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Abstract 

Studying the system of a spin-1 /2 particle and a spin-1/2 anti-particle with combinations of the Fermi-

type interactions (including the spin-spin interaction) and methods to deal with divergent integrals, we ob-

tain two JP = O- bound-state solutions and examine electromagnetic form factors of them. Main results are 

the following: (D One of the obtained solutions is a positronium-like bound state. It is obtained by taking 

the cut-off momentum K to be finite, and the em form factor of it has striking features due to K. The cutting 

off the momentum is found to be unfacourable for understanding available experimental data on the pion 

em form factor. (II) The other of the obtained solutions is found to be a Nambu-Goldstone boson. It is 

able to be obtained by taking K of K->oo and performing a renormalization operation by virtue of a form 

factor m the basrc equation. The em form factor of it is consistent with experimental data at large Q2's 

This bound-state solution is very interesting 

S1. Introduction 

Recently Cardarelli, Grach, Narodetskii, Pace, Salm~ and Simulal) (CGNPSS) have 

presented a theoretical pion electromagnetic (em) form factor under the presence of the God-

frey-Isgur (GI) effective q~ interaction2) motivated by QCD and found to be reproducible for 

masses of observed mesons. They have described the pion as a pseudoscalar S-wave meson and 

solved therr equation for the wave function by expanding the wave function onto a truncated 

set of harmomc-oscillator-basis states and determining the coefficients of the expansion in a var-

iational princrple 

The CGNPSS pion wave function lacks the manifest covariance. The CGNPSS method for 

finding wave functions is not rigorous to deal with divergent integrals due to the spin-spin inter-

action m the GI qq mteraction. Therefore a doubt is thrown on the contribution from the spin-

spm interaction to the CGNPSS theoretical pion em form factor 

In thrs paper, we make a study which is concerned with the doubt stated above and offers a 

proposal about the contribution from the spin-spin interaction to the pion wave function. Tak-

ing combmations of the five Fermi-type interactions including the spin-spin interaction in the 

system of a spin-1/2 particle and a spin-1/2 anti-particle, and adopting methods to deal with 

divergent integrals, we obtain two types of manifestly covariant JP=0- bound-state solutions 
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and calculate em form factors of them . The basic equation in this work is provided by starting 

from the work by Katsumori3) where a non-local form factor4) with 4 end points is introduced 

to the ladder Bethe-Salpeter equation in order to cut off the momentum, and by making a 

modification of it so as to include an additional form factor concerned with a renormalization 

operation 

We show the following: 

(A) By choosing two specific combinations of the Fermi-type' interactions, two types of 

JP= O- bound-state solutions are found. One is a positronium-like bound state, and the other is 

found to be a Nambu-Goldstone boson, judging from the thing that when its rest mass is zero, 

rt is, m a method in the statistical mechanics, found to be a localized zero mode in the most sta-

ble state regarded as vacuum. To obtain the former, the cut-off momentum K is taken to be 

finite and the additional form factor is cleared away in the basic equation. The latter is obtained 

by the basic equation itself, taking K to be K->oo and performing a renormalization operation 

The additional form factor in the basic equation removes discords between this renormalizabili-

ty and the general conclusions about the Fermi-type interactions in quantum field theory. (The 

additional form factor is set up so as to permit the formation of Nambu-Goldstone bosons but 

forbid the scattering processes in the inhomogeneous Bethe-Salpeter equation (for the 4-point 

Green function) covering our basic equation, taking the opinion that the q-~ (or q-q) scatter-

mg does not contribute to hadron-hadron reactions, as suggested by successes in dual resonance 

models.) (We have also the opinion that the diffraction scattering is entirely understandable by 

takmg account of the absorption to inelastic processes described in the dual resonance model.) 

The additional form factor yields also new results which are favourable to understaning ob-

served hadron spectrum 

(B) The positronium-like bound-state solution has an intimate connection with the con-

tnbution from the spin-spin interaction to the CGNPSS S-wave pion wave function. The solu-

tion is dominated by its ISo~component in the probabilistic interpretation made in the rest 

frame of the bound state. Both of its ISo~component and the spin-spin contribution to the 

CGNPSS pion wave function depend on the relative momentum p as (p2) ~1/2 at large I p I 's 

The em form factor of the positronium-like bound-state solution has striking features due 

to a fimte cut-off momentum K. As a function of the squared momentum transfer Q2, it is con-

tmuous but not smooth. It is forced to be zero at Q2,s of Q2~: Q.2*iti*al (K, m, M) ~: (4K) 2, where 

m ; ma=mb are the masses of the constituent particles and M is the rest mass of the bound 

state 

Takmg the viewpoint that the pion em form factor at large Q2,s is dominated by the contri-

bution from the spin-spin interaction (i.e., the shortest-range part in the q~ interaction) , the 

em form factor of the positronium-like solution is compared with available experimental data5) 

up to Q2= 9.77 (GeV/c) 2. To avoid its incompatibility with experiments, K must be taken to be 

considerably larger than m 

(B') The specific combination (of the Fermi-type interactions) forming the positronium-

like bound-state solution has a partner which forms a JP=0+ bound-state solution 

(O The bound-state solution as a Nambu-Goldstone boson is formed by the first term of 
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the interaction with two terms gf2/4{ (~V) (!7V) - (~y5V) (~y5V ) + 1/2 (~ypW) (~yPV) - 1/2 

(!~y5ypW) (!7y5yPW) } +gf2'/4{ (1~V) (~V) - (!~75V) (!~y5W) - 1/2(~7pW) (!~yPV) + 112 (~75yp 

V ) ( !7y5yPV) } , each term of which is invariant under the y5-gauge transformation v/->d"y5W, 

~->~d"y,. When gf2 and gf2' are chosen to be gf2=gf2' ( < O) , this interaction is equivalent to that 

in the Nambu-Jona-Lasinio model6) (i.e., -go{(1~V) (~V) - (~y5V/) x (~y5W)} (g0>0) ) 

The solution is quite analogous to the JP=0- bound state in the Nambu-Jona-Lasinio model 

Differences between them are only due to differences between methods for obtaining them . Espe-

cially it is noted that the solution is obtained by performing a renormalization operation, while 

a cutoff of the momentum is introduced in the Nambu-Jona-Lasinio model 

The em form factor of the bound-state solution as a Nambu-Goldstone boson behaves as 

cont/ (Q2) 1/2 at large Q2's. This asymptotic behaviour is found to be consistent with available 

experiments at large Q2's. We have the best fit of x2=0.73 to experimental data5) at Q2's of Q2 

>_ I .9 (GeV/c)2 by taking the constant to be free, and we have the best fit of x2=0.16 to ex-

perimental data at Q2's of Q2~3.30 (GeV/c) 2 by rechoosing the constant 

(C') In the interaction in (C) , the second term is a partner of the first term.*) It forms a 

JP=0+ bound-state solution with an overall factor (ma~mb) , which does not behave like 

Nambu-Goldstone bosons and is finally forbidden by the additional form factor.**) 

(D) From the present study, it is conjectured that a dynamically broken y5 mvariance 

suppresses divergences. In phenomena, PCAC (partial conservation of axial-vector current) 

satisfied by the Nambu-Goldstone boson is supposed to suppress divergences. Later on (in S4) , 

we provide an example where the PCAC consistency condition suppresses divergences at high 

energies in a phenomenological 7c7z:~>7z7c dual Born amplitude with masses and coupling con-

stants as dynamical quantities. Through masses and coupling constants as dynamical quanti-

ties, PCAC is able to control phenomena not only at low energies but also at high energies 

In S2, we state the ladder Bethe-Salpeter equation with combinations of the Fermi-type in-

teractions and methods to deal with divergent integrals and obtain bound-state solutions. In S3, 

we calculate and examine em form factors of the obtained bound-state solutions. In S4, the 

results are discussed. In the Appendices, some calculations are done 

S2. Bound-state solutions of the ladder Bethe-Salpeter equation with Fermi･type interactions 

2.1. The ladder Bethe-Salpete equation with Fermi-type interactions and methods to deal with 

divergen t integrals 

We start off with the ladder Bethe-Salpeter equation for the system of a spin-1/2 particle a 

and a spin-1/2 anti-particle b with one of combinations of the Fermi-type interactions and 

methods to deal with drvergent integrals 

*) 

**) 

It is noted that there is a combination (of the Fermi-type interactions) which does not form any 

bound state at least in the ladder approximation 

This solution (forbidden finally) is different from the JP= 0+ mesonic state in the Nambu-Jona-Lasi-

nio model which is an excited state due to fluctuations of the vacuum with a structure.6,7) 
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V (xl' x2 r ) =igf J SFa(xl' x3)SFb (x2, x4)AfF(x3, x4, x5' x6)f (x5' x6) 

x v(x5' x6) d4x3d4x4d4x5d4x6' (1) 
where v is an amplitude, SFa(=SFa(xl' x3) being defined to be 

r
 

lk(xl x3)/( k2+ma2~i6)} SFa (xl ' x3) = SFa (xl ~x3) = { - i/ (27z) 4} J d4k{ (iy+ma) e~ ~ -

with kx=koxo_klxl _k2x2-k3x3=koxo_kx, k2= (ko)2_k2 and the mass ma Of a) the Feyn-

man propagator of a, SFb (with the mass mb Of b) the Feynman propagator of b. F the non-lo-

cal form factor with 4 end points,3'4) f a form factor concerned with a renormalization opera-

tion, and gfAf with a coupling constant gf and a set of the Dirac matrices Af comes from one of 

combinations of the Ferrm-type interactions 

The factor f(x5, x6) is defined as 

1
 5- 6 = J f(x5, x6) f(x x ) (27c)4 e~ik(x5-x6) (2) f (k2) d4k 

with f(k2) satisfying 

f (k2) ~O for any k2= (ko) 2_k2. (3) 
The explicit form of f(k2) depends on properties of a solution as a Nambu-Goldstone boson 

and is grven after a solution as a Nambu-Goldstone boson is obtained 

The non-local form factor with 4 end points is defined as 

1
 6= J ) e l(P3x3+p4x4+psxs+p6x )d p3d p d p d p F(x3, x4, x5, x ) (27c)16 F(p3,p4, p5,p6 ~ 6 (4) 

with the restrictron 

p3 + p4 + p5 + p6 = O. (5) 
Because of this restriction, it takes a form 

1
 J , ･, F(x3,x4' x5'x6) = 12 G(P' p p") e~i{P'(x'-x )+px+p*} d P'd4p'd4p" (6) 

(27T ) 

with X'= (max3+mbx4) / (ma+mb) , X"= (max5+mbx6) / (ma+mb) , x'=x3-x4, x"=xs~x6 

and P p +p4 (p +p6) , p (m p3 m p4)/(m +mb) , P"= (mbPs~maP6) / (ma+mb) , 
and G(P', p', p") in this expression is defined as 

G(P',p',p") =G({H(P p )} {H(P p")} )K 
= G ( {H( P' , p') }2) KG ( {H(P' , p") }2) K (7) 

with 
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G({H(P p)} )K I for {H(P,p)}2~K2 
~ O for {H(P,p)}2>K2, 

where 

{H(P, p) }2= -p2+ (pp) 2/P2 

and K is the cut-off momentum 3) 

For the Drrac matrices we use 

y =y0=P, yk=Pa y (k 1 2 3) 

with 

I O O ak ( , -( =: ) - ) O -1 ak O 
and y5 ( E y5 ) ~E tyOyl y2y3 

where I and ak are the 2 x 2 unit and Pauli matrices. 

Introducing 

X=m.xl+mbx2 x x -x2, P=pl+p2, 
m. + mb ' 

and writing v (xl' x2) (and v (x5, x6) ) to be 

p:= 

'
r
 := l 12 apv ILyp' yv ' 

mbP1 ~ maP2 

(8) 

(9) 

ma + mb 

- - l-V(xl'x2):=V/(x) e iPX~~e IPX e lpxcp(p)d4P/(2:~)3/2 

(W(x5, x6) W(x") e~iPX"Ee~iPX"J e~ "cp(p") d4P"/ (27c) 3/2) 
lp"x 

(10) 

(11) 

we have the equation in the momentum space 

cp (p) = 
igf 

(27c ) 
G ({H(P, P) }2)K 

m.+ pl mb- p2 
m 2 pl2 16 mb -P22-j6 

[1 G ({H(P' k') }2)Kf ( (k- k') 2)Afcp (k) d4kd4k'] 
x 

where pl =m.p/ (m.+mb) +p, p2=mbP/ (m.+mb) -P' *) 

-k) }2)K=G({H(P, k) )2)K and f( (-k)2) =f(k2) are used. 
Here the relations 

( 1 2) 

G({H( P, 

*) The equation with a combination of the Fermi-type interactions, that is, 

J
 

= ' SFa(xl ~X3) SFb(x2-X4)Af(~4(x~ -x4) V/ (x3, x4) V(xl'x2) I9f 

takes 

X d4x3d4x4 

m the momentum space, the form 

cp (P) = l9f ma+ pl ' mb-P2 J
 

(27z ) 4 m~ - pl2~ i6 mb2 - P22 - Afcp (k) d 4k 
i6 
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( 12) , we obtain the relation 

J G ({H(P, P') }2) Kf ( (P -P') 2) cP (P) d4Pd 4P' 

=- J , 2 l9f 
(27T)8 G({H(P P)} )KG({H(P P )} )Kf((P-P')2) 

x m.+ pl m - . G({H(P, k')}2)Kf((k-k')2)Afcp(k)d4kd4k' , b P2 16m -p2 i6d4Pd4P 
ma2~P12~ ' b2 

(13) 

which relates the rest mass of the bound state (given by Eq. (12) ) , that is, M= { (Po)2_p2) 1/2 

to gf, m. and mb. 

The ortho-normalization condition for the bound-state solution given by Eq. ( 12) is 

J J : {J : } {J =
-

= dP dX o cp(p) dPo} e~' '~ cp't (p) dP l(P P)'x= (27c)3(po/M)63(P'-P) 

= = 
(14) 

We expand the amplitude cp (p) in terms of the eigenspinors of yoayob, 

1
 

O
 
1
 

~ 1= , ~2= 
cp (P) = ~ cptu (p) ~t"~ub' ~ ~= , 3 , ~4= O

 
1
 

O
 

O
 

and introduce the combinations*) 

1
 cpJ= 2 cp23+cp32-cp ) 14 (cP 

1
 cpUO 2 _ cpl4 + cp23 + c;32 _ cp41 ) = ( 
1
 U1 2 (_cpll+cp22+cp33_cp44), cp= 
1
 cpU2 i (-cp -cp22+cp33+cpd4) 11 

-2 
1
 cpU3= 2 (cpi2+cp21_cp34_cp43), 

1
 c Fl_ 2 (_cpl3+cp24_cp31+cp42), 

P-
1
 cF2 i p = 2 (_cpl3 cp24 cp31 cp42), 

(15) 

( 1 6a) 

( 16b) 

( 16c) 

( 16d) 

(16e) 

( 1 6f ) 

( 1 6g) 

*) These combinations are introduced analogously to the combinations in the work by Moseley and 

Rosen.8) Our notation is also analogous to their notation 
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1
 cpF3= 2 (cpl4+cp23+cp32+cp41) , (16h) 
1
 cpG1=2 ( cpll+cp22_cp33+cp44), (16i) 
1
 p = 2 (_cpll cp22 cp33 cp44) (16j) cG2 i 

1
 G3 2 (cpra+cp21+cp34+cp43) (16k) cp= 

1
 cpl= 2 (cpl2 cp21+cp34_cp43), (161) 
1
 cpA0= 2 (_cpl2+cp21+cp34_cp43) , (16m) 
1
 c A1_ 2 (_cpl3+cp24+cp31_cp42 (16n) )

 P-
1
 cA2 i p = 2 (_cpl3 cp24+cp31+cp42) (160) 

c A3 1 (cpl4+cp23_cp _cp41) (16P) 
P 2 

In the expressions ( 16a) - (16p) , the argument Is omitted for srmplicity 

2.2. Two types of JP=0- bound-state solutions 

The positronium-like bound-state solution 

A specific combination of the Fermi-type interactions forms a JP= O- bound-state solution 

only in the case where K is taken to be finite. To obtain the solution from this combination, we 

employ the equation which is given by clearing away the factor fin Eq. (1) . For this combina-

tion, that is, 

gf l 
y5"yp"y5byPb - ap""aP"b/2) , 

gflAfl= 16 " Pb (17) 
(1+y5"y5b-yp y -

the basrc equation m the momentum space rs 

igfl m.+ pl mb p2 cp(P)=-(27c)4G({H(P p)} )Km 2 p 16m -p22-i6 

[J " 14 J. b X G ({H(P, k) }2)KAfl cp(k) d k (12') 

As Aflcp(k) in the integrand of the R.H.S, of Eq. (12') , we have 

1
 Afl cp (k) = 2 cpJ(k) {~f~4b - ~2"~3b+ ~3"~2b - ~4"~lb} ' (18) 

which charactenzes Afl 
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Equat1on（121）w1th81ブ1λ∫1（敬1＞O）91ves，1n　the　case　of〃、＝〃わ…閉，the　so1ut1on

1・∫（ρ）劣・（帥）／・）・烏［1バ等21，

　　　　　　　勿∫11V　　　　　　　　　（0∫）P
φ・吻（ρ）＝（。、）・G（｛π（P・ρ）｝2）・。、（ρ）［”Pμ］（μ＝0・1・2・3），

　　　　　　　妙∫11V　　　　　　　　　（0J）P
φ舳）＝（。、）・G（｛∬（P・ρ）｝2）・。、（ρ）［Pケo一閉（ノ＝1・2・3）・

　　　　　　　　　　　　　　　　　　　　　　勿∫1jV　　　　　　　　　　（0∫）ア
｛φ・刑（ρ）・φ・F2（ρ）・φ・F3（ρ）｝＝（。、）・G（｛π（P・ρ）｝2）・。、（ρ）

　　×［一ゴ｛（Pケ3－p3ρ2），（P3ρ1－Pザ），（P1二ρ2－Pケ1）｝コ，

φメ（ρ）＝φP／o（ρ）＝φP■41（。ρ）＝φPλ2（一ρ）＝φPλ3（ρ）＝O，

（19a）

（19b）

（19c）

（19d）

（19e）

where

・・（ρ）一［〃W・芋閉・・1ll［〃一片グ・芋…1ll，　（・・）

（・∫）・一／・（／∬（州・）・1・∫（1）批　　　　　（・1）

and〃1s　the　norma11zat1on　constant

　　　There1at1on　among〃，㎜and即11s　shownmAppend1xA　It1s　notedthat〃depends　aIso

On　K．

　　　The　norma11zat1on　cond1t1on　on　the　obtamed　so1ut1on1s，m　the　rest　frame　of　the　bomd

State

　　　　　　／l。。φ／／l。。1l。。（ρ）φol／／l。。杏。。t（ρ）外／1。。φ［／l。。1ね。（ρ）φ02

　　　　　　　・／l。。舳）φ・2・刈1。。鮒）φ・21－1・　　（・・）

where

　　　　　！l。。舳）・1畿（ρ）・1黒t（ρ）／φ・一鉛［・（／岬）／・）κ1・一・［（・∫）・1・一・

　　　　　　・（竿簑・篶；）（、。十朋。）11。（、。十、戸）・　　　（・・）

　　　　　　　　　　　〃’2

　　　　κ、2一閉2　　　　　　　　　　　　　　　　　　　　（24）
　　　　　　　　　　　　4

It1s　noted　thatφpび1（ρ），φpσ2（ρ），φpσ3（ρ）（ofφpψ（ρ））andφp巧（ρ）van1sh　m　the　rest　frame

of　the　bound　state　The　express1on（23）1エnp11es　thatルグ1s　restr1cted　to　be

　　　　　　　　　　　　　　　　　　　　　　　　　　　（Oく）一M＜2伽．　　　　　　　　　　　　　　　　　　（25）

　　　The　norma11zat1on1n　the　rest　frame　of　the　bound　state
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9∫1N
。（。、）・［（0∫）・コ・一・

　　　　　　　　　　〃2
　　　　ρ2＋〃2＋

2
／

　　　　　　　　　　4
　　　　　　　　　　　　φ＝1

〆・K・（ρ2＋κ、2）2

（26）

1s　accomp11shed　by　choosmg　Was

　　　　　　9∫1［（0∫）。］。一。i1
　11〉’1＝

　　　　　　　　2（2π）3

・1帆（岬筈）芦（榊伽（ξ）バ （27）

when　K1s　taken　to　be且mte　For　the　norma11zat1on　the　re1at1on　G（｛∬（P，ρ）｝2）KG（｛∬（P，

ρ）｝2）K＝G（｛∬（P，ρ）｝2）Kis　used．It　is　noted　that（∬（ア，ρ）｝2takes　the　form｛∬（P，ρ）｝21ρ＝。

＝ρ2in　the　rest　frame　of　the　bound．state．

　　　In　the　probab111st1c1nterpretat1on　we　make　the　expans1on　of

／l。。φl／l。。乱t（ρ）φo／／／l。。拓t（ρ）φo／，

that　is，

／l。。φl／l。。1なt（ρ）φ・／／ ／l。。柘t（ρ）φ・／一・1・・・・・・…（一1）
（28）

with

（・1舳一・。）一÷／l。。φ［［／l。。／lねt（ρ）一1駕。（ρ）／φol、

［／l。。／1ねt（1）・舳φ・1可／1。。／舳一舳φ・12

一亭［／l。。／1豊t（ρ）・舳φ・121

1
2

1
　　　　　　　　　　　　　　　　　　　　（・・

黒一／（々・
芋）1／2

　　　　｛01（〃2，〃，K）一20。（〃2，朋，K）｝

〃

・1ド（メ）一／（、≒ゾ）
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+ C(M m K)- M(m+ 2 _C3(M2,m'K) ' m 4
 

2 ) 2 (K2+m -
4
 

M M (m 2 K - ~ ) Arctan M2 1/2 

( 2-
m 

M2 1/2 (
2
 

- ) + C (M m K)+ M (m 2 _C3(M2,m'K) ' 
4
 

4
 

2 ) 2 (K2+m -
4
 

M2 1/2 m ) {C3(M2,m'K)-C2(M2, m'K)} ' ( 2-
4
 

m 
(29) 

where 

C1 (M2, m, K) = I -

M2 1/2 m- ) 
(
2
 

4
 

C2 (M2, m, K) = 

K 

M2 

Arctan 

M2 2 ) 8 (K2+m - 4 

K 
M2 l/2 ' (m2 - ) 
4
 

(30a) 

(30b) 

m2 
C3 (M2, m, K) = 

4m 3 

M2 2 (K2+m - 4 2 ) 

Arctan 
4 {K,+m (m2 

M2K 

+
 

M2K M' */' ) }{m+(m' 
4
 

M2 ( 1 2m2 +M2) 

M' */' 

4
 

)
}
 

M2 l/2 M2 l/2 M2 ( 32K{m+(m ) 4 ) } 2- } f m2+ 4 +m ~m2-4
 

Arctan K 
M2 1/2 

m 
( 2- 4) 

(30c) 

The equality w3 = w4 is due to cUj (p) = O, and this equality is in accordance with the vanishing 

w3 X ( - 2) + w4 X (2) = O about the baryon number 

From the expression (29) , it is found that the obtained solution is dominated by its part-

icle-anti-particle ISo~component 
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1 {c14 (P) - c23 (P) } dPO 
1
 {cJ,,st (P) - cuo (p) } dP0= 

f~ = 'est r'st 
**st 

f~= 
(31) 

at any M of O <M< 2m, when K is taken to be an arbitrary finite value. The obtamed solution is 

in an intimate connection with the contribution from the spin-spm interaction to the CGNPSS 

S-wave pion wave function. *) It is noted that both of the dominant component of the obtained 

solution and the spin-spin contribution to the CGNPSS pion wave function depend on p as 

(p2) ~1/2 at large I p I 's. 

As a partner of gflAfl of the expression (17) , there is 

, gfl (1 +y5"y5b+y "yPb+y5 yp"y byPb (32) 5 - ap""aP~b/2) . -gfl'Afl = ~ 
16 

By Eq. (12') with -gfl'Afl' (gfl' >0) instead of gflAfl, one can obtain a JP=0+ bound-state so-

lution when K rs taken to be fimte 

If gfl and gfl' are taken to be gfl =gfl', the sum of gfl X Afl and - gfl'Afl' possesses the y5 in-

variance property. However each of gflAfl and -gfl'Afl' does not possess the y5 invariance 

pro perty. 

The bound-state solution as a Nambu-Goldstone boson 

As gfAf in Eq. (12) , we take 

gf 2 

= (1 y5"y5b+y"yP /2 y5"yp"y byPb/2) (33) g f 2 A f 2 4 

Then we have a JP=0- bound-state solution by taking K to be K->oo . As seen below, taking K 

as K->oo rs necessary for this solution 

Because one has the equality 

[G ( {H(P, p) }2) K]K-= = 1 (34) 

in the whole domain of (P, p) , [G({II(P, k')}2)K]K_= rs omitted in Eq. (12) hereafter 

However it is noted that the nonlocal form factor is retained to exist in Eq. (12) in spite of any 

choice for K. It is also noted that the existence of the non-local form factor is necessary to in-

troduce the form factor concerned with a renormalization operation 

As Af2cp(k) in the integrand of the R.H.S. of Eq. (12) with gf2lif2 as gfAf, we have 

*) The CGNPSS (equal-time radial) wave function (in the pion rest frame) is given by Hqqw (k2) I O0> = 

[ (mq2+k2). 1/2+ (mq2+k2) 1/2+ Vqa] w (k2) I O0> =Mqqw (k2) I O0>, where Vqq Is the GI effective qq inter-

action, Mqa the mass of the pion, and I O0> the spin wave function. The contribution from the spin-

spin interaction to the CGNPSS wave function is obtained by taking only the spm-spm mteraction m 

Vqq m the equation 
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Af2cp (k) = 
1
 2 [cpUO(k) {~la~4b_~2a~3b-~3a~2b+~4a~lb} 

+ cpUl (k) {~la~lb ~ ~2a~2b _ ~3"~3b + ~4a~4b } 

- icpU2 (k) {~l"~lb + ~2"~2b - ~3a~3b - ~4a~4b } 

+ cpU3 (k) { - ~la~2b _ ~2a~lb + ~3a~4b + ~4"~3b } I ' (35) 

Assuming the relation 

f ･ 2 '= J 
P P 

f((k-k) )cpUP(k)d4kd4k po f((k-k')2)cpUo(k)d4kd4k' (36) 

in the integral of the R.H.S. of Eq. (12) , we obtain a solution and show the consistency of this 

resultant solution with the assumed relation 

By virtue of the assumed relation (36) , Eq. (12) with gf2Af2 gives, in the case of m.=mb 

E m, the solution 

igf2N' (CU)p 

cpJ(P) = - [ - mM2] , (37a) (2lc ) 8 Dp (P) 

cpUP(p) igf2N' (CU)p rpP (p. " M2 pP(2pp )] (/1 O 1, 2, 3), (37b) 2 )- . " =~(27T)8Dp(P) L ~' P +m + 4 

cpCJ (p) = - igf2N' (CU)p [2m (PJ~o_popJ) J ( j= 1, 2, 3) , (37c) 
(27z ) 8 Dp (P) 

{cpF1 (p) , cpF2(p) , cpF3 (p) } 

igf2N' (CU)p 
= ~ (27r)8Dp(P) [~2im{(P2p3 P3p2) (P3pl Plp3) (Plp2 P2pl)}] (37d) 

cp (P) cpAO(p) cpA1(p) cpA2(p) =cpA3(p) =0 ' (37e) 
with 

(CU) p=J f ( (k- k') 2) cpvo (k) d 4kd 4k' 

Po 

In fact, cpUP (p) in this solution is consistent with the assumed relation (36) 

that the assumed relation (36) is equivalent to 

we have, from Eq. (37b) , 

P P 

J 4= c UP(k)dk po cpUo(k)d4k 

l [pjcpUo(p) -pocpUj(p) Jd4P 

(38) 

After we note 

(36') 
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_ gf2N (CU) p dP 7 P Ol:co 
~ 2 (27z ) 

P' 
p'+ 2 

P 2 1/2 f(P+ ) 2} +m 2
 

{
~
 

' PJ 
p j -

2
 

P ~2 l/2 2) ) + m2 

( j= 1, 2, 3) . 

(39) 

By rechoosing the variablep, the integral in the expression (39) is found to vanish. *) Therefore 

this solution is consistent with the assumed relation (36) . We note that for this solution the 

choice of K as K->oo is necessary. It is also noted that in the relation (36) and (CU)p Of the ex-

pression (39) , we assume 

J= f (k2)d4k=a finite constant (~0) , 

l _= cPUO (k) d 4k= a finite constant ( ~ O) 

(40) 

(41) 

These are assumed only for a moment. Later on, we define f(k2) explicitly and show that these 

equalities are really satisfied 

The relation among M, m and gf2 rs given by Eq. (13) with gf2Af2 (as gfAf) ' Only the rela-

tion about cpUO(p) in the 16 relations in Eq. (13) should be examined. (When the relation 

about cpUO (p) is satisfied, the other 15 relations are satisfied.) The relation about cpUo(p) is 

J f ( (p -p') 2) cpUO ( p) d 4Pd 4P' 

= ; [J== J J gf2m " (E"+Eb) f (P':P"') d~P' (27c ) _ dP E"Eb{ (E"+Eb) 2- (po) 2} 

x f ( (k-k')2)cpUo(k)d4kd4k' ' (42) 

where 

P 2 1/2 E"={(p+ ) +m2} , 
2
 

P 2 l/2 Eb= { (p ) +m 
2
 

(43) 

By the help of the equalities (40) and (41), Eq. (42) is reduced to 

; [J: I J: 1 - 9f2m (Ea+Eb) f (pv~,v') d4p' dp (44) ~ (27c) EaEb{ (Ea+Eb)2- (po)2} ' = = 

Although the integral over p diverges in Eq. (44) , this divergence is able to be dealt with by rein-

*) We take the standpoint that abOut the expressiOn (39) , the calculation 

J dt=ii__m~J L * 
-= (t2+a2)1/2 (t2+a2)1/2dt=0 (a~0) 

is permitted 
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terpretmg the couplmg constant as 

1
 

2 (2lr ) 7 

Gf2 9f2m2 [J f (pv:pv')d4P'] =
-" 

dP 
J
:
 

47c (p2+ m2) 1/2 

= 2 (E"+Eb ) =J dP E"Eb{ (E"+Eb)2- (po) 2} dP J
:
 

47T (p2+m2) 1/2 (p= Ip I ) . (45) 

It iS noted that the R.H.S. of this equation converges . In this equatiOn, Gj2 is an effective 

coupling constant. In the rest frame of the bound state, we have 

1 _ 47T (4m2-M2) 1/2 Arctan M (46) 
Gf2 M (4m2 - M2) 1/2 

and find that 

1
 2m >M>0 fOr oo > ( - Gf2) > . (47) 47t 

The normalization condition on this solution is, in the rest frame of the bound state 

J dP 1 2 IJ== o 1 2 cGj (p) dpo I (48) 12]:= , 

[
 
I
J
 

I
J
 

" 
=
~
 

"
-

crJest(P) dpo + _ cUO (p) dp +~] 

rest J 
rest 

-= = = 

Where 

J {cJrest(P) cUO (p) cGj (p) } dPo "
-

' rest ' rest 

= 

_ gf2N"l772M M I PJ , ) ( -, [ (CU) p]p=0 

~ 2 (277: ) 7 2m m 
1
 

(p +m2)1/2(p2+lc~) ' 
(49) 

as 

J cUj (p) dPo and cFj (p) 
c
o
_
 

rest rest 

co 

( j= 1, 2, 3) 

vamsh m the rest frame of' the bound state. We have 

IN' I - 9f2M[(CU)p]p=0 ~ )ll/2 (50) 1 K.(m+/c 

~ 2(27c)7 J ' 27c 2m3 

For this normalization, the equalities (40) and (41) are necessary 

We examme properties of this solution. For this purpose, we make the expansion of the ex-

pression (48) 

1 = wl + w2+ (w31 + w32+ w33) + (w41 + w42+ w43) (51) 

with 
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w {c.J.,t (p) -cvo (p) } dPo = ( M 2 (52a) 
2m dP **st 2

 
4 (1+K-mr) 

M2 
E J:= [J:_ 12 , 2m 

w2 {c.Jest (p) +cUo (p) } dPo = (52b) dP r*s t 
2
 

4 (1+K-mr) 

1 {cUj (p) - cGj (p) } dPo 's 1:_ [J:= 12 dP w3J 2 *est *est 

lc' rcr 

'~ J:_ [J:_ 12 m m w4i 2 dP {cUj (p) +cGj (p)}dPo = (j=1'2, 3). (52c) rest **st 
12 (1+rc_m') 

The decomposition (52a) - (52c) is made by taking the eigenstates of the baryon number. (In 

detail, the particle-arti-particle state is distinguished from the anti-particle-particle state . ) (The 

equality w3j= w4j is due to 

J cUJ (p)dPOO 
c
o
_
 

r est 

co 

and this equality is in accordance with the vanishing w3j x ( - 2) + w4j x (2) = O about the 

baryon number.) In the case of M= O, it is found that 

1 *) 
wl=w2=w31=w32=w33 w41 w42 w43-8 ' (53) 

which implies, in the statistical mechanics, the probability distribution in the most stable state 

regarded as vacuum. Therefore this solution is a Nambu-Goldstone boson, because any 

Nambu-Goldstone boson is related to the vacuum structure through the Goldstone theorem. It 

is noted that m (i.e., each of ma and mb) in this solution is regarded as the bare current mass 

plus a dynamical mass acquired through a dynamically broken y5 invariance in vacuum, 

m = mb**. + mdy. ( 54) 
We define f(k2) explicitly and state the validity of the equalities (40) and (41) 

The explicit form of f(k2) is set up on the following assimptions 

(1) The a-b scattering is forbidden. This comes from the opinion that the quark-anti-

*) On the other hand, about the solution of Eq. (12') with gflAfl as gfAf' we have, in the case of M=0, 

1 1 = = ( , (wl' w2, w31= = 2 ' 2 O w32 w33 w41 w42 w43 ) 

from Eq. (29) . 
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quark scattering (or quark-quark scattering) does not contribute to the hadron-hadron reac-

tions, as suggested by successes in dual resonance models. This is equivalent to the assumption 

that f(k2) is chosen so as to provide a kind of projection operator which permits the formation 

of a bound state of a and b acquiring dynamical masses ma,dy and mb,dy but forbids the scatter-

ing of a and b in the inhomogeneous Bethe-Salpeter equation (covering our basic equation) 

(2) The quantity 

J := f (k2) d4k 

behaves as (mass)4 

(3) About a bound state as a Nambu-Goldstone boson, 

J:= f (k2) d4k 

requrres a renormalization operation in estimating it, as a renormalization of mdy rs needed judg-

ing from the self-consistency equation for the dynamically generated mass in the Nambu-Jona-

Lasinio model. (In the model, a cut-off momentum A is introduced. However, when A is taken 

as A~~Qo. the dynamically generated mass behaves as -A->oo .) 

(4) The factor f(k2) is characterized by (ma~ma,bare) and (mb - mb,bare) (i.e., each of 

(mobserved ~ mbare current) about a and b) 

(5) In calculating 

the smallness of (mi-mi,bare) 

(6) The interaction 

J f(k2)d4k "
-

(i=a, b) for the scattering is idealized as 

lim J [f (k2) J I (mi-mibare) c(>0) d k 
o
o
_
 

5->0 co 

(33) (. . l.e the interaction under discussion) combining with 

J :_ f (k2) d4k 

(55) 

in the system of two spin-1/2 particles is accommodated to understanding baryon spectrum 

(more abOut this later) 

We chOOse f(k2) as 

2 L 4+1 = {(ko)2_k2}2 f (k ) = { (ko)2_k2}2 (56) { (kO) 2- k2 }2 4 J2 ' l[ 4 J [ (ma ~ ma' bare) + I + 1 (mb - mb, bare ) (m - mbare) 

Then we have 
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f
 

f(k2)d4k=27z:2(m-mbare)2 Iim J kdk+c(m-mbare)2} (k= Ikl) 
A-= o 

(57) 

with c of 

1= dt ( t4+ 1) 1/2[ f~( t4+ 1) 1/2+ t{ t2+ ( t4+ l) 1/2}1/2] c= 2
 

2t2 f 2 (3t4+2) + t
 

1
 

{ t2+ ( t4+ 1) 1/2}1/2 1 ( t4+ 1) l/2 ( t4+ 1) 1/2 ' f~{t2+ (t4+1)1/2}2 1 (t4+1) 

(58) 

which unplies 

-A4 when a bound state as a Nambu-Goldstone boson appears, 

J i.e., (m-mbare) is mdy behavmg as A~~oo *) (59) =
-

f (k2)d4k -> O when the scattering occurs, i.e., (m-mbare) continues 

" 
to be very small, *) as idealized as (m - mbare)~>0 

For the bound-state solution as a Nambu-Goldstone boson, 

l := f (k2) d4k 

of (57) is renormalized as 

J f(k2)d4k:=27T2mdy2 Iim k dk+cmdy 
r
A
 :

 
A->co J o 

co 

Aclmdy :=27T2mdy kdk Ackdk) + ~ 
{
 
(
J
 

t dt+c) mdy 

A'clmdy 

4 (JO ) -> 27T2lndy t dt+ c (60) 

In the last expression, mdy and A'/mdy are quantities which are identified with correspondents 

from experimental informations . Also in Eq. (54) , mdy is identified with the correspondent 

from experiments . It is noted that mdy and A'/mdy are related to the rest mass of the bound-

state solution through Eq. (45) 

We pomt out two things which justify the assumption (6) stated above 

(i) As shown in Appendix B, the interaction (33) in the system of two spin-1/2 particles 

A and B forms a JP=0- bound-state solution (with a dominant 3Po~component) , which has an 

overall factor (mA - mB) . It is noted that only in the case of mA = mB, this bound-state solution 

does not exist. 

*) The self-consistency equation for the dyanmically generated mass in the Nambu-Jona-Lasinio model 

has two solutions . One is -A for a large cut-off momentum A , and the other is~ a ~ trivial solution 

which corresponds to the ordinary perturbative result and is constantly zero . This motivates us to con-

ceive the factor f(k2) . 
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The nonexistence of this bound state only in the case of mA = mB conflicts wrth the approxi-

mate flavour symmetry. Therefore, it is favourable to understanding baryon spectrum to forbid 

the formation of this bound state by introducing 

l :_ f (k2) d4k 

so as to combine with this interaction (33) 

(ii) It is favourable to understanding the static SU(6) fiavour-spin Symmetry to forbid this JP 

= O- bound state (in the system of A and B) by introducing 

J : = f (k2) d4k 

in the combination with this interaction (33) 

The validity of the equality (41) is fOund in connection with the renormalizability of the 

coupling constant. From Eqs. (37b) and (45) , we have 

gf2N'm2po (Ea+Eb) =
-
* cpUO (p) d~,= (CU)p dp EaEb{ (Ea+Eb) 2- (po) 2} (27z: ) 7 

= 

_ gf2N'm2po I dp 
l
:
 

~ 2(27z) (CU)p Gf2+47t (p2+m2)1/2 (61) (p= Ip I ) 

Although the integral in the curly-bracket term drverges , this divergence is dealt with by a renor-

malization about cpUO (p) , because the curly-bracket term is independent of p and dimension-

less. 

We note that the renormalization operations stated above are harmonized with the general 

conclusions about the Fermi-type interactions in quantum field theory, because 

J : = f (k2) d 4k 

is introduced to the inhomogeneous Bethe-Salpeter equations for the a-b and A-B systems 

(covering our basic equations for a-b and A-B) so as to combine with the interaction (33) and 

forbid the scattering processes through the interaction 

The interaction (33) has a partner 

gf2 (1 - y5"y5b-y "7P /2+y yp"y5byPb/2) (62) 
4
 

In Appendix C, we examine Eq. (12) , taking the partner (of the interaction (33)) as gfAf 

Although a JP=0+ bound-state solution with an overall factor (m.- mb) is formed through the 

partner, this solution is forbidden by 

J_ f(k2)d4k 

= 
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This rs favourable, because one need not search partners of Nambu-Goldstone bosons m ob-

served scalar mesons. We note that as shown in Appendix D, the interaction (62) (i.e., the par-

tner of the interaction (33)) combined with 

l := f (k2) d4k 

in the system of two spin-1/2 particles A and B forms a JP=0+ bound-state solution with an 

overall factor (mA + mB) , which is, in the case of M(i.e., its rest mass) = O, a localized zero 

mode in the most stable state 

S3･ Electromagnetic form factors of the obtained bound-state solutions 

We calculate em form factors of the obtained bound-state solutions 

The virtual photon is absorbed by a or b in the scattering of the bound state and the elec-

tron. It is noted that for each of the obtained bound states, the matrix elements for the absorp-

tion of the photon by a and that by b have an identical body form factor, as the masses of a and 

b are taken to be equal. We calculate a body form factor being common to the matrix element 

for the absorption of the photon by a or b 

The body form factor F(Q2) is definitely calculated, when the equal-time wave function in 

the rest frame of the bound state is definitely given. This is explicitly clear in the light-cone 

formalism.9) We adopt this formalism. In the case of m.=mbE m, the body form factor in the 

light-cone formalism is given by 

l (MOMO') 1/2 ~(1 - ~)M02+ki ' (kLL'-kl ) wt(k) w(k') J:_ dkll d~ 

F(Q2) = 4~ (1 - ~) 47T o ~ (1 - ~)MOMO' 
(63) 

with 

m2+kl2 m2+kl'2 M02=~(1-~) ' Mo'2=~(1-~) ' ki ki+(1 ~)Qi, (64) 
k2~Ekl2+k~2, k~E(~-1/2)Mo, k'2 kl'2+k~'2, k (~ 1/2)M: (65) 

(It is noted that the spin-quantization axis is chosen so as to make the plus component of the 

four-momentum transfer vanish.9)) The wave function w (k) in the expression (63) is defined 

so as to satisfy the condition 

J: k2w+ (k) w(k) d I k I = 1 

and is able to be identified with the equal-time wave function in the rest frame of the bound 

state which satisfies this condition 
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3.1 The body form factor of the positronium-like bound-state solution 

We have 

wt (k) w(k') = [G({H(P, k) }2)K]P=0 [G ({H(P', k') }2)K]P.=0 

(K2 + K~) 

X 

X 

K3 

M2 1 + (m 2 1 (K2+K;) Arctan K 2~ ) { ( r)} 
K2 Klcr K (k2+m2) (k'2+m2) + 

M2 
4 (k'k +m) 

(k2+m2) 1/2(k2+K/) (k'2+m2) 1/2(k'2+K ) 
(66) 

with 

1 for k2~K2 
[G({H(P, k)}2)K]P=0= O for k2>K2' 

1 for k'2~K2 
[G({H(P',k')}2)K]P.=0= O for k'2>K2 (67) 

for the positronium-like bound-state solution 

It is found that the body form factor FPosi (Q2) of the positronium-like bound-state solu-

tion has strikmg features due to a finite cut-off momentum K. These features are easily seen, 

when the static body form factor 

drpst ' (r) eiq'r F' sPtosl(q2) drpst ' (r) ~ I q2~Q2 r~X/2 posl _ ' _ ' _ (68) 

is calculated by assuming (m/K)2<<1 and (M/K)2<<1. We have 

l 3lql for 0<lql<2K 
~ 8K 

F.Pt"' (*n2) = j q l 2K 
1+ for 2K< Iql<4K (69) 8K I q l 

O for 4K<Iql 
by using 

7t 

2 by for 0<y<a b 

sm (ax) sm (bx) sm (xy) dx= 
by- (a-b-y)2 for a b<y<a+b (70) x3 2

 
8
 

71 

2 ab for a+b<y<oo(a~b>0,y>0).ro) 

From the comparison ofFPosi (Q2) at large Q2's with available experimental data5) up to Q2 

= 9.77 (GeV/c) 2 it is found that the cut-off momentum K must be taken to be considerably 
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larger than m ( c:0.3 GeV) , 

K/m>_5. 

This seems to be unfavoureble for the introduction of the cut-off momentum 

(71) 

3.2. The body form factor of the bound-state solution as a Nambu-Goldstone boson 

As w+ (k) w(k') of the bound-state solution as a Nambu-Goldstone boson, we have 

K. (m + K.) 4 (k ' k ' + m2) +M2 
w (k) w(k') = 27cm (k2+m2) 1/2(k2+K~) (k'2+m2) 1/2(k'2+lc~) ' (72) 

It is found that the body form factor FN-Gb (Q2) of the bound-state solution as a Nambu-Gol-

dstone boson behaves asymptotically as 

const 
(Q2) 

~ymp Q 1/2 ' 
{K･(m+K.) 2 }

 m 
Taking the viewpoint that the pion em form factor at large Q2,s is dominated by the contri-

bution from the spin-spin interaction (i.e., the shortest-range part in the q~ interaction) , 

F*N*~ymGpb (Q2) is compared with available experimental data5) at large Q2,s (i.e., data at I .94, 

1 .99, 2.01 , 3.30, 3.33, 3.99, 6.30 and 9.77 (GeV/c)2) . It is found that the best fit of x2=0.73 is 

obtained by taking (const) {/c.(m+K.) /m} to be free, and, if data at Q2's of Q2~3.30 

(GeV/c)2 are adopted, the best fit of x2=0. 16 is obtained by rechoosing (const) {K.(m +K.) / 

m} . 

S4. Discussion 

Studying the system of a spin-1/2 particle and a spin-1 /2 anti-particle with combinations 

of the Fermi-type interactions (including the spin-spin interaction) and methods to deal with 

divergent mtegrals, we have obtained two JP= O- bound-state solutions and examined em form 

factors of them. As the main results, we stress the following 

(1) The em form factor of the solution with a cut-off momentum K has striking features 

due to K. Therefore it is incompatible with available experimental data on the pion em form fac-

tor. 

(II) The solution as a Nambu-Goldstone boson is obtained by performing a renormaliza-

tion operation. The em form factor of it is consistent with experimental data at large Q2,s. We 

suppose that m constructing the wave function for the pion, its high-momentum component 

(mainly due to the spin-spin interaction in the qq interaction) can be searched in a manner with 

a renormalization operation, judging from the present study 

From the present study, we conjecture that a dynamically broken y5 mvariance or the 

PCAC satisfied by the Nambu-Goldstone boson suppresses divergences. We present an example 
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where the PCAC consistency condition suppresses divergences at high energies 

Munakata, Sakamoto and the authorll) obtained a uniquely determined 7c~7t+_>7T 7c+ 

Born amplitude 

1 F(n - as) F(n - at ) [
 

= 
-~l' I (1 -p2) ~ F(n-as~at) + (1 -fi) n=1 (n- 1) ! (2n- I +p) (2n-3 +p) 

F(n - as)F(n - at) 
J SE X 2r(n + I - as~ at) (a ap_f(s) = a0+a's, PE2- 3a0~4a'm7r2) 

by startmg from the most general Veneziano-type amplitude 

= 2~ 
~ ~ F(n-a.)F(n -at) /F(k- a.-at) 
~=1 k=~ 

and imposing the restrictions (a) absence of odd daughters, (b) the local duality relationsra) be-

tween the s- and t-channel resonance families N and N' (N. N' = O, I , 2, ･ ･ ･) ,12) and (c) the con-

vergence condition at s~>oo and fixed t. The showed that the obtained amplitude has good 

properties, (a) it contains neither negative-norm states nor tachyons in a domain of (a'm.2, ao) 

around the physical m., a' and ao, ( P ) when m*, a' and ao are taken to be the physical values 

and A1,1 is adjusted by observed p->27c width, it predicts partial decay widths of low-lying 

resonances consistently with experiments, and (y) in the limit of mn=0 and a0= I , it satisfies 

Adler's PCAC consistency condition. When (y) is adopted as a restriction instead of (c) , one 

has , m the linut of m~ = O and ao = I , a uniquely determined amplitude which converges at s-> oo 

and fixed t 

Appendix A 

The relation among M, m , gfl and K in the positronium-like _bound-state solution 

The relation among M, m, gfl and K in the positronium-like bound-state solution is given 

by 

J , 2 I9fl [G({H(P P)}2)K]2 ma+ pl mb-P2 4 =- J , G({11(P P) } )KcP(P) d P (27c )4 ma2~P12~ i6 mb2-P~- i6 d P 

X G({H(P' k)}2)KAflcp(k)d4k ' (A' 1) 

which is obtained from Eq. (12') . In this relation (A ' 1) , [G({H(P, p) }2)K]2 is equivalent to 

G({H(P, p) }2)K. Only the relation about cpJ(p) in the 16 relations of (A' 1) should be exa-

mined. (When the relation about cpJ(P) is satisfied, the other 15 relations are satisfied.) In the 

case of ma=mbEm, we have, in the rest frame of the bound state, 

p'~K (P(p++m~:);/2 dp, = 3J _ 2 22 / 
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which implies 

K 2 1/2 2m>M>0for +{1+( ) } J] < gflm2 K ( )} [{ [
 

1+ +In 2 (27T ) 2 

m m m m 
K 2 1/2 K 2 1/2 -1 ( )} +{1+( )} J] < I + In m m 

(A ･ 3) 

APPendix B 

The JP=0- bOund-state solutiOn in the system of two spin-1 /2 particles with interaction 

(33) 

The basic equatiOn fOr the system of two spin-1/2 particles A and B With interaction (33) 
i
s
 

i9f2 mA+ pl mB+ p2 cp(p) = - (27c) 8 [G({H(P P) } )K]K-= mA2-P12~i6 mB2-P22-i6 

x [G ({H(P, k') }2)K]K_= f ( (k- k') 2)Af2cp(k) d4kd4k' (A ' 4) 

with 

[G({H(P P) }2)K]K-== [G ({H(P, k') }2)K~ = (A ' 5) K_= 1. 

We have the bound-state solution in the rest frame of the bound state 

J {cJr-t(P) cUO (p)} dp0=9f2NAB(mA-mB) [(CU ) I (mA-mB) =
~
 {,- } 1

 AB P P=0 ' rest 

1 6 (271 ) 7 M = 
x M2{ (EA +EB) 2 - (mA + mB) 2} + (mA + mB) 2{ (EA -EB) 2 - (mA -- mB) 2 } (A ' 6a) 

EAEB (EA +EB) (P2+1cR2) 

gf2NAB (mA - mB ) J
 
=
-

{cUj (p) cGj (p)} dp0=_ 7 [ (CAUB) P]P= o{ p j (mA + mB) } 
rest ' rest 8 (27c ) 

= 
{ { (EA -EB) 2-M2} , f -M2 (EA +EB)2- (mA2-mB2) 2 }

}
 

M(mA+mB) 
EAEB (EA +EB) (P2+KR2) ' 

J crlest(P) dp = cAP (p) dp0= cFj (p) dp0=0 (A'6c) =
-

~
-

"
-

rest r*st 

" = 
with 

l f ( (k- k') 2) cpUO (k) d 4kd 4k' 

(CU)p= , EA=(p2+mA2)1/2 PO 
KR2 _ { (mA + mB) 2 -M2} {M2 - (mA - mB) 2} 

4M2 

EB= (p2+ mB2) l/2 

(A ･ 7) 
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This solution has an overall factor (mA - mB) . As known from Eqs. (A ･ 6a) and (A ･ 6b) , its 

rest mass M rs restncted to be 

l mA - mB I <M< mA + mB. (A ･ 8) 
In the case of M= I mA - mB I , its probability distribution is 

w I {crJest (p) Tcvo (p) } dPo :::O 2:= J [J J2 , ~
-

=
-

dP rest 2
 = = 

1 fcUj (p) -ccj (p) } dPo]2 J [J . =-
o
Q
_
 

3:=: ~ dP w31 + w32 + w3 2 L rest rest 

J = = [
J
 
:
 

. =-
w4 +w42+w43 2 ~ dP {cUj (p) +cGj (p)} dPo 2 rest rest 

J OQ = 

(A ' 9a) 

(A ･ 9b) 

when mA and mB are taken to be I mA-mB I / (mA+mB)<<1 (mA ~mB)'. This distnbution rs 

quite different from the distribution in Eq. (53) . By virtue of 

J f(k2)d4k "
-

thrs solution rs forbidden 

Appendix C 

The JP=0+ bound-state solution in the system of a spin-1 /2 particle a and a spin-1/2 anti-

particle b with interaction (62) being the partner of the bound-state solution as a Nambu-Gol-

dstone boson 

Equation (12) with interaction (62) gives the partner of the bound-state solution as a 

Nambu-Goldstone boson. The explicit expression for this partner in the rest frame of the 

bound state is obtained from Eqs. (A ･ 6a) - (A ･ 6c) by making the substitution 

mA' mB' 9f2 (c (p) cUo(p) cUJ(p) cGJ(p) c (p) ' cAo(p) ' c~j(p) ' cFj(p) ) dPO 

**t 

[ ･, fJ: -> (c1(p) ' cAo(p) ' cAj(p) ' cFj(p) ' cJ(p) ' cUO (p) ' cUj(p) ' m*' mb' 9f2 

ccj (p) ) 'st dPo} J 

This partner has an overall factor (ma~ mb) . The probability distribution of this partner in the 

case ofM= Im.-mb I and Ima~mb I / (ma+mb)<<1 (ma~mb) is known from Eqs. (A･9a) and 

(A ･ 9b) by making the above substitution, and this partner is forbidden by virtue of 

J := f (k2) d 4k 
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　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　AρP鋤ぷx　D

－The∫P＝o＋bound－stateso1ut1onmthesystem　oftwo　spm－1／2part1c1esλand3w1thmterac－

　　tiOn（62）＿

　　　　In　the　system　of　two　sp1n－1／2part1c1es／and3，the　mteract1on（62）g1ves　the∫P＝o＋

bound－state　so1ut1on，whose　exp11c1t　express1on　m　therest　frame　ofthebound　state　mthe　case

of閉■＝柳週≡㎜1s　obta1ned　from　Eq（49）（and

∫
　oo
　　　　｛φ吻I（ρ），φ巧（ρ，φ1（ρ），φ40（ρ），φ々（ρ）｝、、、tφo＝（O，O，O，O，O））

　■oo

by　makmg　the　subst1tut1on

［朋（・榊）伽／11。。（1∫（ρ）・1・・（ρ）・舳1吻（ρ）・l1（ρ）・1・（ρ）・1一（ρ）・

一［㎜（・朋戸朋万）・・刈1。。（φ（ρ）

　　　　　　　　　　　　　　　　　　　　　　　　　　1ん（ρ））一φ・／l

φλO（1フ），φ巧（一ρ），φん（一ρ），φ⑦（ρ），φ∫（ρ），φσ0（ρ），

　　　　　　　　　　　　　　　　　　　　　　　　　　1吻（ρ））…tφ・／l

The　probab111ty　d1str1but1on　ofth1s　so1ut1on　m　the　case　of〃＝O1s　known　from　Eqs（52a）～

（52c）and（53）by　the　same　subst1tut1on　In　the　case　of〃’＝O，th1s　so1ut1on1s　a1oca11zed　zero

mode　m　the　most　stab1e　state　regarded　as　vacuum

　　　　It1s　aremam1ng　prob1emto　studycomect1ons　oftheabove　so1ut1onw1thpropert1es　ofthe

baryons．
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