島根大学地球資源環境学研究報告 34,59~68 ページ (2016 年 3 月) Geoscience Rept. Shimane Univ., 34, p.59~68 (2016)

新潟県新発田市~岩船郡関川村に分布する 中部中新統七谷層・寺泊層黒色泥岩の炭化水素ポテンシャル

三瓶 良和*・笹川 優**

Hydrocarbon potential of Middle Miocene black mudstones of Nanatani and Teradomari Formations from Shibata city and Sekikawa village, Iwafune-gun, Niigata prefecture, Japan

Yoshikazu Sampei* and Yu Sasagawa**

Abstract

Shibata and Iwafune district of northeastern Niigata prefecture is one of the main Japanese oil/gas fields. However, the source rock distribution and hydrocarbon generation potential are not necessarily known, because this field is located at marginal area of the Niigata oil/gas fields. We performed geological route-map survey and collected 21 argillaceous black color rock samples from the Middle Miocene Nanatani and Teradomari Formations deposited in the northeastern Niitaga basins. CHNS elemental and Rock-Eval analyses were performed on these black mudstones. The Teradomari Formation showed high potential of hydrocarbon generation (TOC=0.65-3.4%, S2=0.2-5.8 mgHC/g) and planktonic origin with some inputs of land plant fragments. On the other hand, the Nanatani Formation showed medium to low potential of hydrocarbon generation (TOC=0.3-3.2%, S2=0.3-1.4 mgHC/g) and planktonic origin with abundant higher plants. HI values have a correlation with TOC in the Teradomari Formation C/S ratio showed that the Teradomari Formation deposited in anoxic to oxygen poor environment and the Nanatani Formation showed immature zone for oil/gas generation.

Key words: Niigata oil field, Nanatani and Teradomari Formations, black mudstone, TOC, S2, HI

はじめに

新潟地域では全域で油ガス田が多く分布し、その根源岩は 中部中新統の七谷層と下部寺泊層の層準に堆積したことが知 られている。新潟油田地域北東部の沖合では、岩船沖油田の ガスコンデンセート貯留層が油層に比べ浅い層準の鮮新統西 山層に存在することが知られており、その要因は油貯留層の 沈降ではなくガスコンデンセートが深部から直接移動しトラッ プされたものと解釈されている(加藤, 1993;金子, 1994). また同地域では陸域でも油ガスが産出しており、や蒲原郡中 条地域一帯は日本でも有数の油田地帯となっている(金子, 1994).しかしながら、中蒲原郡は新潟油田地帯の北縁部に位 置しているため、根源岩層の炭化水素ポテンシャルとその層 位変化は必ずしも明らかにされていない.新潟油田地域の油・ コンデンセートについては、鈴木ほか(1987)がバイオマー カーを用いて熟成度と一次移動の時期を明らかにしており、ま た,新潟地域の広域的なポテンシャル根源岩の石油地質学的 特質については,鈴木ほか(1995)が石油生成活性化エネル ギー等を用いて明らかにしているが,新発苗市〜岩鹬郡にお けるポテンシャル根源岩の Rock Eval 分析は行われていない.

したがって,本研究では新潟地域北東部新発田市~岩船郡 関川村に分布する七谷層と寺泊層に対比される泥質岩につい て,代表的な2ルートを選定して岩相分布を明らかにしたう えで,根源岩ポテンシャルの層位変化を明らかにした.

地質概説

1 七谷層

七谷層は、新潟油田地域中央部の七谷-五十嵐川地域の中 部中新統の下部層に命名されたものであり、本研究地域周辺 では岩船地域の日倉山層、津川-三川地域の天満層および櫛 形山地地域の下関層に対比されるが(小林・立石,1992)、 新潟油田地域根源岩の層準名として、ここでは七谷層と呼ぶ (土谷ほか(1999)に従った). 層理の発達した海成の暗灰色泥 岩や黒色硬質泥岩からなり、酸性および塩基性の火砕岩類を 挟む.下部浅海から半深海の堆積物であり、海域は暖流の影 響を受けていたと考えられている(米谷・井上,1981). 堆積 時代は約 16-14 Ma とされている(小林・立石,1992).

^{*} 島根大学大学院総合理工学研究科 Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan

^{***} 島根大学総合理工学部(現在の所属 JA 新潟) Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan

第1図 東部ルート(新潟県岩船郡関川村幾地川)の地質ルートマップ(国土地理院2万5千分の一地形図を使用). 黒色の細い実線は地層境界線(土谷ほか, 1999に基づく).

2 寺泊層

寺泊層は、新潟油田地域中南部の西山地域の中部中新統の 中~上部層に命名されたものであり、本研究地域周辺では津 川-三川地域の野村層および櫛形山地地域の内須川層の中~ 下部に対比されるが(津川グリーンタフ団体研究グループ、 1979;小林・立石、1992)、新潟油田地域新生界時階区分に よりここでは寺泊層と呼ぶ(土谷ほか(1999)に従った).海 成の暗灰色泥岩や黒色硬質泥岩からなり、一部に酸性および 塩基性の火砕岩類のほか安山岩質火砕岩を伴う.海域は広く CCD 以下の深海になったとされる(小林・立石、1992).寺 泊階は、下部が14-10 Ma 頃、上部が10-7 Ma 頃としてまとめ られている(小林・立石、1992).

3 椎谷層

椎谷層は、新潟油田地域柏崎市椎谷岬付近の上部中新統に 命名されたものであり、一般に下位の寺泊層を整合に覆うが、 新潟油田地域の東縁部では不整合関係にあるとされ(小林・ 立石、1992)、北蒲原郡中条町平木田ガス田で不整合が確認 されている(加藤・片平、1968).主に砂岩泥岩互層からな るタービダイト性の半深海~深海成層である、堆積年代は、 加藤ほか(2009)では珪藻化石によって 6.4-5.5 Ma としてい る.本調査地域では第1図の 07082918 地点において、土谷ほ か(1999)の地質境界線および低い固結度に基づいて椎谷層 と判断し、分析対象から除いている.

4 調査ルートの岩相記載

本研究では、東側ルートを新潟県北蒲原郡黒川村から岩船 郡関川村へ流れる幾地川沿いとし、西側ルートを新発田市小国 谷および胎内市関沢としてルート地質調査を行った.地層区分は20万分の1の地質図「村上」(土谷ほか, 1999)に従った.

東ルートでは、地点 07082901~07082910 は七谷層,地点 07082911~070829017 は寺泊層の分布域である(第1図).地 点 07082901~07082904 (金俣地域の大石川流域)の泥質岩は 塊状無層理で暗灰色~黒色を呈し、地点 07082910 の地点ま で岩相変化はほとんどない、一方,寺泊層の地点 07082911~ 07082917 の露頭では、粘土質岩とシルト質岩の互層であり、 全般に多孔質の珪藻質泥岩である、この岩相の境界部と土谷 ほか(1999)の地質図の地質境界線は一致した、

西部ルートは、東部ルートから西へおよそ10km離れた カーディナルゴルフ場周辺の関沢〜小国谷地域である。全般 に暗灰色泥岩が卓越し、07090302地点の七谷層の泥岩では微 かな油臭を確認した。以下に第1図の露頭番号(試料番号) 地点の露頭状況と岩相等を略記する。各露頭番号地点では、 分析用の泥岩試料を1~2試料採取した。採取にあたっては表 面約5~10 cmの風化部を取り除いた。

(1) 七谷層

- (東部ルートの試料番号と岩相等の記載)
 - 07082901:本調査地域の最下部であり,茶褐色の礫岩から なる. 礫径は 10 cm 程度の亜角礫. 層厚約 3~ 4 m である.
 - 07082902: 暗灰色シルト質泥岩. 川の対岸縁から川底にか けて露出している.
 - 07082903: 黒色度の高い暗灰色シルト質泥岩で,細かい炭 質物が含まれる.風化度の低い露頭である.層 厚3m以上で,他の露頭に比べて著しく硬質で あり,貫入岩による影響が推察される.

第2図 西部ルート(新潟県新発田市関沢)の地質ルートマップ(国土地理 院2万5千分の一地形図を使用). 黒色の細い実線は地層境界線,太い実線は断層(土谷ほか,1999に基づく).

- 07082904:黒色泥岩. 層厚は約5m以上である.
- 07082905:暗灰色シルト岩質泥岩. 茶褐色に変色し非常に 風化している. 道沿いに 20m ほど連続する露頭 であり、均質な泥岩が続く.
- 07082906: 暗灰色凝灰質泥岩. 層厚は8m以上である.
- 07082907:暗灰色シルト質泥岩.細かい炭質物が認められ る.川の縁に露出しており、5mほど離れたと ころに流紋岩質凝灰岩が認められた.
- 07082908:暗灰色の塊状シルト質泥岩. 鱗片状風化が顕著 である. 層厚は1m以上である. 上下に凝灰質 泥岩の薄い層を挟む.
- 07082909:流紋岩質凝灰岩. 白色を呈し, 層厚は2m以上 である.
- 07082910:暗灰色シルト質泥岩.
- (西部ルートの試料番号と岩相等の記載)
- 07090301:川底に黒色頁岩が露出.
- 07090302-2,3: 灰色泥岩であり,表面は風化が進んでいる. 新鮮な岩石部分は微かに油臭を発した. 層厚は 1 m 以上である.
- 07090401:暗灰色泥岩. 表面の風化は著しく, 土壌粘土化 が進んでいる.
- 07090402:灰色泥岩. 表面の風化は著しく, 土壌粘土化が 進んでいる.
- 07090403-1,2: 暗灰色泥岩(第4図). 層厚は1m以上である. 表面の風化は著しく,土壌粘土化が進んでいる.

(2) 寺泊層

(東部ルートの試料番号と岩相等の記載)

- 07082911-07082913. 暗灰色塊状泥岩(第3図). 07082912 の15 cm ほどは粘土質であり、やや黒色度が高 かった.
- 07082912:07082911 と 07082913 に挟まれた黒色頁岩. 層 厚は薄く 15 cm 程度である.
- 07082913: 暗灰色泥岩. 塊状無層理. 層厚は6m以上である.
- 07082914: 暗灰色珪藻質泥岩(第3図). 層厚は8m以上 である.風化した部分は白色で比重が非常に小 さい.乾燥した灰色〜白色の岩片を舐めると舌 が吸い付き,多孔質である.
- 07082915:暗灰色珪藻質泥岩.風化した部分は白色で比重 が非常に小さい. 舐めると舌が吸い付き,多孔 質である.
- 07082916:黒色泥岩.塊状無層理.風化が進んでおり表面 は白色化.
- 07082917:黒色泥岩.風化した部分は白色で比重が小さく, 板状にはがれ易い. 舐めると舌が吸い付き,多 孔質である.層厚は1.5 m以上である.
- 07082918: 白色の細粒~中粒砂岩である. 20 万分の1 の地 質図幅「村上」(土谷ほか, 1999) および卓越し た砂岩層が厚く継続することから,本層は椎谷 層と判断した.
- (西部ルートの試料番号と岩相等の記載)
- 07090404:灰色泥岩. 表面の風化が著しい.
- 07090405-light:明灰色で,表面の乾燥部は比重が小さい (第4図).
- 07090405-gray:暗灰色で柔らかく, 層厚は 1.5 m 以上である (第4図).

第3図 東部ルート(新潟県岩船郡関川村幾地川) の代表的露頭の泥岩相.

- 07090405-black: 乱堆積状の黒色泥岩. 層厚は数 cm~10 cm 程度で 07090405-light と 07090405-gray に挟まれ ている(第4図).
- 07090406:暗灰色泥岩. 川底に露出しており,風化が進ん でいる.

分析方法

1 岩石試料の粉末化

分析試料は、七谷層泥質岩 11 試料, 寺泊層泥質岩 10 試料 の計 21 試料である.

岩石試料を1週間以上室温下で風燥させた後に,各試料から直径5cm程度の岩石を3個程度分取し,金ブラシを用いて岩石表面に付着している風化部分,苔などを取り除いた. これをエタノール約200ml中で濯ぎ岩石表面のフタル酸エステル等(ビニール袋等からの汚染物)を除去した.乾燥後,ジョークラッシャーを用いて粗粉砕し,16メッシュ以下の約20gを測り取り,自動メノウ乳鉢を用いて約45分間すりつぶし,約200メッシュ以下の均質な粉末試料とした.

2 CHNS 元素分析

粉末試料の約10 mg を銀コンテナに秤量し,1M 塩酸をス ポイトで2~3 滴滴下し,含まれている炭酸塩を除去した. 110℃ホットプレート上で約45分乾燥させた後,スズコンテ ナに入れて封入して丸め,FISONS EA1108 で分析した.標準

第4図 西部ルート(新潟県新発田市関沢)の代 表的露頭の泥岩相.

試料には BBOT を用い, 5 点検量線法を用いた.

3 Rock-Eval 分析

標準試料 Standard (160000) と粉末試料を各々約 100 mg ず つ専用のステンレスコンテナに秤量し, Rock-Eval II を用いて He 雰囲気下で熱分解分析を行った.分析は Standard, Blank, 試料の順で行った.最初の 300℃一定加熱で生じる炭化水素 ピーク S1 (mgHC/g) はビチューメン (フリーの炭化水素類) 起源であり,続いて 25℃/min.で 600℃まで昇温加熱して得 られる炭化水素ピーク S2 (mgHC/g) はケロジェンからの熱 分解生成炭化水素類起源である.Tmax (℃) は S2 がピーク となる加熱温度を示す.水素指数 HI (mgHC/gC) は, S2 を TOC で除して計算した.

分析結果

1 CHNS 元素分析

(1) TOC 濃度(%)

TOC 濃度(Total Organic Carbon content: 岩石乾燥試料中 の全有機炭素の重量%)は一般に最も基礎的かつ重要な石 油根源岩指標および古環境指標である(Peters, 1986; Peters and Moldwan, 1993). 七谷層では0.26~3.2%,寺泊層では 0.65~3.4%の幅広い値を示した(第1表). 七谷層の平均値 は0.91%,寺泊層の平均値は1.7%である.地域別に見ると, 東部ルート七谷層は0.26~3.2%(平均1.1%),西部ルート七

第1表 東部ルート (新潟県岩船郡関川村幾地川) および西部ルート (新潟県新発田市関沢) における七谷層および 寺泊層の有機炭素,全窒素,全イオウ濃度および Rock Eval 分析結果. HI*=((S1+S2)/TOC)×100

No.	Sample Name	地層名	TOC	TN	TS	C/N	C/S	S1	S2	S1+S2	HI	HI*	Tmax	各ルートで
			(%)	(%)	(%)	(wt ratio)	(wt ratio)	(mgHC/gRock)	(mgHC/gRock)	(mgHC/gRock)	(mgHC/gTOC)	(mgHC/gTOC)	(°C)	の層位位 置(m)
(東音	ポルート(幾地川ル	/ート))												,
1	07082917	Teradomari F.	2.43	0.156	1.51	15.6	1.6	1.25	5.79	7.04	238	290	386	825
2	07082915	Teradomari F.	1.91	0.170	1.58	11.2	1.2	1.46	4.17	5.63	219	295	383	705
3	07082914	Teradomari F.	1.87	0.127	1.49	14.7	1.2	1.39	3.64	5.03	195	269	379	702
4	07082913	Teradomari F.	1.43	0.113	1.46	12.7	1.0	0.54	1.93	2.47	135	172	382	633
5	07082912	Teradomari F.	2.14	0.141	1.02	15.2	2.1	0.52	3.02	3.54	141	165	388	633
6	07082911	Teradomari F.	1.41	0.122	1.17	11.6	1.2	0.61	2.34	2.95	166	209	383	633
7	07082910	Nanatani F.	0.79	0.093	2.04	8.5	0.4	0.16	0.71	0.87	90	110	399	363
8	07082908	Nanatani F.	0.74	0.083	1.92	8.9	0.4	0.23	0.67	0.9	91	122	396	357
9	07082907	Nanatani F.	3.19	0.051	0.72	62.4	4.4	0.06	0.37	0.43	12	13	407	323
10	07082906	Nanatani F.	0.51	0.066	0.38	7.6	1.3	0.07	0.4	0.47	79	93	417	217
11	07082905	Nanatani F.	0.26	0.046	0.00	5.6	-	0.09	0.05	0.14	19	54	420	189
12	07082904	Nanatani F.	0.56	0.021	0.04	27.3	15.3	0.06	0.03	0.09	5	16	368	37
13 (क्रा	07082903	Nanatani F.	1.35	0.034	0.02	39.7	76.6	0.06	0.02	0.08	1	6	480	20
(四)	の7000405blaak	Taradamari E	2 4 2	0 271	1.41	12.7	2.4	1.06	5.01	7 77	160	226	400	715
14	0709040501ack	Teradomari F	0.71	0.271	0.47	12.7	2.4	0.31	0.27	0.58	109	220	400	715
15	07090405gray	Teradomari F.	0.71	0.075	0.47	9.5	1.5	0.31	0.27	0.38	24	62	410	715
10	07090403fight	Teradomari F.	0.05	0.084	0.08	7.0	0.5	0.22	0.22	0.44	27	07	410	715
17	07090404	reladollian r.	0.08	0.078	0.58	0.7	1.0	0.5	0.25	0.55	57	01	400	123
18	07090403-2	Nanatani F.	0.70	0.075	0.82	9.4	0.9	0.07	1.1	1.17	157	167	420	481
19	07090403-1	Nanatani F.	0.71	0.071	0.87	10.0	0.8	0.07	1.11	1.18	157	167	422	481
20	07090302-3	Nanatani F.	0.55	0.102	0.58	5.3	0.9	0.09	0.74	0.83	135	152	419	465
21	07090302-2	Nanatani F.	0.63	0.112	0.65	5.6	1.0	0.08	0.83	0.91	131	144	418	465
	平均值	東部ルート寺泊層	1.86	0.138	1.37	13.5	1.4	0.96	3.48	4.44	182	234	384	
		東部ルート七谷層	1.06	0.056	0.73	22.9	-	0.10	0.32	0.43	42	.59	412	
		西部ルート寺泊層	1.37	0.127	0.58	9.7	3.6	0.70	1.64	2.34	69	114	405	
		西部ルート七谷層	0.65	0.090	0.73	7.6	0.9	0.08	0.95	1.02	145	157	420	
		人主治屋	1.67	0.124	1.00	12.0	2.2	0.00	0.74	2.00	127	174	202	
		全守汨層 ム上公園	1.6/	0.134	1.06	12.0	2.3	0.86	2.74	3.60	13/	1/4	392	
		王七台眉	0.91	0.069	0.73	17.5	-	0.09	0.55	0.64	80	95	415	
		東部寺泊max	2.43	0.170	1.58	15.6	2.1	1.46	5.79	7.04	238	295	388	
		東部寺泊min	1.41	0.113	1.02	11.2	1.0	0.52	1.93	2.47	135	165	379	
		西部寺泊max	3.43	0.271	1.41	12.7	8.5	1.96	5.81	7.77	169	226	410	
		西部寺泊min	0.65	0.075	0.08	7.8	1.5	0.22	0.22	0.44	34	67	400	
		土沁	2.42	0.271	1.50	15.0	0.5	1.07	5.01		220	205	410	
		寸泪max 土泊	3.43	0.271	1.58	15.6	8.5	1.96	5.81	1.//	238	295	410	
		寸泪min	0.65	0.075	0.08	7.8	1.0	0.22	0.22	0.44	34	67	379	
		東部七谷max	3.19	0.093	2.04	62.4	76.6	0.23	0.71	0.90	91	122	480	
		東部七谷min	0.26	0.021	0.00	5.6	0.4	0.06	0.02	0.08	1	6	368	
		西部七谷max	0.71	0.112	0.87	10.0	1.0	0.09	1.11	1.18	157	167	422	
		西部七谷min	0.55	0.071	0.58	5.3	0.8	0.07	0.74	0.83	131	144	418	
		七谷max	3 19	0.112	2.04	62.4	76.6	0.23	1.11	1 18	157	167	480	
		七谷min	0.26	0.021	0.00	5.3	0.4	0.06	0.02	0.08	1	6	368	

谷層は0.55~0.71%(平均0.65%),東部ルート寺泊層は1.4 ~2.4%(平均1.9%),西部ルート寺泊層は0.65~3.4%(平均 1.4%)である.寺泊層のほうが七谷層よりも全体的に高い値 を示し,西部ルートに比べ東部ルートの方が平均的に高い値 を示した.

(2) TS 濃度(%)

TS 濃度(Total Sulfur content: 全イオウ重量%)は七谷層 では0.00~2.04%,寺泊層では0.077~1.58%の値を示した. 七谷層の平均値は0.73%,寺泊層の平均値は1.06%である. 地域別に見ると,東部ルート七谷層は0.00~2.04%(平均 0.73%),西部ルート七谷層は0.58~0.87%(平均0.73%),東 部ルート寺泊層は1.02~1.58%(平均1.37%),西部ルート寺 泊層は0.077~1.41%(平均0.58%)である.TS濃度は,東部 ルートと西部ルートで異なる傾向をもつ.東部ルートでは、 七谷層における差が大きく、下位から上位に向かって増加傾 向が見られる.寺泊層では試料間の値の差は小さく、全般に 七谷層より高い値を示す.一方、西部ルートでは、寺泊層で 値の幅が大きい.

(3) C/N 比 (weight ratio)

C/N比(岩石試料中の全有機炭素と全窒素の重量比)は一 般に有機物の起源指標として用いられている.植物プランクト ン起源は6~9 (Bordowskiy, 1965a; Prahl *et al.*, 1980; Biggs *et al.*, 1983),陸上高等植物起源は15以上(Bordowskiy, 1965b; Ertel and Hedges, 1984; Post *et al.*, 1985; Ertel *et al.*, 1986; Hedges *et al.*, 1986; Orem *et al.*, 1991)とされる.

七谷層では 5.3~62.4, 寺泊層では 7.8~15.6 の値を示した.

七谷層の平均値は 17.3, 寺泊層の平均値は 12.0 である.地域 別に見ると,東部ルート七谷層は 5.6~62.4 (平均 22.9),西 部ルート七谷層は 5.3~10.0 (平均 7.6),東部ルート寺泊層は 11.2~15.6 (平均 13.5),西部ルート寺泊層は 7.8~12.7 (平均 9.7)である.

(4) C/S 比 (weight ratio)

泥岩中のイオウは主に sedimentary pyrite に由来するため, C/S比(岩石試料中の全有機炭素と全イオウの重量比)は堆 積当時の酸化還元度を示す.1以下は還元的海底環境,1~3は 貧酸素海底環境,3~5は通常の酸素レベル海底環境,5以上 は極めて酸化的な海底環境または淡水環境とされる(Berner, 1982,1984; Sampei *et al.*, 1997).

七谷層では 0.4~76.6, 寺泊層では 1.0~8.5 の値を示した. 寺泊層全体の平均値は 2.3 で, 07082905 を除く東部ルート七 谷層では 0.4~76.6,西部ルート七谷層は 0.8~1.0 (平均 0.9), 東部ルート寺泊層は 1.0~2.1 (平均 1.4),西部ルート寺泊層 は 1.5~8.5 (平均 3.6)の値を示した.

(5) Rock-Eval 分析

S1 (mgHC/g)

七谷層では0.06~0.23, 寺泊層では0.22~1.96の値を示 した. 七谷層の平均値は0.09, 寺泊層の平均値は0.86であ る. 地域別に見ると,東部ルート七谷層は0.06~0.23(平 均0.10),西部ルート七谷層は0.07~0.09(平均0.08),東部 ルート寺泊層は0.52~1.46(平均0.96),西部ルート寺泊層は 0.22~1.96(平均0.70)である.

S2 (mgHC/g)

七谷層では 0.02~1.11, 寺泊層では 0.22~1.96 の値を示した. 七谷層の平均値は 0.55, 寺泊層の平均値は 2.74 である. 東部ルート七谷層は 0.02~0.71 (平均 0.32), 西部ルート七谷 層は 0.74~1.11 (平均 0.95), 東部ルート寺泊層は 1.93~5.79 (平均 3.48), 西部ルート寺泊層は 0.22~5.81 (平均 1.64) を示した.

HI (mgHC/gTOC)

七谷層では1~157, 寺泊層では34~238の値を示した.東 部ルート七谷層は1~91,西部ルート七谷層は131~157,東 部ルート寺泊層は135~238,西部ルート寺泊層は34~169を 示した.地域別に見ると,東部ルートでは七谷層の値に比べ 寺泊層の値が明らかに高い.西部ルートにおいては,七谷層 の値が高い傾向を示した.

Tmax (℃)

S2 のピーク温度 Tmax は熟成度指標として用いられ,430-435℃以上で熟成帯となる(Tissot and Welte, 1984: Tmax と Ro の関係図). 七谷層では368~480℃,寺泊層では379~410℃ を示す. 七谷層の平均は415℃,寺泊層の平均は392℃であ る. 地域別に見ると,東部ルート七谷層は368~480℃(平均 412℃),西部ルート七谷層は418~422℃(平均420℃),東部 ルート寺泊層は379~388℃(平均384℃),西部ルート寺泊層 は400~410℃(平均405℃)であった. 熟成帯を示すものは 七谷層最下部の07082903 地点だけであった.

考 察

1 泥岩の岩相

新潟県新発田市〜岩船郡関川村の七谷層と寺泊層の層厚は それぞれ約 600 m および約 200 m であり、七谷層は黒色~ 暗灰色泥岩,寺泊層は暗灰色泥岩~珪藻質泥岩からなり塊状 無層理であることを確認した. 七谷層は, 東側ルートの岩船 郡関川村大字金俣~幾地の 07082901~070829010 では塊状無 層理で暗灰色を呈しシルト質で岩相変化はほとんどないが, 07082903 (黒色度がやや高い) と 07082907 では細かい炭質物 が肉眼でも確認された.西部ルートでも、全般にシルト質泥岩 であった。一方、寺泊層 07082911~07082917 は、表面の風化 した部分は白色度が強く多孔質となり、風化乾燥部分の比重 は七谷層の泥岩よりも小さいのが特徴であった. ハンマーで 10 cm ほど掘ると暗灰色となり、特に 07082912 と 07082917 は黒色度が高く板状に割れる傾向があった. 西部ルートでは 風化が進んでいる露頭がほとんどであったが、07090405 では 数 cm の厚さの黒色の粘土質泥岩が乱堆積状にゆるやかに波 打って側方に殲滅している. その上下は風化が進んだ暗灰色 泥岩である.

これらのことから,この地域では七谷層は粒度がやや粗い シルト質な堆積場であったが,寺泊層になると粒径が細かく 粘土質になり,かつ,珪藻堆積物が卓越して陸源粘土と混じ り合って堆積する沖合の深海相に変化していったものと解釈 される.

2 有機物濃度と起源の関係

TOC 濃度は、七谷層の上部一点 07082907 を除けば、上位 の層準に向かって増加している(第5図). 七谷層で TOC 濃 度の高い最下部と上部では C/N 比が高いので(40-62: 第5 図)、陸上高等植物の影響によるものと考えられる、肉眼的 にもこれら2つの試料には細かい炭質物が認められ、これ は陸源有機物に由来するものと考えられる. この2つの試 料は第7図のTOC-TNクロスプロットでは下方の離れた領 域にプロットされている. 寺泊層では総じて TOC 濃度は高 く、ほとんどが1%を越えている、これは石油根源岩の経験 的評価指標の Good 以上のレベルである (Peters, 1986; Peters and Moldwan, 1993:0.5%以下=poor, 0.5~1.0%=fair, 1.0~ 2.0%=good, 2.0% 以上=very good). TOC 濃度の範囲(平均 値)は、七谷層では0.26~3.19%(Av. 0.91%)、寺泊層では 0.65~3.43% (Av. 1.67%) であった. 寺泊層の TOC 濃度が高 いもの(1.41~3.43%)のC/N比は11.2~15.6(七谷層下部 07082907のTOC3.19%, C/N比 62.4を除く)であり、海成有 機物を主体としていて、岩相から推察された珪藻由来有機物 (C/N比は6程度; Sampei and Matsumoto, 2001) が卓越して いるものと思われるが、全般に陸源有機物の影響も受けてい ることを示している。このことは、沖合の堆積場では湧昇流 による珪藻生産が増加しただけではなく、陸上の河川水から 陸源有機物を伴って栄養塩が供給されたことも珪藻生産の増 加に寄与したことを示唆する. 第8図の TOC-C/N プロットは このことを示しており、同図左上の七谷層の陸源有機物の突

出した影響の試料 07028907 を除けば,特に寺泊層では TOC 濃度の増加と共に C/N 比は徐々に増加している.

3 炭化水素ポテンシャルと酸化還元環境

七谷層では TOC 濃度と HI の間に関係は認められない が, 寺泊層では TOC 濃度が 1% を超えるものでは TOC 濃 度の増加に伴って HI 値が高くなる傾向が認められる(第 10図;141~238 mgHC/gC). 陸源有機物のHI値は一般に 100 mgHC/gC 程度,一方,秋田地域に分布する珪藻起源の珪 質頁岩の HI 値は 400-500 mgHC/gC 程度であるから、今回の 約 250 mgHC/gC までの値は, 50% 程度は陸源からの泥の混入 を示している、その結果として、根源岩ポテンシャル S2 は、 七谷層では 0.26~1.35 mgHC/g (Av. 0.55 mgHC/g) と低いが, 寺泊層では 0.22~5.81 mgHC/g (Av. 2.74) と高く, 平均値で 5 倍の差が生じている.本研究の寺泊層 S2 の 5.81 mgHC/g は 極めて高い良好な根源岩ポテンシャルを示しており、新潟油 田地域全域の泥質岩 S2 ヒストグラム(平井ほか, 1995)と比 較しても新潟全域の上位約1割の中に入る.また,新潟油田 地域の泥質岩 S2 値が,下部寺泊層の下部で高いのは新潟地域 南西部であり、下部寺泊層の上部で高いのは同地域の北東部 に分布することが知られており(平井ほか, 1995), 新潟油ガ ス田地域の北東縁部に位置する本研究地域において下部寺泊 層の上部で高い傾向を示したことは、平井ほか(1995)と調 和的である.

第9図は、S1とTOC 濃度との相関を示しており、右下に はずれてプロットされる点を除けば、TOC 濃度が増加すると S1も増加することを示している、S1はフリーの炭化水素を 表し、一般に熟成度が増加するとケロジェンから生成した炭 化水素がS1値を増加させるが、後述するように本研究地域の S1は熟成度の影響よりは起源有機物の性質によって規制され ている.また、第9図のS2とTOC 濃度との相関(右下の2 点を除く)もまた、S2が熟成度ではなく起源有機物の質的特 徴を表していると考えられる.

海底の酸化還元指標である C/S 比は,七谷層では高く最下 部では5を超えて淡水環境か極めて酸化的な浅海の環境を示 している(C/S 比 =15.3~76.6:第5 図および第7 図).寺泊 層に入ると,全般に貧酸素的環境を示し,寺泊層のうち TOC 濃度 1%以上の泥岩は主に貧酸素環境の海底に堆積したこと が分かる(C/S 比 =1.0~2.4:Berner, 1982, 1984; Sampei *et al.*, 1997によれば,1~3 は貧酸素環境を示す).ただし,東部 ルートの寺泊層の TOC 濃度と C/S 比には正の相間が認めら れ(第8 図),珪藻有機物の生産には湧昇流に伴う海水の上下 循環による海底への酸素供給,および陸源からの栄養塩の供 給が関わっていたことが推察される.

4 熟成度と炭化水素ポテンシャル

東部ルートの最下部において不連続的に過熟成の値 (Tmax=480℃. Ro 換算値では 1.5% 程度,最大古地温にする と 190℃: Ro から最大古地温への換算式は,Barker, 1988 の T (℃)=104×ln(Ro)+148を用いた)が検出された.この地点 07082903 と隣接する 07082904 地点では Tmax=368℃(Ro 換 算値では0.2%程度)であり,最大古地温は60℃以下である. 両地点の最大古地温差は130℃以上あり,この周辺地域の地温 勾配3.52℃/100m(秋山・平井,1997:本研究地域に最も近い 基礎試錐「大淵」の地温勾配)が堆積時から変化しなかった と仮定すると埋没深度にして3700mほどの深度差がなければ ならない.両地点の水平距離は100mほどであり,その間に 3700mも変化する堆積盆地斜面構造は考え難く(塊状無層理 のため,この間の走向傾斜は不明),また明瞭な断層も確認さ れなかった.したがって,この07082903の近辺には貫入岩が 存在するものと考えられる.

その他の試料は全て未熟成であったが,全体の上位から下 位に向かって熟成度が僅かながら増加する傾向が認められた (Tmax=368~422℃:第6図). Ro 換算値では 0.2~0.4% 程 度,最大古地温にして 70℃以下での変化である(Ro=0.5 以 下 = 未熟成帯,0.5~1.0 = オイル生成帯,1.0~2.0 = 湿性ガス 帯,2.0~4.0 = 乾性ガス帯.).前述の地温勾配 3.52℃/100 m (秋山・平井,1997)を用いて計算すると,この地域における 七谷層下部までの埋没深度は約 2000 m であったことになる.

なお、Tmax と S1 のクロスプロット(第10図)では、Tmax の増加と共に S1 が減少する傾向が認められた.通常は Tmax が増加すると(すなわち熟成度が増加すると)ケロジェンか ら発生する炭化水素のために S1 値は増加する傾向を示すの であるが、この第10図の結果は逆の傾向である.すなわち 本研究の S1 の変化は熟成度の影響を反映するものではなく、 起源物質の炭化水素ポテンシャルの違いが反映されたためと 解釈される.

まとめ

(泥岩の岩相)

 新潟県新発田市〜岩船郡関川村の七谷層と寺泊層の層厚 はそれぞれ約600mおよび約200mであり、七谷層は黒 色〜暗灰色泥岩、寺泊層は暗灰色泥岩〜珪藻質泥岩から なる。

(有機物濃度)

2 TOC 濃度は寺泊層で総じて高く,ほとんどが1%を越えている.TOC 濃度の範囲と平均値は,七谷層では0.26 ~3.19% (Av. 0.91%),寺泊層では0.65~3.43% (Av. 1.67%)であった.

(有機物の起源)

3 七谷層のうち TOC 濃度が高い泥岩(1.35~3.19%) は 陸源有機物の影響が高い(C/N=39.7~62.4)が,寺泊 層の TOC 濃度が高いもの(1.41~3.43%) は海成有機物 起源を主体として多少の陸源有機物の影響も受けている (C/N=11.6~15.6).

(炭化水素ポテンシャル)

4 七谷層では TOC 濃度と HI の間に関係は認められないが、寺泊層では TOC 濃度が 1% を超えるものでは TOC 濃度の増加に伴って HI 値が高くなる傾向が認められる(141~238 mgHC/gC). その結果として、根源岩ポテンシャルS2 は、七谷層では 0.26~1.35 mgHC/g (Av. 0.55 mgHC/g)

第5図 東部および西部の両ルートにおける TOC (%), TN (%), TS (%), C/N 比および C/S 比の層位変化.

第6図 東部および西部の両ルートにおける S1 (mgHC/g), S2 (mgHC/g), HI (mgHC/gC) および Tmax (℃) の層位変化.

第7図 東部および西部の両ルートにおける七谷層および寺泊層の TOC-TN および TOC-TS クロスプロット.

第8図 東部および西部の両ルートにおける七谷層および寺泊層の TOC-C/N および TOC-C/S クロスプロット.

第9図 東部および西部の両ルートにおける七谷層および寺泊層の TOC-S1 および TOC-S2 クロスプロット.

第10図 東部および西部の両ルートにおける七谷層および寺泊層の Tmax-S1 および TOC-HI クロスプロット.

と低いが, 寺泊層では 0.22~5.81 mgHC/g (Av. 2.74) と高く, 平均値で 5 倍の差が生じている.

(海底の酸化還元強度と炭化水素ポテンシャル)

5 寺泊層のうち TOC 濃度が 1% 以上の泥岩は, 主に貧酸素 環境の海底に堆積した(C/S 比=1.0~2.4). ただし, 寺泊 層の TOC 濃度と C/S 比には正の相間が認められ, 珪藻有 機物の生産には湧昇流に伴う海水の上下循環による海底へ の酸素供給,および陸源からの栄養塩の供給が関わってい たことが推察された.一方,七谷層では,淡水成から無酸 素海成の変化に富んだ環境下で堆積したことが示唆された (C/S 比=0.4~76.6).

(熟成度と炭化水素ポテンシャル)

6 東部ルート(岩船郡関川村)の最下部において不連続的 に過熟成の値(Tmax=480℃. Ro 換算値では 1.5% 程度)が 検出されたため、ここでは貫入岩の影響があったことが示 唆された.その他の試料は全て未熟成であった(Tmax=368 ~422℃. Ro 換算値では 0.2~0.4% 程度).この未熟成帯で は、Tmaxの増加と共に S1 が減少した.これは通常とは逆 の傾向である.すなわち S1 の変化は熟成度の影響ではな く起源物質の炭化水素ポテンシャルの違いが反映されたた めと解釈された.

謝 辞

本特集号「赤坂正秀教授退職記念号」の刊行に際して,赤 坂教授の長年の学科へのご貢献に感謝の意を表します.本論 文筆頭著者の三瓶は,専門分野は異なるものの同じ地球物質 システム学セミナー(旧講座)に所属し,鉱物科学的な物質 論と地質学の基礎に関する有益な幅広い知見を赤坂教授から 享受した.それは堆積有機物に普遍的に付随する無機鉱物の 関係とその効果を理解するために大変に有益であった.この 場を借りて,赤坂教授の長年のご貢献と御恩に対して心より 感謝申し上げます.

文 献

- 秋山雅彦・平井明夫, 1997, 基礎試錐のビトリナイト反射率から算定 される最高古地温勾配の検討.石油技術協会誌, 62, 69-79.
- Barker, C. E., 1988, Geothermics of petroleum systems: Implications for stabilization of kerogen maturation after a geologically brief heating duration at peak temperature. In: Petroleum Systems of the United States (Ed. L. Magoon), U. S. Geol. Surv. Bull., 1870, 26-29.
- Berner, R. A., 1982, Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. *Am. Jour. Sci.*, 282, 451-473.
- Berner, R. A., 1984, Sedimentary pyrite formation: An update. *Geochim. Cosmochim. Acta*, 48, 605-615.
- Biggs, R. B., Sharp, J. H., Church, T. M. and Tramontano, J. M., 1983, Optical properties, suspended sediments, and chemistry associated with the turbidity maxima of the Delaware Estuary. *Canadian J. Fisheries and Aquatic Sci.*, 40, 172-179.
- Bordowskiy, O. K., 1965a, Source of organic matter in marine basins. Mar.

Geol., 3, 5-31.

- Bordowskiy, O. K., 1965b, Accumulation of organic matter in bottom sediments. *Mar. Geol.*, **3**, 33-82.
- Ertel, J. R. and Hedges, J. I., 1984, The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. *Geochim. Cosmochim. Acta*, 48, 2065-2074.
- Ertel, J. R. and Hedges, J. I., Devol, A. H. and Richey, J. E., 1986, Dissolved humic substances of the Amazon River system. *Limnol. Oceanogr.*, 31, 739-754.
- Hedges, J. I., Clark, W. A., Quay, P. D., Ricihey, J. E., Devol, A. H. and Santos, U de M., 1986, Compositions and fluxes of particulate organic material in the Amazon River. *Limnol. Oceanogr.*, **31**, 717-738.
- 平井明夫・岡田静子・若松屋伸一・宮本泰行・八戸和巳, 1995, 有機 地球化学的にみた新潟地域における原油とその根源岩の関係, 石油 技術協会誌, 60, 87-97.
- 金子信行, 1994, 岩船沖油田産原油・コンデンセートの有機地球化学 的研究. Res. Org. Geochem., 9, 49-52.
- 加藤 進, 1993, 本邦の油・コンデンセートの軽質炭化水素組成.石 油技術協会誌, 58, 209-219.
- 加藤 進・秋葉文雄・平松 力・岩野英樹, 2009, 新潟県新津丘陵に おける金津層の珪藻化石と地質年代. Bulletin of the Mizunami Fossil Museum, **35**, 111-125.
- 加藤正和・片平忠実(1968)平木田ガス田における層位トラップについて.石油技術協会誌, 33,91-96.
- 小林巌雄・立石雅昭, 1992, 新潟地域における新第三系の層序と新第 三紀古地理. 地質学論集, **37**, 53-70.
- 米谷盛壽郎・井上洋子, 1981, 新潟堆積盆地における中新統中下部の 有孔虫群集と古地理の変遷. 化石, 30, 73-78.
- Orem, W. H., Burnett, W. C., Landing, W. M., Lyons, W. B. and Showers, W., 1991, Jellyfish Lake, Palau: Early diagenesis of organic matter in sediments of an anoxic marine lake. *Limnol. Oceanogr.*, 36, 526-543.
- Peters, K. E., 1986, Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Associatin of Petroleum Geologists Bulletin, 70, 318-329.
- Peters, K. E. and Moldowan, J. M., 1993, The Bimarker Guide –interpreting molecular fossils in petroleum and ancient sediments-, Prentice Hall, New Jersey, 363 p.
- Prahl, F. G., Bennett, J. T. and Carpenter, R., 1980, The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. *Geochim. Cosmochim. Acta*, 44, 1967-1976.
- Sampei, Y., Matsumoto, E., Kamei, T. and Tokuoka, T., 1997, Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district, southwest Japan. *Geochem. Jour.*, **31**, 245-262.

Sampei, Y. and Matsumoto, E., 2001, $C/N\xspace$ ratios in a sediment core from

Nakaumi lagoon, southwest Japan – usefulness as an organic source indicator – . *Geochem. Jour.*, **35**, 189-205.

- 鈴木徳行・坂田 将・金子信行, 1987, バイオマーカー組成からみた 新潟堆積盆地新第三系原油, コンデンセート油の熟成度と一次移動 の時期, 石油技術協会誌, **52**, 499-510.
- 鈴木徳行・三瓶良和・松林英樹, 1995,秋田、新潟地域における根源 岩の有機地化学的相違。石油技術協会誌, 60, 62-75.
- Tissot, B. P. and Welte, D. K., 1984, Petroleum formation and occurrence -second revised and enlarged edition-. 699 p, Springer-Verlag.
- 津川グリーンタフ団体研究グループ,1979,新潟県三川-津川地域に おけるグリーンタフ盆地発生期の造構運動,地質学論集,16,1-22.
- 土谷信之・高橋 浩・柳沢幸夫・山本孝広・久保和也・駒澤正夫・ 広島俊男・内藤一樹, 1999, 20万の1地質図「村上」,地質調査所.

(受付:2015年11月10日,受理:2015年12月28日)