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§1 Introduction.

Let G and S be commutative semigroups with zero, and I an ideal of G.
Let 0 and 0 be the zero elements of G and S respectively. Consider a mapping
¢ : S— G satisfying the following (1.1) :

’ (1) ¢(0)=0,
1.1) 1 @) o) o) =p®) pa)&1 if ab=0 (hence, also ba=0),
1 (3) ¢(ab)=¢(a) p(b) if ab7#0.

If we define a mapping ¥ : S —> G/I (where G/I is the Rees factor Semi-
group of G modulo I) by '

(o ife@€El

then ¥ is clearly a homomorphism of S into G/I. Hereafter, we shall call a
mapping ¢ : S —> G a homomorphism of S into G modulo I (abbrev., I-
homomorphism of S into G) if it satisfies (1.1). It is obvious that a mapping
7:S—> G is a homomorphism if 7 is a {0} -homomorphism. A halfgroupoid
H in the sense of R. H.Bruck[1] (i.e., a partial groupoid in the sense of A.
H. Clifford and G. B. Preston [3]) is said to be commutative if it satisfies the
following (1. 3) :

(1.3) If z, yEH and zy is defined, then yx is defined and xy=yz.

suppose that M is a subsemigroup of a commutative halfgroupoid H. ¥
Then, we shall say that a mapping ¢ : H —> H is a translation on H(M)
(abbrev., H (M) -translation) if it satisfies the following (1.4) :

(1.4) @(M) C M, and the restriction ¢ | M of ¢ to M is a translation of
M.

1) A subset K of a halfgroupoid H is called a subsemigroup of H if K is a semigroup with
respect to the binary operation of H.
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If H itself is a semigroup, it is obvious that an H (H)-translation is a trans-
lation of H. An H(M)-translation ¢ is said to be an inner H (M) -translation
if ¢ | M is an inner translation of M. The set jﬂ;(H, M) [ Z(H, M)] of
all H(M)-translations [all inner H(M)-translations] is a semigroup with
respect to the resultant composition. We shall call . (H, M) [ (H, M)]
the semigroup of H (M) -translations [the semigroup of inner H (M) —translations].
It is easily seen that . (H, M) is an ideal of .7 (H, M). In particular, for
the case where M is a null semigroup contained in H we can easily verify
the following (1.5) :

7 (H, M)={p : ¢ is a mapping of H into H such that
o (M) CM, ¢(0)=0}, and

FZ(H, M)={p : ¢ is a mapping of H into H such that
o (M) =A10}},

(1.5)

where 0 denotes the zero element of M.
In this case, the mapping ¢ defined by ¢¢(x) =0, x & H, is an element of
F# (H, M) and is the zero element of . (H, M). We shall call ¢, the 0-
mapping on H (with respect to M). Now, let T and G be commutative
semigroups, having 0 and 0 as their zero elements respectively. Let T*=T\0
and S IT*-i-G (where + means the disjoint sum), and define * in S as follows :

(1.6) zry= {xy if xnyG or if xy=40, xz, yET*,

not defined for the other cases.
Then S(*) is obviously a commutative halfgroupoid and G is embedded in
S(x). This S(*) is called the adjunction of T to G. Further, the set S with a
binary operation o is called an (ideal) extension of G by T if it satisfies the
following (1.7) (see also [2]) :

xxy if x,yES (%) and x+y is defined,

1.7 o y=
(L7 @oy {EG otherwise.

In this case, it is easily seen that G is embedded in S(o) as an ideal of S(o)
and the Rees factor semigroup S(o)/G of S(o) modulo G is isomorphic with
T. An (ideal) extension S(o) of G by T is said to be a commutative (ideal)
extension if S (o) is commutative. Further, an (ideal) extension S(c) of G by T
is called a O-extension of G by T if it satisfies the following (1.8) :



10 Commutative Ideal Extensions of Null Semigroups
(1.8) T*o0G=GoT*={0}.2

It is easily seen that there exists at least one O-extension of G by 7. Hereafter,
through this paper, “extension” always means “ideal extension”. ‘
Next, let G be a commutative semigroup with zero and N a null semigroup.
Let 0 and O be the zero -elements of G and N respectively. Let S (x) be the
’adjunction of G to N. By the definition of adjunctions, S () is a commutative
halfgroupoid containing N as its subsemigroup and the O-mapping @ of S (*)
with respect to N is the zero element of 7 (S(*), N).
Now let 7 be an #(S (%), N)-homomorphism of G into 7 (S(x), N), and
put 7(A) =24 for every AEG. Since 7 is an A(S(*), N)-homomorphism, we
have the following (1.9) :

(1) do=go,
(1.9) (2) AaA =Ap Aa & A(S(%), N) if AB=0 in G,
(8) Aap=Aa g if AB#0 in G.

If 7 further satisfies the following additional condition (1. 10), then 7 is called
a complete 7S (), N) -homomorphism of G into .7 (S(x), N) :

1 { () 2a(B)=2p(A) for all A, BEG\0
L1005y JABYEN if A, BEG\O and AB=0 in G.

In this paper, at first we shall present some construction theorems for com-
mutative extensions and commutative 0-extensions of null semigroups. Especially,
in §2 and 83 all the commutative O-extensions of a given null semigroup
N by a given commutative semigroup G with zero will be completely deter—
mined.® TFinally, in § 4 we shall show several applications of the construction
theorems given in §2. In particular, we shall discuss the construction of
commutative nilpotent semigroups and that of commutative semigroups satis—
fying the ascending chain condition and the descending chain condition for
ideals. ‘

i

2) T*oG means the set of all elements zoyES(o) such that x&ET* and y&G ;1. e, T*
oG={zxoy: xETf", yEG}. Also, Go T*={yox: y&G, x&ET%}.
There exists at least one (-extension of G by 7. For example, define a binary operation o
in S=T*+G as follows:
( Ao B=AB if A, BET*, AB+#0 in T,
J Ao B=0 if A, BET*, AB=0in T,
l Aou=uo A if AET¥*, ucG,
uov=uv if u, vEG.
Then, the resulting system S(¢) is a O-extension of G by T.
3) This is a generalization of one of the results obtained by the author [6].
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§ 2. Construction theorems.

Throughout this paragraph, G will denote a commutative semigroup with
zero and N will denote a null semigroup Let 0 and 0 be the zero elements
of G and N respectively. Let S= G*+N where G*=G\0, and let S(*) be the
adjunction of G to N. Hereafter we shall denote elements of G* by capital
letters A, B, C etc. and elements of N by small letters a, b, ¢ etc., unless
otherwise stated.

Theorem 1. Let 7 be any complete 7 (S (*), N)-homomorphism of G into
T (S(x), N). Then S becomes a commutative extension of N by G with
respect to the binary operation defz’ﬁed as follows :

(1) AoB=AB (=A*B) if AB#0 in G, A, B&EG¥,
(2) Ao B=24(B) if AB=0 in G, A, B&EG*,
(B) Aca=aoA=A4(a) if AEG*, a=N,

(4) aob=ab (=a*b)=0 if a, bEN,

where Aa = n(A), AEG.

Further, every commutative extension of N by G is found in this fashion.

(2.1)

Proof. The first half of the theorem. To prove S to be a commutative
extension of N by G with respect to the binary operation defined by (2. 1),
we need only to show that S(o) satisfies the associative law, i. e., o (B o 7)

= (aoB) oy for any «, 5, ¥ & S. Since we can easily check the relation ¢ o
(Bey)=(aofF)eoy, we omit to give its proof.

The second half of the theorem. Suppose that S(e ) is a commutative exten-
sion of N by G (with a binary operation®). For every A & G*, define a
mapping A4 : S—> S as follows : la(a)=Aea, a&S. Let Ay be the 0-
mapping on S(@) (with respect to N). Since A4(0)=A00=(Ae0)oe0=0
and since Aa(a) =Ae@a&EN and lgla) =0 for any a=N, both A4 and 2 are
elements of .7 (S(x), N). Define a mapping 7 : G —> (S(*), N) as follows :
7(A)=Nda, AEG* and 7(0) =Xy. Then it can be easily proved that 7 is a
complete #Z(S(*), N)-homomorphism of G into .7 (S(x), N). Now define a
binary operation oin S by (2. 1), and let S( o) be the resulting system. Then
we can prove S(o)=S(e). In fact : A o B=AB=AoB if A, BEG*, AB#
0in G; AoB=Ja(B)=AeBif A, BEG*, AB=0in G ; Aca=A4(a)=
Aog and ac A=)a(a) =Aea=ao A if AEG*, a=N;and acb =ab=aob
if a, b=N. Hence S(o)=8(e). Thus, every commutative extension. of -N
by G is obtained by the method stated in the theorem. ‘

As special cases of Theorem 1, we obtain the following results :
(I) The case where G* =G\0 is a subsemigroup of G (i.e., the case where G
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has no non-zero zero divisor) In this case, a mapping 7 : G —>.7 (S(#),N)
is a complete _#(S(*), N)-homomorphism if and only if it satisfies the
following (2. 2) :
J (1) A¢ = O0-mapping on S(x) (with respect to N),

(2) Aa A =Aap for A, BEG*,
[ (8) 24(B)=2Ap(A) for A, BEG*,
where A4 =7 (A) for every AEG.
Further, we need not to use (1) and (3) of (2. 2) when we define a binary
operation o in S by using (2. 1). Hence, in this case, 7 in Theorem 1 should
satisfy only the condition (2) of (2. 2). Consequently, we have the following

2.2)

result :

Theorem 2. If G has no non-zero zero divisor, then every commutative
extension of N by G is constructed by the following manner : Let 1 : G¥ —>
N be a homomorphism of G* into the semigroup 7 (N) of all translations
of N. Define a binary operationoin S by

(1) AeB= AB if A, BEG¥,
(2.3) { (2) Aca=a°A=2Aala) if aEN, ACG*,
8) acb=ab=0 if a, bEN,
where la =n(A), AEG*,

Then, the resulting system S( o) becomes a commutative extension of N by G.

This result also has been shown by 7. Tamura[5]. It is also obvious that
7 (N) is the set of all mappings ¢ : N —> N such that ¢ (0)=0.

(I1) The case where G satisfies the following (2. 4) and the order of N is 2.

(2.4) For any element A, there exists a positive integer m such that A” =0.

(Hereafter, we shall say that a commutative semigroup with zero is point-wise
nilpotent if it satisfies (2. 4)).

In this case, every A4 in Theorem 1 is an element of _#(S(¥), N). In fact:
Let N={u, 0}, where #5%40 and #2=0. Since G is point-wise nilpotent, if
A0 then A" 15£0 and A"=0 for a positive integer n=>2. It is obvious that
Aan=-1)4 is an element of _#(S(x), N). On the other hand, if 14 (x) =u then
AaQar-1(w)) = 2a(Ay 1 (w)) =u. Hence Aan-1da & F(S(+),N). This is a
contradiction. Thus Aa(x) =0, that is, 14(N) ={0}. This implies that A4 is
an element of _#(S(%), N). Moreover, it is obvious that the 0O-mapping Ao
on S(*) (with respect to N) is an element of _#(S(*), N). Since 7 in Theorem
1is a complete ~Z(S(*), N)-homomorphism, we have the following result

for elements A, B of G* with AB=0 : For any CEG*, 4 15(C) = A 1a(C)
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=2408(C)) =2aQc(B)) =Ac 2a(B) = da Ac(B) = Ac(Aa(B)) = Ac(u) or
Ac(0). Since Ac(x) =0 and Ac(0) =0, we have Aq As(C)=10. Consequently,
daAs(a) =0 for all o= S(x). Therefore, 14 Ap is the zero element Ay of
F(S(x), N). Hence, 7 must be a {0} ~homomorphism of G into ~#(S(x), N)
(hence, of course a homomorphism of G into #(S(¥), N)).

By Theorem 1 and the results above, we obtain the following

Theorem 3. If G is point-wise nilpotent and if the order of N is 2, then
every commutative extension of N by G is constructed by the following manner :

Let 77 be a {0} -homomorphism of G into F#(S(x), N) satisfying (4), (5) of
(1. 10). Define a binary operationo in S = G*—.l—N by

Ao B=AB if A, BEG* AB#0 in G,
Ao B=24(B) if ABEG* AB=0 in G,
(2.5) ) Aca=a0A=0 if AEG*, aEN,
aob=0 if a, bEN,
where Aa =7n(A), AEG*,

Then, S( o) is a commutative extension of N by G.

Corollary. If G is point-wise nilpotent and. if the order of N is 2,
then every commutative extension of N by G is a O-extension of N by G.
Proof. Obvious.

Next, we shall study commutative O-extensions of N by G. At first, we
introduce the concept of C-factors of G : Let £ be the set of all ordered
pairs (A, B) of elements A, B of G such that AB=0 in G (each of A, B can
be the zero element 0 of G) : Q2={(4, B) : AB=0 in G, A, BEG}.

A non-empty subset /7 of £ is called a C-factor of G if ' satisfies the
following (2. 6) :

2.6 { (1) For A, BEG, (A, B)& [ implies (B, A)& [,
-6) (2) For A, B, C&G, (AB, C)& I implies (4, BC)&= [

In particular, a C-factor /' of G is called a principal C-factor if it satisfies
the following (2. 7) :
2.7 (4,0, 0, A ET for all AEG.

To each element a of N, assign a C-factor of G or the empty subset of &,
say [z, Let & be the set of all /4, aEN : &= {/;: a&EN}. Then & is
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called a composite systsm of C-factors of G relative to N if it satisfies the
followmg (2 8 :

J 1) [y is a pr1nc1pal C- factor,
(2.8) | (2) =U {[a: aEN},
l (8) I'.NIs=L] for as4b, a, bEN b

Remark. In particular, let the order of N be 2 : N={u, 0}, u2=0, u==0. If
"o is a principal C-factor of G, then £\/'¢ is a C-factor or the empty subset
of 2 and the collection {/7g, @\ o} of /o and £\/y is a composite system
of C-factors of G relative to N. Conversely, it is easily seen that every

composite system of C-factors of G relative to N is obtained by this method
if the order of N is 2.

Now, we obtain the following construction theorem for commutative O-exten-
sions of null semigroups : '

Theorem 4. Every commutative O-extension of N by G is constructed by
the following manner : Let {['s : aEN} be a composite system of C-factors

of G relative to N, and define a binary operation o in S=G*-+N by

AoB=AB if AB+#0 in G, A, BEG¥,

J AoB=a if AB=0 in G, A, BEG*; (A, B)CI,, aEN, -
Aoa=aoc A=0 if aEN, AEGH, '

| 4o b=ab=0 if a, bEN.

(2.9)

Then S( o) becomes a commutative O-extension of N by G.

Proof. The first half of the theorem. Let S( o) be the set S with the binary
operation o defined by (2. 9). To prove S( o) to be a commutative 0-extension
of N by G, we need only to show that S(c) satisfies the associative law
(aofB) or=aoc (Beoy). If twoorall of @, (3, v are elements of N, then each
of ao (ff oy)and (o 8) oy is the zero element of N. Hence, in this case
(o f8) oy=ao ([Fo7) is satisfied. Therefore, we may consider only the case

where at most one of a, (3, 7 is contained in N and the others are contamed
in G*, ;
Case 1. a=a, B=B, y=C(aEN ; B,CEG*). It is obvious that ao (Bo
C)=0 and (a° B) o C=00o C=0. Hence ao (BoC)=(aoB) oC. Both A~ (&
0oC)=(Aob)oCand Ao (Boc)=(Ao B) oc, where A, B, CEG* and b, cC N,
are also proved by similar methods.

Case 2. a=A, /=B, y=C (4, B, C&G*).

Subcase (i). The case where ABC#+0 in G. Since ABC#0, (A o B) ~-C=
(AB)C=A(BC)=Ao- (B ().

4) The symbol [] means the empty set.
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Subcase (ii). The case where ABC=0 in G. If AB=0 in G, then (AB, C)=
(0, C). Suppose that (0, C) is contained in /’;. Then, a=0. Since (4B, C)=
0, O)=ly; (A4, BC)ETy. HenceAo (Bs(C)=0 if BC=0, and  also. Ao
(Bo C)=0 even if BC540. Thus in both of the cases, we have Ao (Bo C)=0.
On the other hand, (Ao B) o C=u o C=0 for some u&N. Therefore Ao (Bo
C)=(AoB)oC. If BC=0 in G, then in this case Ao (BoC)=(Ao°B) o C
can be proved by a similar method. Finally, assume that AB+0 and BC##0(.
Then since (Ao B) o C=ABoC=a and Ao (BoC)=AoBC=a, we have
(AoB) o C=Ao (Bo ().

The second half of the theorem. Let S(©) be a commutative 0-extension
of N by G, with a binary operation®o. Let 2={(4, B): AB=0 in G,
A, BeG}, I';={(A, B) : Ae B=a, A, BEG*} for each a#0, a&=N, and [ (=
{(4, B) : Ae B=0, A,BEG*U{(A4, 0) : AEG}U{(0, A) : AEG}. Then it
is obvious that Q=U{/2: a&EN} and [, N ['y=[] for a=¢b, a, b&EN, Let a
be a non-zero element of N. Suppose that (A, B) is an element of / ;. Then
A e B=aqa, and hence Bo A=a. Hence (B, A)&[",. If (AB, C)&[",, then ABo
C=a. Since ABe C=a, we have Ao (BoC)=(AeB) o C=ABo(C=a. Hence,
BC=#0 and A © BC=a. Therefore, (A, BC)&=[,. Consequently, [/, is a C-
factor of G. Next we prove that [y is a principal C-factor of G. If A540,
B=£0 and (A, B) &7y, then AeB=0. Since 0=AoB=Bo A, (B, A) is an
element of [7g. If A=0 or B=0 and if (4, B) &y, then clearly (B, A) &1 .
Next, let (AB, C) be an element of [7g. If C=0, then (4, BC)= (4, 0)&[.
If C5£40 and BC=0, then (A, BC)=(A4, 0)&/"y. If BC+#0 and A=0, then (A4,
BC)=(0, BC)&[". Finally, assume that BC+#0, A0 and Cs<0. If AB=0,
then (Ae B) eC=ueC for some u&N.  Since ue C=0, we have (AeB) o C
=0. Hence 0=(AeB)eo(C=Ae (BoC)=AeBC, and hence (4, BC) &]7. If
AB=0, then (Ao B) oC=ABoC(C. Since (AB, C)&["y, ABe C=0. Hence 0=
ABe(C= (AoeB)oC=Ao (Boe(C)=AeBC. This means that (4, BC) is an
element of /7g. Thus, /¢S (AB, C) implies (A, BC) &[7. It is obvious that
Mo (4, 0), (0, A) for all AEG. Therefore, /g is a principal C-factor of G.
From the results above, it is easy to see that the collection {/7; : a&EN} is a
composite system of C-factors of G relative to N. Let S( o) be the commuta-
tive O-extension of N by G determined by the system {/;, : a=N} and the
binary operation o given by (2. 9). Then, Ao B=AB=AeB if AB=~0, A, B&
G* ; Ao B=a=AeB if AB=0, A,BEG*, (4, B)E[;, ; Aob=0=Aoeb and
bo A=0=bo A if AEG*, bEN ; aob=0=aob if a, b&N. Hence, S(o )=
S(e). '

In particular, for the case where G is point-wise nilpotent and the order of
N is 2, we can paraphrase Theorem 3 in the following form by using Corollary
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to Theorem 3 and Remark of p. 14 :

‘Theorem 3*. If G is point-wise nilpotent and if the order of N is 2 (N=
{u, O} such - that u2=0, u5-0), then every commutative (0-) extension of N
by G is constructed by the following manner : Let Q={(A, B) : AB=0 in G,
A, BEG}. Let I'y be any principal C-factor of G, and define a binary opera-
tion o in S=G*+N by

Ao B=AB if AB+#0, A, BEG*,
I Ao B=u if AB=0, A, BEG*, (A, B)c\I,
Ao B=0 if AB=0, A,BEG*, (A, B)E[,,
Aca=a°A=0 if ACGH*, a&=N,
a°b=ab=0 if a,b&EN.
Then, the resulting system S( o) is a commutative (0-) extension of N by G.”

Proof. Obvious.

(2. 10)

Remark. Suppose that G is point-wise nilpotent and N is finite. In this case,
every commutative extension of N by G is constructed by the following
manner : Let N={a1, as,..., an, 0}, where 0 is the zero element of N, a;7
a; for i#j, a;50 for all i. For every a;, let N; ={a;, 0;} be a null semi-
group of order 2 such that a!=0i=a; 0; =0; a; =0;. Put G=Gy, Gy \0=G¥¢,
where 0 is the zero element of G, and let G; (i=1~n) be a commutative
extension of N; by Gj_;such that ab=0; for all a, b=G*;_\G¥, where G¥*;_;
=G;_1\0;i_1 if i=>2. Since each Gi_; is of course point-wise nilpotent, each
G; can be obtained from G;_; and N; by slightly modifying the method of
Theorem 3* (that is, by adding the following restriction to the method of
Theorem 3* : Restriction. A principal C-factor /7g of Gi_icontains all pairs
(a, b) of elements a, b of G*;_1\G¥). Now, it is obvious that G, is a
commutative extension of N by G. Conversely, it is also easy to see that every
commutative extension of N by G is obtained by this method.

By Theorem 4, the problem of constructing all commutative O-extensions
of a null semigroup N by a commutative semigroup G with zero is reduced
to the problem of determining all composite systems of C-factors of G relative
to N. Hence, we shall discuss this problem in the next paragraph.

§ 3. C-factors and principal C-factors.

Let M be a commutative semigroup with zero, and 0 the zero element of

5) This theorem is a generalization of Theorem 3 given by the author [6] (see also
Theorem 5 of [7)).
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M. Put M\O=M%*, and ={(a, b) : ab=0, a, b&=M}.. Hereafter, through this
paragraph, we denote elements of M by small letters a, b, ¢ etc. At first, we
determine all C-factors and principal C-factors of M. For this purpose, we
introduce some necessary concepts..

(I) Two elements (u, v) and (w, ) of Q is said to be chainable 1f the
following (3. 1) holds :

(@) (u, v)=(w, 1) or
(b) there exist elements %, #, f5...., tr (where » is an even
integer=>2) of M such that ty =v, u=tts, tot1 =ts5 tyye...slr—plr—s

(3.1)

=tlr_3lr-2y broaly—3=lr_1try brglyo1=w, t,=t (ty=v, u=tits, vty
=w, t, =t if r=2) in M.

(II) Define a relation p on £ as follows : (u, v) o (w, #) if and only if
(4, v), (w, t) are chainable ; (%, v), (f, w) are chainable ; (v, u), (w, #) are
chainable ; or (v, u), (¢, w) are chainable.

Lemma 1. 0 is an equivalence relation on L.

Proof. It is obvious that (%, v) o (u, v) for all (u, v) EQ. Next, we prove that
(u, v) 0 (w, t)implies (w, t) 0 (u, v). Suppose that (u, v) 0 (w, t). Then,
(1) (u, v), (w, t) are chainable, (2) (u, v), (¢, w) are chainable, (3) (v, u),
(w, t) are chainable or (4) (v, u), (¢, w) are chainable. If (v, u), (w, £) are
chainable, then (v, ) =(w, t) or there exist elements #, t,..., &, &M such
that u=ty, v=tits, boty=lsts ..., bralr—3=lr_1 by, traly—1 =w, t,=t. If (v, u)
= (w, t), then (w, t), (v, ) are chainable. Hence (w, t) 0 (u, v). If (v, u)
(w, t), then t=sy, W=s152, S0 51 <5354 0000, Sr—25-1=0, §, —=u where s; =t,—;
(i=0~r). Hence (w, t), (v, u) are chainable, and hence (w, #) 0 (u, v). Thus
in the case (3), we proved (w, £) 0 (u, v). In the other cases (1), (2) and (4),
we can also prove (w, t) ¢ (u, v) by similar methods. Finally. we prove that
(w, v) 0 (w, t), (w, £) 0 (s, ) imply (u, v) 0 (s, ). Suppose that (u, v) 0
(w, t) and (w, £) 0 (s, z). Then (1) (u, v), (w, t) are chainable, (2) (u, v),
(¢, w) are chainable, (3) (v, u), (w, t) are chainable or (4) (v, u), (¢, w) are
chainable, and (17) (w, £) (s, x) are chainable, (27) (w, ¢), (x, s) are chainable,
(37) (¢, w), (s, ) are chainable or (4”) (¢, w), (x, s) are chainable. For each
case {(0), 3} (G, j=1, 2, 8, 4), we should prove that (», v) 0 (s, x). .

However, we omit its complete proof and prove it only in the case {(1),
(47)} since we can prove it by similar methods in the other cases. Suppose
that (#, v,) (w, ¢) are chainable and (¢, w), (x, s) are chainable. If (&, v)=
(w, t), then (v, u)= (¢, w). Hence (v, u), >(x, s) are chainable, and  hence
(uy v) 0 (s, ). If (¢, w)=(x, s), then (w, ) = (s, x).' Hence (u, v), (s, x) are
chainable, and hence (#, v) o (s, z). .Now, assume that («, v) #* (w, t) and
(¢, w) == (z,s). In this case, there exist elemtents #y, #1,...., % of M and elements
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Uy UL jeeey Uk of M such that v=¢t), u=tt, F0ly =380 90 0000y Lr—tlr-3=lr-1lr,
tystya=w, t,=t and wW=ug, tTUIUz, UOULT USU4y oo e vy Ub—dUk—3 = Uk—1UE ,
Uh—oUp-1 =T, Up=s5. Since v=ty, u=tils, tot1=t3t1y. .y br—altr—3 (=tr_1t;) =
(tr—1w1) Uy tr—z (bp—1t01) =uUsths, UpUs =UsUsy. .., Up-2Ur-1=T, Ur=3, (4, v) and
(z,s) are chainable, Hence (u, v) 0 (s, ). Thus, ¢ is an equivalence relation

on 2.

Hereafter, E(u, v) will denote the equivalence class (&2/p) containing
(uyv).

Lemma 2. (1) If {a: a&I} is a collection of C-factors I'a of M, then
N A« : a=1} is also a C-factor of M.

(2) If {4e : EEI*}Y is a collection of principal C-factors A: of M, then
N {4e : EEI*} is also a principal C-factor of M.

Proof. Obvious.

For (u, v)ER, let {I» : aEI} be the collection of all C-factors /7. contain-
ing (u, v). Let {4 : EEI*} be the collection of all principal C-factors A .
Then I (u, v)=N {l"a : aEI} is the least C-factor containing (u, v), and
do=N {4: : EEI*} is the least principal C-factor of M. »

Theorem 5.

1) Ado={{w, ) EL : (w,t) 0 (v, 0) (hence also (w, t) 0 (0, v)) for some
vEM}.

@) I'(uy v)={(w, HEL : (w, t) 0 (u, v) (hence also (w, 1) 0 (v, u))}=
E(u, v).

Proof. This can be proved by slightly modifying the proofs of Theorems 7
and 8 of the author [7] (see also [6]).

Remark. “C-factor” in the auther [6], [7] means “principal C-factor” of
this paper,

Theorem 6. [ (u, v) NI (w, t) =[] or I'(u, v)=I"(w, ?).

Proof. By Theorom 5, ['(u,9)=E(u, v) and ['(w, £{)=E(w, t). Since
E(u, v) and E(w, £) are equivalence classes modulo p, E(u, v) N E(w, t)=[]
or E(u, v)=E(w, t)

Theorem 7. If A is a principal C-factor of M, then

(1) 4D Ao, and

(2) A is a disjoint sum of C-factors of M. .

Conversely, a subset I" of 8 is a principal C-factor of M if I" D Ay and if
I is a disjoint sum of C-factors of M,

Proof. It is obvious that a principal C-factor 4 of M contains Ay. Let (%, v)
be an element of A. Since A is a C-factor of M, it follows that A4 D /" (u, v).
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Hence, A4 DU{ (u, v): (u, v) EA}. Since A CUAT (u, v) : (u; v) EA} is
obvious, -A=UAI" (4, v) ::(u, v) &4} holds. - It is also obvious that .any two
distinct C-factors I(w, v)and 7 (w, s), where (u, v); (w 8) E/I, are: dlSJOlnt
The second half of the theorem is obvious. -

Theorem 8. Every '-C -factor X of M is. a union of C-factors I (u, v).
Conversely, a union of C-factors I" (u, v) is a C-factor of M.
Proof. This can be proved by a similar method to the proof of Theorem 7.

Remark. By Theorem 6, each I (#, v) is a mihimal C-factor of M. Conver
sely, it is obvious that if /7 is a minimal C-factor of M and if 'S (u, v)
then I'=7"(u, v). Hence by Theorems 7 and 8, it shoiild be also’ nioted that
any principal C-factor of M [any C-factor of M ] is a disjoint sum of minimal
C-factors of M.

Now, let G be a commutative semigroup with zero, and N a null semigroup.
Let 0 and 0 be the zero elements of G and N respectively. --Put G\0=G*. Let
us denote elements of G* by capital letters A; B; C etc., and those of N by
small letters a, b, ¢ etc. Put 2={(4, B) : A,B&G, AB=0in G}. Letz# =
{l's : €T} be the'set of all minimal C-factors of G. By Theorem 6 and
Remark ment1oned above, it is obvious that f" nl f’,g-- [j for a‘#,é? Now,
consider any mapping ¢ : 27 —==sN satisfying the following (3. 1) :

(8. 1) ¢(I"'.)=0 if ' contains some element (4, 0) £Q, AEG.

For each a&N, put fa=4{l"% : 0(['s)=a, e L} and ['a=U{l"s : ['s
E .. (f 272, is empty; |, means the empty subset of 2).
Then, the following (3. 2) follows from the results stated above :

(1) Iy is a principal C-factor of G,

J (2) each [; is a C-factor of G or the empty subset of 2,
(8) Q=U{lz: aEN},
4) I', N IMy=[] if as%b, a,bEN.

- (8.2)

Hence, {/z: a=N} is a composite systém of C-factors of G relative to N.
Conversely, it is easy to see that every composite system of C-factors of G
relative to N is obtained by this method.

8 4. Applications.

~ In this paragraph, we shall give some applications of Theorems 1—4 obtained
in 8§2. As a preparation for this purpose, at first we introduce here the
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following well-known result given by A. H. Cliffod [2] :

Theorem. (Chfford) Let S be a commutative semigroup with 1, and T a
commutative semigroup with zero. ‘Let-0 be the zero element of T, -and put
T\0=T*. Let 77 : T*—> S be a partial homomorphism of the commutative
halfgroupoid T* into S.  Then, G=S8+T* is a commutative extension of S
by T with respect to the binary operation o defined. as follows :

(1) Ao B=AB if A, B&T*, AB+#(,
4 1) J (2) AoB=AB if A, BET*, AB=0,
. (38) Aos=so A=As if ACT*, s&5,
] (4) sot=st if 5tES,

. where A=7(A) for AET*,

Further, every commutative extension of S by T is found in this fashion.

Next, we shall give some necessary definitions. By a semigroup with chain
conditions, we mean a semigroup which satisfies the ascending chain condition
and the descending chain condition for ideals. A semigroup S with zero is
said to be nilpotent if it satisfies the following (4. 2) : ®

(4 2) SDSZDSS ....... Sn lDSn_{O} for Some POSltlve lnteger 72, Where .
0 is the -zero eleme‘nt ‘of 55, S _ .

A commutatlve mlpotent ‘semigroup is of course pomt wise nllpotent, but a-
commutative point-wise nilpotent semigroup is not necessarlly nilpotent. How-
ever, it is easily verified that, for finite commutative semigroups S with zero,
the properties “point-wise nilpotent” and “nilpotent” are equivalent. Further,
for S, each of these properties is equivalent to the property “having no idem-
potent except zero” (in [6], a semigroup with zero which satisfies this property
has been called a z-semigroup). '

(I) Commutative semigroups with chain conditions.

Let S be a commutative semigroup with chain conditions. Then, S has a
principal series S=8; 25, 2 28,28m+1=[]and each principal factor S; /Si+1
(i = 1~m-1) is a commutative group with zero or a null semigroup. Further,
S is a commutative group, a commutative group with zero or a null semi-
group. Hence, S° (the adjunction of a zero element to S) is contained in the
class & of commutative semigroups constructed as follows : Let Ty, T71,...,
T, (n is an arbitrary non-negative integer) be arbitrary sequence of semigroups
such that each 7T; is a commutative group with zero or a null semigroup.

6) The meaning of “nilpotent” is somewhat different from that of the author [7]. In [7], a
semigroup S with kernel K has been called nilpotent if SDS22DS533---- DS"= K for some
positive integer n. However, both meanings of “nilpotent” are equivalent for semigroups
with zero.
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Put Ty= Gy, and for i=>1 let G; be a commutative extension of T; by Gi_i.
Then, at last we can get G,. Let & be the set of all G, obtained by this-
method. Every commutative extension of a commutative group with zero by
a commutative semigroup with zero is obtained by the method of Theorem of
Clifford given at the first part of this paragraph. On the other hand, every
commutative extension of a null semigroup by a commutative semigroup with
zero is obtained by the method of Theorem 1.

(I1) Commutative nilpotent semigroups.

Let S be a commutative nilpotent semigroup. Then, there exists a positive
integer m such that S2822 ----- 28”={0}. Each of the Rees factor semi-
groups S”/S"*1=N,, (n=1~m-1) is a null semigroup. Put G,=S/5" (n=1~m).
Then, G,.1 is a commutative O-extension of N, by G, (where G; is regarded
as N;). Since G,,=S, S is contained in the class 27 of commutative semi-
groups constructed as follows : Let Ty, T4,..., T (» is an arbitrary non-
negative integer) be arbitrary null semigroups. Put Ty = G,, and for =0 let
G;.1 be a commutative O-extension of Tji1 by G;. Then, at last we can get
G,. Let 97 be the set of all G, obtained by this method.

Conversely, it is easy to see that any semigroup contained in 97 is a com-
mutative nilpotent semigroup. It is also obvious that every commutative
0-extension of a null semigroup by a commutative semigroup with zero is
obtained by the method of Theorem 4.

(III) Finite commuative nilpotent semigroups.

Let S be a finite commutative nilpotent semigroup. Then there exists a
composition series of S such that S=S,251 2 25:+1=10}, where each
S:/Sis1= N; (i = 0~n-1) and S,=N,, are null semigroups of order 2 (see [6],
[7] and [3]). Put S/S; =G;. Then Gjis a finite commutative nilpotent semi-
group (hence, G;j is also point-wise nilpotent), and G,+1=S. Hence S is contained
in the class _%4 of commutative semigroups constructed as follows : Let T,
Ty,...,Ty (nis an arbitrary non-negative integer) be a sequence of null
semigroups of order 2. Put Ty= Gy, and let G;.; ({ = 0~n-1) be a commutative
(0-) extension of Tiy1 by G;. In this case, each G; is obviously a finite com-
mutative nilpotent semigroup and hence is a commutative point-wise nilpotent
semigroup. Then, at last we can get G, Let o34 be the set of all G, obtained
by this method. It is obvious that every commutative (0-) extension of a
null semigroup of order 2 by a commutative point-wise nilpotent semigroup
is obtained by the method of Theorems 3 and 3*  (This result has been
also obtained by the author [6], [7]). Conversely, it is also easy to see that

any semigroup contained in _74 is a finite commutative nilpotent semigroup.
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(IV) Finite commutative semigroups containing null semigroups as their
mazximal ideals. -
. Let S be a finite A(I:.émmutati\‘re semigroup . contai'nir'lg..a null semigroup I as
its maximal ideal. Then the Rees factor semigroup S/I is a O-simple semigroup
or a null semigroup of order 2. Since S/I is commutative, S/I must be a
commutative group with zero or a null semigroup of order 2. Hence S is a
commutative extension of a finite null semigroup by a finite commutative
group with zero or by a null semigroup of order 2, and hence S is contained
in the class % of commutative semigroups constructed as follows : Let T, be
an arbitrary finite null semigroup, and 7T an arbitrary finite commutative
group with zero or an atbitrary null semigroup of order 2. Let T be a commu-
tative extersion of Ty by 7. Then T is a finite commniutative semigroup
containing Ty as its maximal ideal. Now, let % be the set of all T obtained
by this method. Every commutative extension of a finite null semigroup by a
null semigroup of order 2 is obtained by the method of the author and T.
Tamura [8] (see also Remark of p. 16) ; and every commutative extension of
a finite null semigroup by a finite commutative group with zero is obtained
by the method of Theorem 2. ’
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