a truncated
set of harmonic-oscillator-basis states and determining the coefficients of the expansion in a var-
iational principle.

The CGNPSS pion wave function lacks the manifest covariance. The CGNPSS method for
finding wave functions is not rigorous to deal with divergent integrals due to the spin-spin inter-
action in the GI g7 interaction. Therefore a doubt is thrown on the contribution from the spin-
spin interaction to the CGNPSS theoretical pion em form factor.

In this paper, we make a study which is concerned with the doubt stated above and offers a
proposal about the contribution from the spin-spin interaction to the pion wave function. Tak-
ing combinations of the five Fermi-type interactions including the spin-spin interaction in the
system of a spin—1/2 particle and a spin—1/2 anti-particle, and adopting methods to deal with
divergent integrals, we obtain two types of manifestly covariant JP=0~ bound-state solutions
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and calculate em form factors of them. The basic equation in this work is provided by starting
from the work by Katsumori® where a non-local form factor® with 4 end points is introduced
to the ladder Bethe—Salpeter equation in order to cut off the momentum, and by making a
modification of it so as to include an additional form factor concerned with a renormalization
operation.

We show the following:

(A) By choosing two specific combinations of the Fermi-type interactions, two types of
JP=0~ bound-state solutions are found. One is a positronium-like bound state, and the other is
found to be a Nambu-Goldstone boson, judging from the thing that when its rest mass is Zero,
it is, in a method in the statistical mechanics, found to be a localized zero mode in the most sta-
ble state regarded as vacuum. To obtain the former, the cut-off momentum X is taken to be
finite and the additional form factor is cleared away in the basic equation. The latter is obtained
by the basic equation itself, taking K to be K—co and performing a renormalization operation.
The additional form factor in the basic equation removes discords between this renormalizabili-
ty and the general conclusions about the Fermi-type interactions in quantum field theory. (The
additional form factor is set up so as to permit the formation of Nambu-Goldstone bosons but
forbid the scattering processes in the inhomogeneous Bethe-Salpeter equation (for the 4-point
Green function) covering our basic equation, taking the opinion that the g-g (or g-g) scatter-
ing does not contribute to hadron-hadron reactions, as suggested by successes in dual resonance
models.) (We have also the opinion that the diffraction scattering is entirely understandable by
taking account of the absorption to inelastic processes described in the dual resonance model.)
The additional form factor yields also new results which are favourable to understaning ob-
served hadron spectrum.

(B) The positronium-like bound-state solution has an intimate connection with the con-
tribution from the spin-spin interaction to the CGNPSS S-wave pion wave function. The solu-
tion is dominated by its !S;—component in the probabilistic interpretation made in the rest
frame of the bound state. Both of its 1Sy-component and the spin-spin contribution to the
CGNPSS pion wave function depend on the relative momentum p as (p2)~1/2 at large | p|’s.

The em form factor of the positronium-like bound-state solution has striking features due
to a finite cut-off momentum X. As a function of the squared momentum transfer Q2, it is con-
tinuous but not smooth. It is forced to be zero at Q%’s of Q2= Q%;sical (K, m, M) ~ (4K )2, where
m=m,=my, are the masses of the constituent particles and M is the rest mass of the bound
state.

Taking the viewpoint that the pion em form factor at large Q’s is dominated by the contri-
bution from the spin-spin interaction (i.e., the shortest-range part in the gg interaction), the
em form factor of the positronium-like solution is compared with available experimental datas
up to Q2=9.77 (GeV/c)2. To avoid its incompatibility with experiments, K must be taken to be
considerably larger than m.

(B’) The specific combination (of the Fermi-type interactions) forming the positronium-
like bound-state solution has a partner which forms a J°=0* bound-state solution.

(C) The bound-state solution as a Nambu-Goldstone boson is formed by the first term of
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the interaction with two terms gs/4{(ww) (Ww ) — (wysw) (Wysw) +1/2(@yw) (Iyty) —1/2
wysyuw) (wysyhw) } +gp 14{(0w) (wyw) — (wysw) (wysy) —1/2(@yw) (oytw) +1/2(0ysy,
w) (@ysy“w)}, each term of which is invariant under the ys-gauge transformation y—¢y,
w— e, When gy, and gy, are chosen to be gr=gs,’ (<0), this interaction is equivalent to that
in the Nambu-Jona-Lasinio model® (i.e., —go{(ww) (wy)— (wysw) x (Fysw)}(go>0)).
The solution is quite analogous to the JP=0~ bound state in the Nambu-Jona-Lasinio model.
Differences between them are only due to differences between methods for obtaining them. Espe-
cially it is noted that the solution is obtained by performing a renormalization operation, while
a cutoff of the momentum is introduced in the Nambu-Jona-Lasinio model.

The em form factor of the bound-state solution as a Nambu-Goldstone boson behaves as
cont/ (Q2)1/2 at large Q¥'s. This asympiotic behaviour is found to be consistent with available
experiments at large Q2’s. We have the best fit of x2=0.73 to experimental data® at Q2’s of Q2
=1.9 (GeV/c)? by taking the constant to be free, and we have the best fit of ¥2=0.16 to ex-
perimental data at Q%’s of 02=3.30 (GeV/c)? by rechoosing the constant.

(C") Intheinteraction in (C), the second term is a partner of the first term.*) It forms a
JP=0% bound-state solution with an overall factor (m,—my;), which does not behave like
Nambu-Goldstone bosons and is finally forbidden by the additional form factor.**)

(D) From the present study, it is conjectured that a dynamically broken ys invariance
suppresses divergences. In phenomena, PCAC (partial conservation of axial-vector current)
satisfied by the Nambu-Goldstone boson is supposed to suppress divergences. Later on (in §4),
we provide an example where the PCAC consistency condition suppresses divergences at high
energies in a phenomenological zz— 77 dual Born amplitude with masses and coupling con-
stants as dynamical quantities. Through masses and coupling constants as dynamical quanti-
ties, PCAC is able to control phenomena not only at low energies but also at high energies.

In §2, we state the ladder Bethe-Salpeter equation with combinations of the Fermi-type in-
teractions and methods to deal with divergent integrals and obtain bound-state solutions. In §3,
we calculate and examine em form factors of the obtained bound-state solutions. In §4, the
results are discussed. In the Appendices, some calculations are done.

§2. Bound-state solutions of the ladder Bethe-Salpeter equation with Fermi-type interactions

2.1. The ladder Bethe-Salpete equation with Fermi-type interactions and methods to deal with
divergent integrals
We start off with the ladder Bethe-Salpeter equation for the system of a spin—1/2 particle @
and a spin—1/2 anti-particle » with one of combinations of the Fermi-type interactions and
methods to deal with divergent integrals

*) It is noted that there is a combination (of the Fermi-type interactions) which does not form any
bound state at least in the ladder approximation.
*%) This solution (forbidden finally) is different from the JP=0% mesonic state in the Nambu-Jona-Lasi-
nio model which is an excited state due to fluctuations of the vacuum with a structure.6”
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w(xy, x7) =igf§ Se (x4, xs)SFb(xz, x4)AfF(x35 X4y Xs, X6).f (X5, X6)
X I[/(xS, XG)d4X3d4X4d4x5d4X5, (1)

where y is an amplitude, S5%(=8#(x1, x3) being defined to be
S§* (%1, x3) =S (x1—x3) ={—i/ (2n)*4} § k{7 +mp)e ) [ (—k2+m2—i5)}

with kx=k%0—kix! —kZx2—k3x3=kOx0—kx, k2= (k%) 2—k? and the mass m, of a) the Feyn-
man propagator of @, Si¥ (with the mass m; of ) the Feynman propagator of b, F the non-lo-
cal form factor with 4 end points,34 fa form factor concerned with a renormalization opera-
tion, and gz with a coupling constant grand a set of the Dirac matrices Ay comes from one of
combinations of the Fermi-type interactions.

The factor f(xs, xs) is defined as

1 .
S (x5, x6) =f (x5—x5) =mg e ks £ (k2) g%k 2)

with f(k?) satisfying
£ (k*) =0 for any k2= (k°)*— k> )

The explicit form of f(k%) depends on properties of a solution as a Nambu-Goldstone boson
and is given after a solution as a Nambu-Goldstone boson is obtained.
The non-local form factor with 4 end points is defined as

1 ;
F (X3, X4 X5, Xs) =m§ F (D3, s, Ds, Pe) € Porstpectpsstoes) gép, 4, d*psdps (4)

with the restriction
Dyt pst+ps+ps=0. (5)

Because of this restriction, it takes a form

F (X3, Xgy X5, X6) = § G(P',p', p") e WX =XV4p¥40%) gip’gip'd'p” (6)

1
(27Z)12
with X'= (mexs+mpxs) | (mat+mp), X' = (maxs+mpxe) [ (mg+mp), X =x3—x4, X"=X5—Xs
and P'=ps+ps=— (ps+pe), p'= (mpps—maps) [ (Ma+my), p"= (mpps—mgps) | (mg+mp),
and G(P’, p’, p”) in this expression is defined as

GWP,p,p)=GH{I(P, p)y {II(P',p") )k
=G{I(P', p)¥)«xGHIT(P', p") }")x @)

with
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1 for {I7(P,p)}*<K?

0 for {II(P,p)}*>K?, ®)

GH{I(P,p) k= {

where
(P, p)}*=—p*+ (Pp)*/P? 9)

and X is the cut-off momentum.?
For the Dirac matrices we use

Y=r=B, y'=paf=—y, (k=1,2,3)

with

I0 0 ot . .
B= (O ~I> , af= < o 0 > and ps(=9°) =iy’yy}y, O'uv:'[)’m J’v:‘/Z,
where I and o are the 2 X2 unit and Pauli matrices.

Introducing

_ mXtmpx, Mppy—MyPy

s X=X—X;, P=pi+p, p= (10)

m,+m, m,+m,

and writing v (x1, x;) (and w(xs, X)) to be
w(x, %) =y (x) e""’er""’XS e ™¢pp(p)d’p/ 2n)*2, (1)
(w (x5, x6) =w (x") e“i”X'ze‘iPX"§ e P gp(p"d'p"/ (2m)*?),

we have the equation in the momentum space

ma+ py my— Pa
GHI(P,p)}y?
{r( D)} )Kmaz_plz_i5 mbz__pZZ__i5

ig;
(2m)?

x U GUITP, K)P)sf (k=K ) A1k, (12)

¢p(p)=—

where p;=m,P/(ma+my) +p, py=mypP/(mg+my)—p.*) Here the relations G({IT(P,
—k) ) x=G{II(P, k))?x and f((—k)2) =f(k?) are used.

*) The equation with a combination of the Fermi-type interactions, that is,
w(x1, X,) =igf§ 8¢ (x,~x3) 8¢ (3, ——x4)Aj154(x3 —x4) v (x3, X4)
X d4X3 d4X4

takes, in the momentum space, the form
igy mg+ py my— P,
@2r)*mzr—pl2—ié myt—p2—ié

¢p(p)= S Asdp(k)d'k.
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From Eq. (12), we obtain the relation

§ GUIP, p) ) xf (0—0")D) dw(p)d'pdp’

_ _(2;‘%5 GUIT(P, p) ) xGUIT(P, ) )i f (p—p)D)
)

my+ p my— P , , T ,
e PP atpaty [ [ G, K91 -k A Oakak ]
(13)

which relates the rest mass of the bound state (given by Eq. (12)), that is, M= { (P%)2— P2)1/2
to g, m, and my,.
The ortho-normalization condition for the bound-state solution given by Eq. (12) is

S: dpgl ax {5:0 ¢ (p) dp°} {S:O ¢p(p) dp"} e PP X= 2m)* (P°/M) 5 (P —P).

(14)
We expand the amplitude ¢p(p) in terms of the eigenspinors of y¢oyo?,
1 0 0 0
4 4 0 1 0 0
¢P(p) :Z 2 ¢P’u(p)élaéub: él: ’ 62: 3 §3= ’ 642 E) (15)
t=1u=1 0 0 1 0
0 0 0 1
and introduce the combinations*)
1
sz? ($p4— B+ g2 — ), 7 (16a)
1
9a"0 = (=g + 95— '), (16b)
1
¢p”! - (—¢p' + 87+ —p™), (16¢)
1
¢PU2=i? (—p'' —dp+¢p™ +¢p*), (16d)
1
o= (B 4 — g5~ 45, (16e)
1
et == (99— 8"+ "), (16f)
1
B =i — (== =4 — ), (16¢)

*) These combinations are introduced analogously to the combinations in the work by Moseley and
Rosen.® Our notation is also analogous to their notation.
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8= G g+ gy, (16h)
pGIZ% (—@p' +p2— s+ ¢p™), (16i)
¢PGZ:1";— (— s — 2 — " —p™), (163)
BT g g ), (166)
= B g = gy, (160)
¢PAO=% (—¢P12+¢P2’+¢P34f¢P43), (16m)
B (484 g1 02), (160)
¢p'“=i% (—¢p— b + 5" +¢57), (160)
pp=— (45 Yt g2 — 2 —p™) . (16p)

In the expressions (16a) ~ (16p), the argument is omitted for simplicity.

2.2. Two types of JP=0~ bound-state solutions
The positronium-like bound-state solution
A specific combination of the Fermi-type interactions forms a JP=0~ bound-state solution
only in the case where K is taken to be finite. To obtain the solution from this combination, we
employ the equation which is given by clearing away the factor fin Eq. (1). For this combina-
tion, that is,

gfl a, a, a, a, a Vi
gﬂAﬂ———l—G (A +ps"ys =9, 9" =y, sy — 6,,°0*7°(2) (17)

the basic equation in the momentum space is

2 a+ pl my— pZ
(2 )4 G({H(P p)} )K az_plz—i5 mbz_pZZ_ia

y B GUUTP, 1)) e o) d“k:l. (12)

¢p(p) =

As Ap¢p(k) in the integrand of the R.H.S. of Eq. (12), we have

Afl ()3 (k) =—‘ ¢ (k) {51"54 2afzb+faafzb_f4"'flb} ) (18)

which characterizes Ay;.
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Equation (12") with gnAy (g >0) gives, in the case of m,=my=m, the solution

5, lgnN 5 (C))p _E
¥ (p) = s G P, ) Ps >[pp ==, (19)
o igaN .
¢V (p)—(2 )4G({H(P p)}z)KDP( )[mP 1(u=0,1,2,3), (19b)
, ) €hp . )
¢pG’(p)—(ng )4G({H(P P)}Z)KDP()) [Pp"—P°%p'](j=1,2,3), (19¢)
Fi 3 yfl ( J)P
{5 (p), $57(D), ¢5" (p)}—(2 )4G({H(P D)} )KDP(p)
x[—i{ (PP’ —P°p?), (Pp'—P%*), (P'p*—P*p")}], (194)
¢+ (p) =5 (p) =5 (p) =¢p“(p) =¢"(p) =0, (19%)
where
2 2
Dp(p)= l:pvp”+Pvp”+MT—mz+i5] [pvp”—Pvp"+M~4——m2+i5:] s (20)
<cf>,.=§ GUII(P, 1) V) () d, (21)

and N is the normalization constant.

The relation among M, m and gy is shown in Appendix A. It is noted that M depends also
on K.

The normalization condition on the obtained solution is, in the rest frame of the bound

state,
"o {” swart{]” sum dp°} =j KIRACra
+ Hl $iex(p) dp® z+§; ‘SD_O =1, (22)
where
So_o {¢7est (D) brexe (D), ¢rest(p)}dpo_ifév)3 [GHI(P, p)}*)k1p=0l (C”) plp=0
P M Mp 1
X( m ’ 2m’ 2m> (P+m?) 2 (p?+x2)’ @3
K,2=m2—A—j—z. (24)

It is noted that ¢pU' (p), ¢pV2(p), ¢pU3(p) (of ¢pU#(p)) and ¢ ( p) vanish in the rest frame
of the bound state. The expression (23) implies that M is restricted to be

(0<)M<2m. (25)

The normalization in the rest frame of the bound state



A Nambu—-Goldstone Boson from a Possible Renormalization Procedure 9

MZ
q ) p2+mz+T
1IN
c’ S —dp=1 26
2021)° [(Cplr=0 psw (pPrr?)? 4 (26)
is accomplished by choosing N as
|9f1[(c )plp=o
2(2m)?
K (K2+kK}2) 172
X MZ M2 K ’ (27)
An{Kx, <K2+m ———;) (m —7> (K*+x,*) Arctan <K—)}

when KX is taken to be finite. For the normalization, the relation G({IT(P, p)}?) xG({IT(P,
D) xk=G{II(P, p)}?)kis used. It is noted that (IT(P, p)}? takes the form {ZI(P, p) }?|p=,
=p? in the rest frame of the bound state.

In the probabilistic interpretation, we make the expansion of

" a{]” swmarH{]" sumar),

that is,

S dp {S qs:esl (P) dpo} {s‘ ¢rest (P) dpo} =w + Wz+ w3 + Wy ( = 1) (28)
with

o m=w) =3[ [ [[7 sz ],

2

[ wum+zonae . s[[ wae-wm a]

J

[r (6P + % (p)} | ]

—oco

1
= M2\ 172
M Arct K + <m _T> {C,(M* K)—2C,(M? K)}
’ 3 - I’ m!
4mK rctan <m2_]£2>1/2 m 1 m 2
4
M <m+— K
X Arctan
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M\ M
(mZ_T) M (m+T>
+— Cl(sz m)K)__——_——-—Z__CS(Mz’m)K) s

M
" 2 <K2+ 2—7)

—————— Arctan

M\ 12
2__
<m 4 >

+ ——— oM, m,K) + ——C (M, mK) | |,
m 2<K2+m2—7>

{C3(M2: ”IsK)_CthZ’ msK)} 3 (29)

where

m——

< M*\1/2
4
Cl (Mz, m, K) =1——E———Arctan

(30a)

2 ‘
CM*m,K)= 2\
8 <K2+m2—1\%>

2

(30b)

m

C 0%, m, K) = —
2 <K2+m2~"‘4—>

4m? MK
Arctan

Y M2\1/2 M2A\1/2
oo (e e 5T

M*(12m*+M?) K

AN Ve NG Arctan TTaANE |
32K {m+ <m2—~4—) }{m2+T+m (mz—T> } (mZ—T)

The equality wy=w, is due to ¢¥( p) =0, and this equality is in accordance with the vanishing
w3 X (—2) +wyx (2) =0 about the baryon number.

From the expression (29), it is found that the obtained solution is dominated by its part-
icle-anti-particle 1S;—component

+

(30c)
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oo

Ay g0 oL 14 —¢2 0
| - ar=—=|" o) - ) G

at any M of 0< M<2m, when K is taken to be an arbitrary finite value. The obtained solution is
in an intimate connection with the contribution from the spin-spin interaction to the CGNPSS
S-wave pion wave function.*) It is noted that both of the dominant component of the obtained
solution and the spin-spin contribution to the CGNPSS pion wave function depend on p as
(p?) ~1/2 at large | p|’s.

As a partner of gsAy of the expression (17), there is

4 4 gfll a. a, a., a a Y
—gnAp'=—"c (1+s P2y sy Y — 6,70 )2). (32)

By Eq. (12') with —gs'As (gs' >0) instead of g4y, one can obtain a JP=0 bound-state so-
lution, when X is taken to be finite.

If g1 and g5, are taken to be g5 =gs1', the sum of g X Ay and —gsy' Ay, possesses the ps in-
variance property. However each of gnAs and —gs'Ay’ does not possess the ps invariance
property.

The bound-state solution as a Nambu-Goldstone boson

As giArin Bq. (12), we take

9r2
9ndp= ‘Z‘ (1- Vsa)’sb + )’/za)’”b/ 2— }’sﬂyp")'sb}’”b/ 2). (33)

Then we have a JP=0~ bound-state solution by taking K to be K—co. As seen below, taking K
as K—oo is necessary for this solution.
Because one has the equality

[GHIZ(P, p) 1) k)k-e=1 (34)

in the whole domain of (P, p), [G({IT(P, k')}?) x1x—e is omitted in Eq. (12) hereafter.
However it is noted that the nonlocal form factor is retained to exist in Eq. (12) in spite of any
choice for XK. It is also noted that the existence of the non-local form factor is necessary to in-
troduce the form factor concerned with a renormalization operation.

As Ap¢p(k) in the integrand of the R.H.S. of Eq. (12) with gnAy, as gedy, we have

*) The CGNPSS (equal-time radial) wave function (in the pion rest frame) is given by Hyyw (k?) |00>=
L(mA2+ k)24 (mA2+ k) 12+ Vo dw(k?) [00> =Myuw (k2) | 005, where V,, is the GI effective gg inter-
action, M, the mass of the pion, and |00 the spin wave function. The contribution from the spin-
spin interaction to the CGNPSS wave function is obtained by taking only the spin-spin interaction in
V44 in the equation.
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1
Apdp(k) =— > [opP (k) {&1°E0 — &EL— EFEP+ EFEL}
+p” (k) &7 P — EFEL— EEP+ EFEL Y
—igp P (k) {EE +EE— &8P — EFELY
+ ¢ (k) {— &8P = ELFEL+EEL+EELY . (35)

Assuming the relation
Pl‘
gf((k—k')2)¢pu”(k)d4kd4k'=1§§f((k—k')2)¢pu°(k)d“kd4k' (36)

in the integral of the R.H.S. of Eq. (12), we obtain a solution and show the consistency of this
resultant solution with the assumed relation.

By virtue of the assumed relation (36), Eq. (12) with g Ay, gives, in the case of m,=my
=m, the solution

N (CY)p
p’<p>=—'g;)8 1() ())[ mM?1, (37a)
N (CY)p
¢P"”<p>=—'f2f;)sl(—);73)[1> (pvp i — )—p”@Pva] (4=0,1,2,3),  (37b)
. N’ (CY),
2% (p) =— lgz 3 1() (;) [2m(Pip®—P% )] (j=1,2,3), (37¢)
{65 (D), $57 (D), o572 (p)}
2 C P
e L aim(Pp - P), (PP, (PP (378)
7 () =¢5"°(p) =5 (p) =¢5**(p) =5 (p) =0 © (37e)
with
Sf((k—k')z)cﬁp"“(k)d“kd“k’
(CY)p= (38)

PO

In fact, $pU ( p) in this solution is consistent with the assumed relation (36). After we note
that the assumed relation (36) is equivalent to

PI‘
[ s wran=rs| arrae (36)
we have, from Eq. (37b),

S [Pigs™(p) — Pg,% (p) Td'p
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. P P
, p!+_ p.l__
gsz had 2 2 .
:2(27Z)7 (CU)PPOS_ dp P 2 1/2_ P 2 1/2 (le, 2, 3)'
©{eE) e {f-3) )
(39)

By rechoosing the variable p, the integral in the expression (39) is found to vanish.*) Therefore
this solution is consistent with the assumed relation (36). We note that for this solution, the
choice of K as K— oo is necessary. It is also noted that in the relation (36) and (CV) p of the ex-
pression (39), we assume

§ f (k*)d*k=a finite constant (+0), (40)
S ¢ (k) d*k=a finite constant (£0). (41)

These are assumed only for a moment. Later on, we define f(k2?) explicitly and show that these
equalities are really satisfied.

The relation among M, m and gy is given by Eq. (13) with gn A, (as grAy) . Only the rela-
tion about ¢pY( p) in the 16 relations in Eq. (13) should be examined. (When the relation
about ¢p( p) is satisfied, the other 15 relations are satisfied.) The relation about $p°(p) is

Sf((p—p’)2)¢p"°(p)d“pd“p'

g [ R (E“+E")
“n) U_wf(p”p )dAP:H_m P Eapr (B L EY)— (P}

x [S f((k—k')z)zi:p”"(k)d“kd"k':l, (42)

where

R R (3R A

By the help of the equalities (40) and (41), Eq. (42) is reduced to

gt e (E*+E?)
=G U_wf(p”p )d4p:|§_m P H B (BT E) = (P} (44)

Although the integral over p diverges in Eq. (44), this divergence is able to be dealt with by rein-

*) We take the standpoint that about the expression (39), the calculation

o t Lo t
|- ramain | o @o

is permitted.
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terpreting the coupling constant as

1 22n)? 4 S"" dp
= = p T 2. .2\1/2
g [ spian] T
e 2(E°+E?) bl dp
—Lo dp BRI T B (Po)z}—47( So P (p=1IpD. (45)

It is noted that the R.H.S. of this equation converges. In this equation, Gy, is an effective
coupling constant. In the rest frame of the bound state, we have

1 (4m>— M) M
e A = 4

and find that
1
2m>M>0 for o> (—Gy,) >E' (47)

The normalization condition on this solution is, in the rest frame of the bound state,

[l swwl+|]" sow+s| wwe|]-1
where
|7 ar), 2.0, 0200} 05
= L (1) G “
as

§ ¢ (p) dp®and ¢fZ,(p) (j=1,2,3)

vanish in the rest frame of the bound state. We have

" 9r2M[(CY)plp=0
IN"| = ‘ 202n)’

-1 [K,(m-Hc,) 12
2n*m? )

(50)

For this normalization, the equalities (40) and (41) are necessary.
We examine properties of this solution. For this purpose, we make the expansion of the ex-
pression (48)

1=w;+wy+ (Wi + W+ wis) + (Way + Wi+ wy3) (51)

with
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o (k)
m=a | a[|” o -emon dp°]2=41<:r% , (s20)
m
w=y | a[| {¢1m<p>+¢f;2t<p>}dp°]2=<i—£”—j, (52b)
2 - 4(1+%
weg | a[| whe - w]
- 56
—w=g | a[[ wne e o] =;’;—(1+’£?) (j=1,2,3). (520

The decomposition (52a)~ (52c) is made by taking the eigenstates of the baryon number. (In
detail, the particle-arti-particle state is distinguished from the anti-particle-particle state.) (The
equality wy;=wy; is due to

S o (p)dpd=0,

and this equality is in accordance with the vanishing ws;x (—2) 4wy % (2) =0 about the
baryon number.) In the case of M=0, it is found that
1 *)

W1=W2=W31=W32:W33:W41=W42=W43:'8_ s (53)
which implies, in the statistical mechanics, the probability distribution in the most stable state
regarded as vacuum. Therefore this solution is a Nambu-Goldstone boson, because any
Nambu-Goldstone boson is related to the vacuum structure through the Goldstone theorem. It
is noted that m (i.e., each of m, and m;) in this solution is regarded as the bare current mass
plus a dynamical mass acquired through a dynamically broken ys invariance in vacuum,

M= Myare+ Mgy (54)

We define f(k2) explicitly and state the validity of the equalities (40) and (41).
The explicit form of f(k2) is set up on the following assimptions:
(1) The a-b scattering is forbidden. This comes from the opinion that the quark-anti-

*) On the other hand, about the solution of Eq. (12") with g4, as gy, we have, in the case of M=0,

1 1
(Wy, Woy W3 =Wy=Wy =Wy =wp=wy) = (? s 7 s 0)

from Eq. (29).
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quark scattering (or quark-quark scattering) does not contribute to the hadron-hadron reac-

tions, as suggested by successes in dual resonance models. This is equivalent to the assumption

that f(k?) is chosen so as to provide a kind of projection operator which permits the formation

of a bound state of @ and b acquiring dynamical masses 71, 4y and m; gy but forbids the scatter-

ing of ¢ and b in the inhomogeneous Bethe-Salpeter equation (covering our basic equation).
(2) The quantity

| " swau

behaves as (mass)4.
(3) About a bound state as a Nambu-Goldstone boson,

S: f(k?)d*k

requires a renormalization operation in estimating it, as a renormalization of mgy is needed judg-
ing from the self-consistency equation for the dynamically generated mass in the Nambu-Jona-
Lasinio model. (In the model, a cut-off momentum A is introduced. However, when A is taken
as A—oo. the dynamically generated mass behaves as ~A—c0.)

(4) The factor f(k?) is characterized by (m,—mgpae) and (mp—mppare) (i.€., each of
(Mobserved — Mbare current) about @ and b).

(5) In calculating

S"—" Sk d*k,
the smallness of (m;—m,-,ba,;) (i=a, b) for the scattering is idealized as
im [ L0 im0t (55)
(6) The interaction (33) (i.e., the interaction under discussion) combining with
f 7)ok

in the system of two spin—1/2 particles is accommodated to understanding baryon spectrum
(more about this later).
We choose f(k2) as
)= : - :
- (kl) 2_k2 2 k() 2_k2 2 - k() 2___k2 2 2"
{(x%) }H][{( ) }H:l {(x%) }+1]

1
(ma—'ma, bare)4 (mb_mb, bare)4 (m_mbare)4

(56)

Then we have
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Sm JF &N dke=2n2(m— myy.)? {lim SA kdk+c(m—mye)?}t (k=\k|) 57

A= J o

with ¢ of

1 (e t
c=—\ dt
2 So (DY 2 (B D V21224 (24 1) 1V2)12]

t . 212 1 2(3t4+2)| 5¢2
X[{12+(t4+1)1/2}1/2 {1 ' (t4+1)”2}—«/?{t2+(t4+1)1/2}2{ (t*+1) <t4+1)1/2}:|’

(58)
which irﬁplies
~A* when a bound state as a Nambu-Goldstone boson appears,
S“" U d% i.e., (Mm—mpye) .is Mgy behaYing as ~A—»o0,® . (59)
— when the scattering occurs, i.e., (m—my,,) continues
to be very small, ® as idealized as (11— pze) —0.
For the bound-state solution as a Nambu-Goldstone boson,
S S(K®) d*k
of (57) is renormalized as
oo A
S S (k*)d*k=2nmy} {lim S kdk+cmdy2}
—o0 A= J g
o A¢ A¢/mgy
=27’my,’ { <S kdk—S kdk) + (S z‘dH—c) mdyz}
0 0 0
A/ mgy
—> 2717 my,t ( g tdt+c> . (60)
)

In the last expression, mqay and A¢/mqy are quantities which are identified with correspondents
from experimental informations. Also in Eq. (54), mqy is identified with the correspondent
from experiments. It is noted that mgy and A¢/mgy are related to the rest mass of the bound-
state solution through Eq. (45).

We point out two things which justify the assumption (6) stated above.

(i)  Asshown in Appendix B, the interaction (33) in the system of two spin—1/2 particles
A and B forms a JP=0~ bound-state solution (with a dominant 3P;~component), which has an
overall factor (m4—mp). It is noted that only in the case of m4=mp, this bound-state solution
does not exist.

*) The self-consistency equation for the dyanmically generated mass in the Nambu-Jona-Lasinio model
has two solutions. One is ~A for a large cut-off momentum A, and the other is a trivial solution
which corresponds to the ordinary perturbative result and is constantly zero. This motivates us to con-
ceive the factor f(k2).
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The nonexistence of this bound state only in the case of m4=mp conflicts with the approxi-
mate flavour symmetry. Therefore, it is favourable to understanding baryon spectrum to forbid
the formation of this bound state by introducing

S':c fk¥)d*k

so as to combine with this interaction (33).
(ii) Itis favourable to understanding the static SU(6) gavour-spin Symmetry to forbid this J?
=0~ bound state (in the system of 4 and B) by introducing

Em £k dve

in the combination with this interaction (33).
The validity of the equality (41) is found in connection with the renormalizability of the
coupling constant. From Egs. (37b) and (45), we have

" 972N'm*P° r (E°+E")
(2] d4 - CU d
S_m d’P (p) P (27[)7 ( )P e pEnEb{(Ea+Eb)2_ (PO)Z}
_gsz,mZPO

@ {gtin| ) =lpD. (D)

2(2n)’ Gn o (PHm)'?
i

Although the integral in the curly-bracket term diverges, this divergence is dealt with by a renor-
malization about ¢pU°( p), because the curly-bracket term is independent of p and dimension-
less.

We note that the renormalization operations stated above are harmonized with the general
conclusions about the Fermi-type interactions in quantum field theory, because

|” saau

is introduced to the inhomogeneous Bethe-Salpeter equations for the a-b and A-B systems
(covering our basic equations for a-b and A-B) so as to combine with the interaction (33) and
forbid the scattering processes through the interaction.

The interaction (33) has a partner

9 a a a, a
o Amrsy =0y 2 syt y ). (62)
In Appendix C, we examine Eq. (12), taking the partner (of the interaction (33)) as gy
Although a JP=0% bound-state solution with an overall factor (m,—m;) is formed through the
partner, this solution is forbidden by

S:o S(k®) d*k.
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This is favourable, because one need not search partners of Nambu-Goldstone bosons in ob-
served scalar mesons. We note that as shown in Appendix D, the interaction (62) (i.e., the par-
tner of the interaction (33)) combined with

§ 1 F) %

in the system of two spin—1/2 particles A4 and B forms a JP=0* bound-state solution with an
overall factor (m,-+mg), which is, in the case of M(i.e., its rest mass) =0, a localized zero
mode in the most stable state.

§3. Electromagnetic form factors of the obtained bound-state solutions

We calculate em form factors of the obtained bound-state solutions.

The virtual photon is absorbed by a or b in the scattering of the bound state and the elec-
tron. It is noted that for each of the obtained bound states, the matrix elements for the absorp-
tion of the photon by « and that by b have an identical body form factor, as the masses of @ and
b are taken to be equal. We calculate a body form factor being common to the matrix element
for the absorption of the photon by « or b.

The body form factor F(Q?) is definitely calculated, when the equal-time wave function in
the rest frame of the bound state is definitely given. This is explicitly clear in the light-cone
formalism.? We adopt this formalism. In the case of m,=m;=m, the body form factor in the
light-cone formalism is given by

e ! (MM EA—E) Mk, - (k) — k) w (k) wk’)
2y
rgn=| v, Sodé 2(1-0) E0—8) Moy 4 )
with
2:m2~!-kl2 ,zzmz—l—kl'z " 3
MO f(l_f) ’ MO é(l_é) ’ k_L —kJ.+<1 é)Q.Li (64)
szkl2+kn25 knE (5_ 1/2)M0; kIZEkJ_,2+kn12’ anE (é— 1/2)M01- (65)

(It is noted that the spin-quantization axis is chosen so as to make the plus component of the
four-momentum transfer vanish.”) The wave function w(k) in the expression (63) is defined
so as to satisfy the condition

r lewt () w()d|k| =1
0

and is able to be identified with the equal-time wave function in the rest frame of the bound
state which satisfies this condition.
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3.1 The body form factor of the positronium-like bound-state solution
We have

w () w(k") =[G{IT(P, k)}) xlp=o[GUIT(P’, k') }*) k10

(K*+x72)
2
(%

2 ) K*+K?) K
K |1+ {1—( Arctan (—)}
K? Kk, K,

X

M2
(E*+m?) (k" +m?*) +T (kK +m*)

X (66)
K+ m2) V2 (K2 +x2?) (K2 +m) 2 (k4K %)

with
1 for kK*<K?
0 for k2>K?

1for k?<K?
0 for k> K*>

[GHI(P, k) }Z)K]P=0: {
[GHII(P', k) P)kIp=0= { (67)

for the positronium-like bound-state solution.

It is found that the body form factor Frosi(Q2?) of the positronium-like bound-state solu-
tion has striking features due to a finite cut-off momentum K. These features are easily seen,
when the static body form factor

F) = arp) e ({ arpeir) =1, =02 r=12) (68)

is calculated by assuming (m/K)2<1 and (M/K)2<1. We have

1—M for 0<|g|<2K
8K a
posi ( 2) — | 2K
FRigh=qlal_ 2K 2K< | g <4K (69)
8K lql
0 for 4K<]|q]|
by using
n
—2-by for 0<y<a—b
* sin (ax) sin (bx) sin (xy) 7 n
g - > ax= S by (@=b=)* for a=b<y<a+b (10)
0

/4
7ab for a+b<y<oo(a=b>0, y>0).10

From the comparison of FPosi(Q2) at large Qs with available experimental data® up to Q2
=9.77 (GeV/c)?, it is found that the cut-off momentum K must be taken to be considerably
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larger than m(=0.3 GeV),
K/m=5. (71)
This seems to be unfavoureble for the introduction of the cut-off momentum.
3.2. The body form factor of the bound-state solution as a Nambu-Goldstone boson
As wt(k)w(k’) of the bound-state solution as a Nambu-Goldstone boson, we have

Kk, (m+x,) 4(k-k'+m?) +M?
2mm (k2+mz)”2(k2+lc,2) (k'2+m2)"2(k'2+;c,2) .

wH k) wk') = (72)
It is found that the body form factor FN—Gb(Q2?) of the bound-state solution as a Nambu-Gol-
dstone boson behaves asymptotically as

const
0? 12"
K,(m+K,))2
=)
Taking the viewpoint that the pion em form factor at large Q2’s is dominated by the contri-

bution from the spin-spin interaction (i.e., the shortest-range part in the gg interaction),
F5(Q2) is compared with available experimental data® at large Q%'s (i.e., data at 1.94,
1.99, 2.01, 3.30, 3.33, 3.99, 6.30 and 9.77 (GeV/c)?). It is found that the best fit of ¥2=0.73 is
obtained by taking (const){x,(m+x,)/m} to be free, and, if data at Qs of Q2=3.30
(GeV/c)? are adopted, the best fit of ¥2=0.16 is obtained by rechoosing (const) {x,(m+x,)/
m}.

FLo(QY) = (73)

§4. Discussion

Studying the system of a spin—1/2 particle and a spin—1/2 anti-particle with combinations
of the Fermi-type interactions (including the spin-spin interaction) and methods to deal with
divergent integrals, we have obtained two J?=0~ bound-state solutions and examined em form
factors of them. As the main results, we stress the following:

(I) The em form factor of the solution with a cut—off momentum K has striking features
due to K. Therefore it is incompatible with available experimental data on the pion em form fac-
tor.

(II) The solution as a Nambu-Goldstone boson is obtained by performing a renormaliza-
tion operation. The em form factor of it is consistent with experimental data at large Q%’s. We
suppose that in constructing the wave function for the pion, its high-momentum component
(mainly due to the spin-spin interaction in the gg interaction) can be searched in a manner with
a renormalization operation, judging from the present study.

From the present study, we conjecture that a dynamically broken ys invariance or the
PCAC satisfied by the Nambu-Goldstone boson suppresses divergences. We present an example
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where the PCAC consistency condition suppresses divergences at high energies.
Munakata, Sakamoto and the author!!) obtained a uniquely determined n—nt—n—n*
Born amplitude

e 1 - sr U
=, (183 > |:F(n a;)I'(n a)+(1_ﬁ)

= (n—l)!(2n—l+ﬁ) 2n—-3+p) I'ln—a,—a,)
><F(n—ozs)l“(n—ozt)
2Iin+1—a,—a,)

J (as=a,-(s) =ap+a's, f=2—3ap—4a'm,?)
by starting from the most general Veneziano-type amplitude

©  2n

> In—a)r(n—a) /I'k—a—a,)

n=1k=n

and imposing the restrictions (a) absence of odd daughters, (b) the local duality relations!? be-
tween the s- and #-channel resonance families Nand N' (N, N'=0, 1, 2, ---),1? and (c) the con-
vergence condition at s—co and fixed #. The showed that the obtained amplitude has good
properties, (e) it contains neither negative-norm states nor tachyons in a domain of (a/m,2, ap)
around the physical m,, ¢’ and o, (B) when m,, ' and oy are taken to be the physical values
and 1;,; is adjusted by observed p—27 width, it predicts partial decay widths of low-lying
resonances consistently with experiments, and (y) in the limit of m,=0 and o=1, it satisfies
Adler’s PCAC consistency condition. When (y) is adopted as a restriction instead of (c), one
has, in the limit of m,=0 and apy=1, a uniquely determined amplitude which converges at s—
and fixed .

Appendix A

—The relation among M, m, g5 and K in the positronium-like bound-state solution—
The relation among M, m, g and K in the positronium-like bound-state solution is given
by

_ _ﬂ_ my,+ p; my— P,
| st 1) sonpao= 225 o YT P
x U GUIIP, )P xne () , (A-1)

which is obtained from Eq. (12"). In this relation (A-1), [G({IT(P, p)}?) x]?is equivalent to
G{II(P, p)}?) k. Only the relation about ¢’/( p) in the 16 relations of (A-1) should be exa-
mined. (When the relation about ¢p’( p) is satisfied, the other 15 relations are satisfied.) In the
case of m,=my=m, we have, in the rest frame of the bound state,

o 9n S (P*+m?)'"?
2(27[)3 P2=K? (p2+Kr2) 2

(A-2)
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which implies
K K 2y 1/2 K 2y 1/2: -1 gflmz
2m>M>0 for [—{1+<—>} -Hn[ +{1+<—> } :l:] < 5
m m m 2(27)

[ e - B

Appendix B

3| >

—The JP=0~ bound-state solution in the system of two spin—1/2 particles with interaction
(33)—
The basic equation for the system of two spin—1/2 particles A and B with interaction (33)
is

30() == 2 [G(IP, P) ) e Pt o sty
<[] oI, 91 s3cnr (k) Ak | (A-4)
with
[GUITP, P)P) leee=[GHITP, KV 1, _—1. (A-5)

We have the bound-state solution in the rest frame of the bound state

°° vo ___ngNAB (my—mpg) v (my—mp)
| (6o, o2y app =2 ey 1, {1, )
XMZ{ (Eq+Eg)*— (mA+mB)2}+ (my +mB)2{(EA—EB)2_ (mA'"mB)Z} (A-6a)
v EAEB(EA+EB) <P2+KR2) ’ 2
had . . zN - .
[ o, 020 app=-LNETID () mm))
2 2__ 2__ 2\2
{{(EA——EB)Z—MZ}, {_M (EA;E(B) (ms—myg) }}
my+mpg)
X , (A-6b)
E,Ey(E4+Ep) (P2+ ’CRZ)
|t ar={" st =] atim =0 (A6
with
| 7900 atean
(CY)p= 50 , Es=(p*+mA)"?, Ez=(p*+mg)'?,
KR2={(mA+mB)2—M2}{M2— (my—mg)*} . (A7)

4aM?
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This solution has an overall factor (m4—mg). As known from Eqs. (A-6a) and (A-6b), its
rest mass M is restricted to be

|my—mg| <M<my+mg. (A-8)

In the case of M= |m,4—mp]|, its probability distribution is

1 o o 2
wy =7S dp [S {1 (D) 500 (P) } dp":] =0, (A-9a)
2 - —o0

2

1 oo
:W41+W42+W43:? ZS dp [S
J — o

W3+ Wy + Wi = 2 S dp I:S {p:, (p)— ¢rc§ét (p)} dP0]
7 J—oo e

. . 2 1
(89,(p) +6%,(p)} dp"] =, (A-9b)

when m4 and mp are taken to be |ma—mg|/(my+mp)<1(my#+mp). This distribution is
quite different from the distribution in Eq. (53). By virtue of

Sm £k,

this solution is forbidden.

Appendix C

—The JP=07 bound-state solution in the system of a spin—1/2 particle @ and a spin—1/2 anti-
particle b with interaction (62) being the partner of the bound-state solution as a Nambu-Gol-
dstone boson—

Equation (12) with interaction (62) gives the partner of the bound-state solution as a
Nambu-Goldstone boson. The explicit expression for this partner in the rest frame of the
bound state is obtained from Eqgs. (A-6a)~ (A-6c) by making the substitution

[mA, Mg, Gp2, {So_o (7(0), $™(p), $Ui(p), 69 (p), #(p), #*°(1), ¥ (D), 47 (p)> dp"}]
w rest
— [ gt ] @00, 090, #0), #(0), 67 (0), 67p),
7 (D)) rest dp"} :I .
This partner has an overall factor (m,—my). The probability distribution of this partner in the

case of M= |m,—my| and |my—my |/ (mg+myp) <1 (mz#mp) is known from Egs. (A-9a) and
(A-9b) by making the above substitution, and this partner is forbidden by virtue of

Xl F2)d.
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Appendix D

—The JP=07" bound-state solution in the system of two spin—1/2 particles A and B with interac-
tion (62)—
In the system of two spin—1/2 particles 4 and B, the interaction (62) gives the JP=0*
bound-state solution, whose explicit expression in the rest frame of the bound state in the case
of my=mp=m is obtained from Eq. (49) (and

|7 @9, 99, 91, 49(p), () st = 0,0,0,00)
by making the substitution
[m( =Em,=my), gp, {Sl (¢’'(p), 9" (p), $¥(p); ¢“(p), 7 (p), ¢'(p), +*° (),
S’} |
— [mzme=m o [ @0 00w, 7069, 6901, 8, 67,
D)t} .

The probability distribution of this solution in the case of M=0 is known from Eqs. (52a)~
(52¢) and (53) by the same substitution. In the case of M'=0, this solution is a localized zero
mode in the most stable state regarded as vacuum.

It is a remaining problem to study connections of the above soliution with properties of the
baryons.
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