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Abstract 

In a previous paper we examined the applicability of Timoshenko's bendmg theory, whrch describes 

the effect of shearing force in bending deflection, when measuring the shear modulus of wood, and found 

that it is difiioult to obtain the shear modulus by Timoshenko's theory because of the distorted shear stress 

condition around the loading point. When the deflection is measured at the point distant from the loading 

point, we thought that the shear modulus would be obtained by Tlmoshenko's theory properly. Here, we 

conducted the three-point bending tests with measuring the deflection at the midpoint between the loading 

point and a support, and examined whether Young's and shear moduli can be measured properly 

Akamatsu (Japanese red pine. Pinus denslflora D. Don) and balsa (Ochroma lagopus Sw.) were used 

for the testing materials. First the Young's modulus and the shear modulus were measured by free-free flex-

ural vibration tests. Then the three-point static bending tests with varying the depth/span ratios were simu-

lated by the finite element method' (FEM) . From the FEM analyses , the load-deflection behavior is effective-

ly described by Timoshenko's bending theory when the deflection is measured at the opposite point against 

the loading point. Finally the static bending tets were conducted with a dial gage set below the specimen to 

measure the deflection at the opposite point against the loading point, and the Young's and shear moduli 

were calculated by Timoshenko's bending equation 

From the testing results, we concluded that it is difficult to obtain the shear modulus properly by origi-

nal Timoshenko's theory even when the measured points of dflections were vanously changed, and that the 

modification of the original equation should be needed 

Key words: shear modulus, static bending test, FEM analysis, Timoshenko's bending theory, measured 

p oint . 

1. Introduction 

When measuring Young's and shear moduli of wood by three-point bending tests, the bas-

ic theory is often dependent on Timoshenko's bending theory. Young's modulus can be given 

properly by this theory, whereas shear modulus is derived as extremely small because the distort-

ed stress condition around the loading point is not considered in Timoshenko's theory. In our 
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previous paper, we modified Timoshenko's theory with the assumption that the distorted shear 

stress condition produces the extra deflection.1) We thought that this modification is needed be-

cause the defiection is measured at the loading point where the stress condition is most seriously 

distorted, and that Timoshenko's theory is applicable when the defiection is measured at the 

region out of the distorted area. In this paper , we conducted three-point bending tests by meas-

uring the deflection at the midpoint between the loading point and a support , and examined the 

feasibility of Timoshenko's bending equation for the measurement of Young's and shear modu-

li of wood. 

2. Theories 

Frgure I shows the defiected beam subjected to the load imposed at the midpoint between 

the supports. When the load P is imposed at the center of the beam with the span of /, the deflec-

tion at the point of x=x caused by the bending moment, yb, can be written as follows:2) 

P 3 2 ) :=: ( -2, yb 12Elx 41 x (1) 

where E and I are the Young's modulus and the second moment of cross-sectional area of the 

beam, respectively. When the depth/span ratio of the beam is large, the effect of the shearing 

force should be taken into account. According to Timoshenko's theory, the deflection at the 

same pomt caused by shearing force, y*, can be written as follows: 

sPx 

where G and A are the shear modulus and the cross-sectional area of the beam, respectively, 

and x is the Timoshenko's shear factor. When s is defined as the ratio of the maximiun shear 

stress to the average shear stress, it is given as I .5 for the beam with a rectangular cross section 

On the other hand, s is derived as I .2 from the calculation of strain energy.2) The shearing force 
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Fig. I . Three-point bending diagram 
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which does not distribute homogeneously in the shearing plane is leveled by this factor. The 

total flexural displacement at x=x. y, is given as follows 

3
 :=: b s::= ( l2-x2) + 

y y +y 12Elx 2GA 4
 

(3) 

When the beam has a rectangular cross section whose depth is h, Eq. (3) is transformed as fol-

lows: 

1 sh2 P y:=:12lx L¥ 4 l2-x E +G ==12Eslx ~ 4 12-x2) 
2
)
 

3
 ( 2) l2-2x 
2
 

where Es is the "apparent" Young's modulus represented as follows 

1 1 sh 2 
ES=E+G 3 2 ) ( - 2 21 2x 

(4) 

(5) 

When the deflection is measured at the loading point (x=J/2) , Eqs. (4) and (5) are represent-

ed as: 

P13 

y = 48E=1 ' (6) 
an d 

1 1 s h2 (~ E,=E+ G ~ / ) ' (7) 
Equation (7) is well-knowri as the conventional "Trmoshenko s bendmg equation" 

3. Experilnent 

3.1 Specimens 
Akamatsu (Japanese red pine, Pinus denslflora D. Don) and balsa (Ochroma lagopus 

Sw.) were used for the specimens. Specimens were conditioned at 20'C and 65~~ relative humid-

ity (RH) before and during the tests 

3.2 FEM simulation of static bending 

Static bending tests were simulated by the finite element method (FEM) to determine the 

proper points for measuring the defiection 

The program used was "MSC/NASTRAN Ver. 67", which is a library program of the 

Computer Center of The University of Tokyo. Figure 2 shows the finite element mesh and the 

boundary conditions we used. The finite elements were divided by the dimensions of I mm x 1 

mm. The Young's moduli in the longitudinal direction EL and the shear moduli GLT Were given 
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Fig. 2. Finite element mesh used for the calculations (unit: mm) 
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by the flexural vibration testing data. The Young's moduli in the tangential direction ET and the 

Pcusson's ratios VLT used in the calculations were given from a citation; ET=0.65 GPa for 

akamatsu and 0.06 GPa for balsa; vLT=0.60 for akamatsu and 0.23 for balsa.3) Supported 

pomts were variously changed as the same manner of the static bending tests. A fixed displace-

ment (0.5 mm=y*) was given at the top of the center of beam, and the nodal force at the dis-

placed point, P, was obtained. By substituting the nodal displacement and P into Eq. (1) , the 

displacement caused by the bending deflection, yb Was calculated. This yb is subtracted from the 

nodal displacement y, and the additional deflection was obtained. On the other hand, the addi-

tional deflection was calculated by substituting P into Eq. (2) . The additional deflections ob-

tained by the different procedures were compared for each nodal point, and the proper point 

for applymg Timosheneko's bending theory was determined 

3.3 Static bending tests 

Beam specimens were cut with the dimensions of 500 mm (longitudinal direction) x 30 mm 

(radial direction) x 10, 20, and 30 mm (tangential direction) . Six specimens were used for one 

test condition 

Specunen was supported by the spans varied from 130 to 480 mm at the interval of 50 mm, 

and the vertical load whose velocity was 5 mm/min was applied to the center of the longitudin-

al-radial (LR) surface with a loading head whose radius was 15 mm. The deflections were meas-

ured at the loading point and the opposite side of the loading point which was determined by 

the FEM calculations. The determined procedure is mentioned after. The deflection at the load-

mg pomt was obtamed from the moving distance of the cross head, whereas that at the opposite 

side of the loading point was measured by a dial gage set below the specimen. The load/deflec-

tions relations were recorded by a X-Y recorder 

From the linear segment of load/deflection diagrams, the apparent Young's moduli cor-

responding to the measured points of deflections were obtained. The values of E and G/s were 
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separated each other from the 1/E*-h/1 relationships by the method of least squares 

3.4 Flexural vlbration tests 

For examining the Young's moduli and shear moduli obtained by our proposal, these 

moduli were independently measured by the free-free flexural vibration test 

The test beam was suspended by two threads at the nodal positions of the free-free vibra-

tion corresponding to its resonance mode. Specimen was excited in the direction of the thick-

ness at one end by a hammer. The resonance frequencies whose mode was from Ist to 4th were 

measured by the FFT (fast frequency transform) digital signal analyzer, and the Young's modu-

lus Ev and shear modulus Gv were obtained from the Timoshenko-Goens-Hearmon method 
whose detail was described in a previous paper.4) 

4. Results and discussion 

4.1 Flexural vibration tests 

Table I shows the Young's moduli and shear moduli obtained from the vibration tests. As 

described in several previous works, these values were precise enough. Thus, we examined the 

validity of the static bending tests by comparing with those obtained by the vibration tests 

4.2 FEM calculations 

Figure 3 shows the compansons of the additional deflections calculated by the different 

procedures mentioned above. When s equals I .2, the predicted additional deflection is always 

larger than that calculated by Timoshenko's bending theory wherever the deflection is meas-

ured. On the contrary, these additional deflections rather agree with each other in the small 

depthh/span ratio range when s= I .5. In measuring the shear modulus properly, however, the 

large depth/span ratio range where the effect of shearing force is remarkable is important 

From this viewpoint, it is difficult to use the Timoshenko's equation when the deflection is meas-

ured at the top of the specrmen the large discrepancy exists between the additional deflections 

from the different procedures. On the contrary, these additional deflections agree with each 

Table I Young's and shear moduli obtained by the vibration tests and the statrc bending tests based 

on Timoshenko's bending theory (unitl: GPa) . 

Specues 

Akamatsu 
B alsa 

Vibration test 

EL" GLT 
16.5 

3.18 

1 .30 

O . 20 

Loadmg pomt 
ELL GLTL 

18.8 

2.90 

0.29 

0.05 

Oppsite of loading point 

ELB GLTB 

16.0 

2.71 

0.81 

0.08 

Notes: E and G represent the Young's modulus and shear modulus, respectively. Subscripts L and T 

represent the longitudinal and tangential directions, respectively. Superscnpt v represents the vibration 

tests, and L and B express the measured points of deflection at the static bending tests , Ioading point and 

the opposite point against the loading point, respectively-
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Fig. 3. 

0.2 

O 0.1 0.2 0.3 0.4 0.5 O 0.1 0.2 0.3 0.4 0.5 
Distance from a support/span ratio x/l Distance from a support/span ratio x/l 

Additional deflection corresponding to the distance from a support/beam length 

Notes: S and L represent a supporing point and loading point, respectively 

Legend: Solid line: FEM calculation, Dashed line: Timoshenko's bending theory (s= I .2). , Semi 

solid line: Timoshenko's bending theory (s= I .5) 

other when the deflection is calculated at the opposite side against the loading point in the large 

depth/span ratio range. This tendency is applicable for every calculation results 

Thus, we thought that Timoshenko's bending theory would be applicable when the 

Tunoshenko's shear factor equals I .5 and the deflection is measured at the point opposite 

against the loading point 

4.3 Static bending tests 

Table I also shows the Young's and shear moduli obtained by substituting I .5 into s of 
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Timoshenko's bending theory. As pointed out in the previous paper, the additional deflection is 

remarkably large at the loading point, and the shear modulus derived from the load/deflection 

at the loading point data is evaluated very small. From the FEM calculation results, we expect-

ed the applicability of Timoshenko's bending theory on the data given by the load/deflection at 

the opposite side against the loading point. However, the calculated shear modulus is about 

half of that obtained from the vibration tests. Although the additional deflection caused by the 

penetration of loading nose is reduced effectively by measuring the deflection at the bottom, the 

stress distortion that cannot be predicted by Timoshenko's theory have an influence on the 

deflection at the point far from the loading nose. Thus, we think that it is difficult to use 

Timoshenko' s bending theory wherever the deflection is measured, and the modification similar 

to that done in the previous work should be made 

4.4 Modification of Timoshenko's theory 

In our previous paper, we modified Timoshenko's theory as follows 

1 1 s' (h~2 
E. E G'I / i' 

where 

h
 

s 1 2+a I ' (9) 
When the deflection is measured at the loading point, we derived a constant value of 35 to a 

From the data obtained here, however, the value of a should be smaller than 35 when the deflec-

tion is measured at the opposite side against the loading point. Table 2 shows the Young's and 

shear moduli calculated by substituting 5 into a of Eqs. (8) and (9) when the deflection was 

measured at the opposite point. At first, we expected that the value of a was determined by the 

regressipn procedure. When a was not fixed, however, the shear modulus and a converged to 

the anomalous values 

Table 2 Young's and shear moduli calculated by the modified equ-

ations (unit: GPa) 

Measured point 

S pecies 

Loading point 

E~ G ~T 

Opposite of loading 
point 

E~ G ~T 
Akamatsu 
Balsa 

15.3 

2 . 70 

1 .25 

0.17 

15.3 

2.50 

l .24 

0.17 

Notel: E and G: See Table I . 

B: Same as in Table 1 

Subscripts L and T, and superscripts L and 
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5. Conclusion 

We exammed the feasibility of Timoshenko's bending theory on the measurement of 

Young's and shear moduli of wood 

From the results, we considered that it is difficult to evaluate the shear modulus by 

Timoshenko's theory even when the measured point was varied, and some modification should 

be made for obtaining the proper shear modulus by bending tests 

Acknowledgement: We thank Mr. Kojl Nagaoka, a graduate student of The University of 

Tokyo, for his help in conducting our experiment. A part of this research was supported by a 

Grant-in-Aid for Scientific Research (No. 07760159) from the Ministry of Education, Science 

and Culture of Japan 

1
)
 2
)
 

3
)
 4
)
 

Ref erences 

Yoshihara, H.; Kubojima, Y.; Nagaoka, K.; Ohta, M: J. Wood. Sci.. 44, 256-260 (1998) 

Timoshenko, S. P.: "Strength of materials Part I . Elementary theory and problems. 3rd Edition" D 

Van Nostrand NY 1955, p. 165-310 

Asano. I.: "Wood handbook" Asakura Shoten, Tokyo, 1982, p. 164. 

Hearmon R F. S.: Brit. J. Appl. Phys.. 9, 381-388 (1958) 


