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1 Introduction

The Higgs mass parameter m2
h is only a dimensionful parameter in the standard model

(SM), and its value is estimated by the observed Higgs mass as
√
−2m2

h = Mh = 125.09±
0.21 (stat.)± 0.11 (syst.) GeV [1]. Then, a running of the Higgs quartic coupling becomes

negative below the Planck scale within the SM. If the SM can be valid up to a high energy

scale such as a breaking scale of a gauge symmetry in the grand unification theory (GUT),

the electroweak (EW) scale should be stabilized against radiative corrections coming from

the high energy physics. To solve the gauge hierarchy problem, there are a lot of works mo-

tivated by a classically scale invariance [2]–[29]. The scale invariance prohibits dimensionful

parameters at a classical level, while it can be radiatively broken by the Coleman-Weinberg

(CW) mechanism [30]. In addition to the classically scale invariance, with an additional

U(1)X gauge symmetry, e.g., U(1)B−L gauge symmetry, it is possible to naturally realize

experimentally observed values of the Higgs mass. When the U(1)X symmetry is broken

by the CW mechanism, the EW symmetry could be also broken through the scalar mixing

term. If the U(1)X breaking scale is not far from the EW scale, the Higgs mass corrections

would be sufficiently small, and then the hierarchy problem can be solved. Note that these

statements are based on the Bardeen’s argument [31], and we consider only logarithmic

divergences in this paper (see ref. [7] for more detailed discussions).

In this paper, we assume the classically scale invariance at the UV scale, where the SM

gauge couplings are unified. We expect that some unknown mechanism, such as a string

theory, realizes the classically scale invariance and the gauge coupling unification (GCU).

Actually, the GCU can be realized at 3× 1016 GeV in our model, and the scale is near the

typical string scale (∼ 1017 GeV). To realize the GCU, some additional particles with the
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SM gauge charges are needed. Conditions of the GCU can be systematically obtained by an

analysis of renormalization group equations (RGEs) [32, 33]. When all additional particles

are vector-like fermions with the TeV scale masses, the GCU scale can be realized between

1016 GeV and 1017 GeV, and there are a lot of possibilities to realize the GCU at the scale.1

For example, vector-like pairs of quark doublet QL,R and down-type quark singlet DL,R

can achieve the GCU [34, 35]. When there are additional fermions charged under the SM

gauge symmetries, the gauge couplings and the top Yukawa coupling respectively become

larger and smaller compared to the SM case, and then, both changes make the β function

of the Higgs quartic coupling become larger. Therefore, the vacuum can become stable

when the GCU is realized.

To solve the gauge hierarchy problem, there should be no intermediate scale between

the EW and the GCU scales except an energy scale, which is not so far from the EW scale,

i.e., the TeV scale. Then, phenomenological and cosmological problems (e.g., smallness of

active neutrino masses, baryon asymmetry of the universe, and dark matter (DM)) should

be explained with sufficiently small Higgs mass corrections. The first two problems can

be explained by the right-handed neutrinos, which are naturally introduced to cancel the

anomalies accompanied with the U(1)X gauge symmetry, via type-I seesaw mechanism [36–

40] and resonant leptogenesis [41], respectively. In our model, the DM is identified with

the SM singlet Majorana fermions, and its stability can be guaranteed by an additional Z2

symmetry [42]. In this paper, we will show that our model can explain the above problems

as well as realizing the GCU without affecting the hierarchy problem.2

In the next section, we will define our model, and explain the U(1)X gauge symmetry

breaking as well as the EW symmetry breaking via the CW mechanism. We also obtain

the upper bound on the U(1)X breaking scale from the naturalness. In section 3, we will

discuss the GCU, vacuum stability, smallness of active neutrino masses, baryon asymmetry

of the universe, and the DM relic abundance. Our model predicts the existence vector-like

fermions charged under SU(3)C with masses lower than 1 TeV, and the SM singlet Majorana

dark matter with mass lower than 2.6 TeV. We summarize our results in section 4.

2 Symmetry breaking mechanism

We consider the U(1)X gauge extension of the SM with three generations of the right-

handed neutrinos νRi (i = 1, 2, 3), six vector-like fermions (QL, QR, DL, DR, NL, and

NR), and two SM singlet scalars (Φ and S). Charge assignments of the particles are shown

in table 1. The U(1)X charge are given by B−L+2xHY , where xH , B, L, and Y denote a

1For example, we can consider the origin of the vector-like fermions as the string theory, in which a

number of vector-like fermions should appear above the compact scale, which is expected to be the GCU

scale in our model. Some of them might have the TeV scale masses due to the fine-tuning of moduli (or

Wilson line, extra-dimensional component of anti-symmetric tensor field, and so on).
2From theoretical point of view, there are some papers constructing a model which realizes classically

scale invariance and gauge coupling unification at the same scale [43]–[45]. Furthermore, asymptotic safety

of gravity [46] leads vanishing couplings at the UV scale, which suggests vanishing quartic couplings and

gauge coupling unification around the Planck scale [see figure 1 in ref. [47] for example]. In this paper, we

simply expect such a situation comes from unknown UV physics.
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SU(3)C ⊗ SU(2)L ⊗U(1)Y U(1)X Z2

qL (3, 2, 1/6) (xH + 1)/3 +

uR (3, 1, 2/3) (4xH + 1)/3 +

dR (3, 1, −1/3) (−2xH + 1)/3 +

`L (1, 2, −1/2) −xH − 1 +

eR (1, 1, −1) −2xH − 1 +

νR (1, 1, 0) −1 +

H (1, 2, 1/2) xH +

QL,R (3, 2, 1/6) (xH + 1)/3 −
DL,R (3, 1, −1/3) (−2xH + 1)/3 −
NL,R (1, 1, 0) −1 −

Φ (1, 1, 0) 2 +

S (1, 1, 0) 0 +

Table 1. Charge assignment of particles, where xH is a real number.

real number, the baryon and lepton numbers, and the U(1)Y hypercharge, respectively. In

particular, xH = 0, −1 and −2/5 correspond to U(1)B−L, U(1)R and U(1)χ, respectively.

The vector-like fermions QL,R, DL,R, and NL,R respectively have the same charges as the

SM quark doublet, the SM down-quark singlet, and the right-handed neutrino, while only

the vector-like fermions are odd under an additional Z2 symmetry. Four of the vector-like

fermions (QL,R and DL,R) play a role for achieving the GCU, and the others (NL,R) are the

DM candidates, whose stability is guaranteed by the Z2 symmetry. These particles are not

necessary for the realization of GCU and DM. We choose them for the simplest extension.

The relevant Lagrangian is given by

L = LSM + Lkinetic − V (H,Φ, S)− (Yν`LH
cνR + κ1QLHDR + κ2DLHQR

+YMΦνcRνR + YNL
ΦNLN

c
L + YNR

ΦN c
RNR

+fQSQLQR + fDSDLDR + fNSNLNR + h.c.), (2.1)

where LSM is the SM Lagrangian except for the Higgs sector, Lkinetic includes kinetic terms

of the Higgs and new particles, and V (H,Φ, S) is a scalar potential of the model. Without

the Z2 symmetry, there are also additional Yukawa interactions between the SM particles

and the new particles, e.g., y1QLH
cuR, y2QLHdR, and y3qLHDR. However, these coupling

constants have to be very small due to constraints from the precision electroweak data [48].

To forbid these terms, we have imposed odd parity to only the vector-like fermions under

the Z2 symmetry.

Since there are two U(1) gauge symmetry, U(1) kinetic mixing generally arises in the

model. We can take covariant derivative as

Dµ = ∂µ + ig3T
αGαµ + ig2T

aW a
µ + igY Y Bµ + i(gmixY + gXX)Z ′µ, (2.2)
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where g’s are gauge couplings, Tα and T a are generators of SU(3)C and SU(2)L, respec-

tively, and Vµ (V = Gα,W a, B, Z ′) are gauge bosons. The coupling constant gmix denotes

the kinetic mixing between the U(1)Y and the U(1)X gauge symmetries, and we will take

gmix = 0 at the GCU scale. This boundary condition naturally arises from breaking a

simple unified gauge group into SU(3)C × SU(2)L ×U(1)Y ×U(1)X .

We impose the classically scale invariance at the GCU scale, and hence, the scalar

potential V (H,Φ, S) is given by

V (H,Φ, S) = λH |H|4 + λΦ|Φ|4 + λSS
4 + λHΦ|H|2|Φ|2 + λHS |H|2S2 + λΦS |Φ|2S2, (2.3)

where there is no dimensionful parameter. In the model, a complex scalar singlet Φ spon-

taneously breaks the U(1)X gauge symmetry due to radiative corrections, i.e. the CW

mechanism. Since the complex scalar field obtains the nonzero vacuum expectation value

(VEV), the SM singlet scalar Φ, the U(1)X gauge boson Z ′, the right-handed neutrinos

and the vector-like fermion NL,R become massive. After the U(1)X symmetry breaking,

negative mass terms of a real scalar singlet S and the SM Higgs doublet H are generated,

which induces the EW symmetry breaking. Then, S, the vector-like fermions and the SM

particles become massive, and typically their masses are lighter than those obtained by the

U(1)X symmetry breaking.

Let us explain the symmetry breaking mechanism more explicitly. We consider the

CW potential for a classical field of the singlet scalar φ as

VΦ(φ) =
1

4
λΦ(vΦ)φ4 +

1

8
βλΦ

(vΦ)φ4

(
ln
φ2

v2
Φ

− 25

6

)
, (2.4)

where we have taken Φ = φ/
√

2 without loss of generality, and 〈φ〉 = vΦ is the VEV of φ.

β functions of Φ, βλΦ
, almost depends on quartic terms of gX , YM and YNL,R

for λΦ ' 0.

(β functions of the model parameters are given in appendix.) The effective potential (2.4)

satisfies the following renormalization conditions

∂2VΦ

∂φ2

∣∣∣∣
φ=0

= 0,
∂4VΦ

∂φ4

∣∣∣∣
φ=vΦ

= 6λΦ, (2.5)

and the minimization condition of VΦ induces

λΦ(vΦ) ' 11

6π2

[
6g4
X(vΦ)−

(
trY 4

M (vΦ) + Y 4
NL

(vΦ) + Y 4
NR

(vΦ)
)]
, (2.6)

where we have assumed that the scalar quartic couplings are negligibly small in the right-

hand side. When this relation is satisfied, the U(1)X symmetry is broken, and Φ and Z ′

become massive as

Mφ =

√
6

11
λΦ(vΦ)vΦ, MZ′ = 2gX(vΦ)vΦ, (2.7)

respectively. Since the right-hand side of eq. (2.6) should be positive, λΦ(vΦ) . g4
X(vΦ)

is required, and hence, Mφ < MZ′ is generally expected. In addition, the quartic terms

of Majorana Yukawa couplings (YM and YNL,R
) are smaller than the quartic terms of gX

– 4 –
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because of λΦ(vΦ) > 0. The masses of right-handed neutrinos and NL,R will be discussed

in section 3.3.

After the U(1)X symmetry breaking, the effective potentials for s and h are approxi-

mately given by

VS(s) =
1

4
λSs

4 +
1

4
λΦSv

2
Φs

2, VH(h) =
1

4
λHh

4 +
1

4
λHΦv

2
Φh

2, (2.8)

where S = s/
√

2 and H = (0, h/
√

2)T . Here, we have assumed that λHS are negligibly

small compared to λΦS and λHΦ for simplicity. For κ1,2 ' 0, λHS is always negligibly small

during renormalization group evolution [see eq. (A.16)]. When λΦS and λHΦ are negative,

the nonzero VEVs 〈s〉 = vS and 〈h〉 = vH are obtained as

v2
S =

−λΦS

2λS
v2

Φ, v2
H =

−λHΦ

2λH
v2

Φ. (2.9)

Note that vS and vH is typically lower than vΦ, because the ratios of quartic couplings

(λΦS/(2λS) and λHΦ/(2λH)) should be lower than unity to avoid the vacuum instability.

The vector-like fermions and the SM particles become massive, while the masses of vector-

like fermions (QL,R and DL,R) have to be lower than 1 TeV to realize the GCU as we will

show in section 3.1.

In the end of this section, we mention the U(1)X breaking scale, which is described by

vΦ. Since MZ′/gX > 6.9 TeV is required from the LEP-II experiments [49], we obtain the

lower bound vΦ & 3.5 TeV. On the other hand, the naturalness of the Higgs mass suggests

a relatively small vΦ. A major correction to the Higgs mass is given by Z ′ intermediating

diagrams, and one-loop and two-loop corrections are approximately written as

∆m2
h ∼

4x2
Hg

4
Xv

2
Φ

16π2
for xH 6= 0, (2.10)

∆m2
h ∼

4(xH + 1)(4xH + 1)

9

y2
t g

4
Xv

2
Φ

(16π2)2
, (2.11)

respectively. When one defines requirement of the naturalness as ∆m2
h < M2

h , eqs. (2.10)

and (2.11) lead the upper bound on vΦ as

vΦ .
1

|xH |

(
0.1

gX

)2

× 105 GeV for xH 6= 0, (2.12)

vΦ .

(
0.1

gX

)2

× 106 GeV, (2.13)

where we have taken yt ≈ 1. For |xH | < 0.1, the two-loop correction gives stronger

bound than one-loop correction. In the following, we will use the stronger bound for fixed

xH . Note that the mass correction from Φ is always negligible because of a small mixing

coupling λHΦ.

3 Phenomenological and cosmological aspects

In this section, we will discuss phenomenological and cosmological aspects of the model:

the GCU, vacuum stability and triviality, smallness of active neutrino masses, baryon

– 5 –
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Figure 1. Runnings of gauge couplings α−1
i . The dashed and solid lines correspond to the SM

and the U(1)X extended model cases, respectively. The vertical lines express MV = 800 GeV and

ΛGCU = 3× 1016 GeV.

asymmetry of the universe, and dark matter. We will also restrict the model parameters

from the naturalness of the Higgs mass.

3.1 Gauge coupling unification

First, we discuss the possibility of the GCU at a high energy scale. Since four additional

vector-like fermions (QL,R and DL,R) have gauge charges under the SM gauge groups as

shown in table 1, runnings of the SM gauge couplings are modified from the SM. Then, β

functions of gauge coupling constants are given by

βgY =
g3
Y

16π2

15

2
, βg2 =

g3
2

16π2

−7

6
, βg3 =

g3
3

16π2
(−5), (3.1)

at 1-loop level. Figure 1 shows runnings of gauge couplings α−1
i ≡ 4π/g2

i , where U(1)Y
gauge coupling is normalized as g1 ≡

√
5/3gY . The calculation has been done for xH = 0

with using 2-loop RGEs. We note that the running of gauge couplings are almost indepen-

dent of xH . In the figure, the horizontal axis is the renormalization scale and the vertical

axis indicates value of α−1
i . The red, green, and blue lines show α−1

1 , α−1
2 , and α−1

3 , respec-

tively. The dashed and solid lines correspond to the SM and our model, respectively. The

left vertical line stands for a typical scale of vector-like fermions, which has been taken as

MV = 800 GeV in figure 1. For µ < MV , the β functions are the SM ones, and we take

boundary conditions for the gauge couplings such that experimental values of the Wein-

berg angle, the fine structure constant, and the strong coupling can be reproduced [50].

The GCU can be achieved at ΛGCU = (2–4)× 1016 GeV, and the unified gauge coupling is

α−1
GCU = (35.4–35.8).3 This is the same result as in ref. [34], in which only QL,R and DL,R

3The GCU can be achieved by adjoint fermions as in ref. [51, 52].
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Figure 2. Running of λH in the U(1)B−L (xH = 0) case. The red and blue lines correspond to

κ = 0 and κ = 0.33, respectively. The black dashed line shows running of λH in the SM. The

vertical lines express MV = 800 GeV and ΛGCU = 3× 1016 GeV.

are added into the SM. As the vector-like fermion masses become larger, the precision of

the GCU becomes worse. Thus, the masses of QL,R and DL,R should be lighter than 1 TeV,

while vector-like fermion masses are constrained by the LHC experiments [53–55]. Since

the lower bound of vector-like quark lies around 700 GeV, the possibility of the GCU can

be testable in the near future.

We note that the proton lifetime in a GUT model. The proton lifetime is roughly

derived from a four-fermion approximation for the decay channel p → e+ + π0, which is

given by

τp ∼
(
α−1

GCU

)2 Λ4
GCU

m5
p

, (3.2)

where mp is the proton mass. For ΛGCU = 3×1016 GeV and α−1
GCU = 35.6, we can estimate

τp ∼ 1037 yrs, which is much longer than the experimental lower bound τp > 8.2 × 1033

yrs [56]. Thus, the model are free from the constraint of the proton decay.

3.2 Vacuum stability and triviality

Next, we discuss the vacuum stability. However, it is difficult to investigate exact vacuum

stability conditions, since there are three scalar fields and each of them has nonzero VEVs.

Therefore, we simply investigate three necessary conditions: λH > 0, λΦ > 0 and λS > 0.

The condition λH > 0 depends on additional contributions to βλH , i.e., κ1,2, gX and

scalar mixing couplings.4 If their contributions to βλH are negligible, since the SM gauge

couplings are larger compared to the SM case, running of λH is raised and always positive.

For example, however, the EW vacuum becomes instable for κ & 0.33 in the U(1)B−L

4Running of λH also depends on mass (or Yukawa coupling) of the top quark. We will use the central

value of world average, i.e., Mt = 173.34 GeV [57]. If we change this value of top quark mass, the following

numerical results can slightly change.
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(xH = 0) case. We show the running of λH for xH = 0 in figure 2, where βλH is independent

of gX up to the one-loop level, and contributions of gX can be negligible. The red and blue

lines correspond to κ = 0 and κ = 0.33, respectively. The black dashed line shows running

of λH in the SM. Thus, κ < 0.33 is required to realize the vacuum stability.

The Higgs mass corrections from QL,R and DL,R loops are given by

∆m2
h ∼

v2
S

16π2

[
(κ2

1 + κ2
2)(f2

Q + f2
D) + 2κ1κ2fQfD

]
∼

12κ2M2
V

16π2
, (3.3)

where we have taken κ = κ1 = κ2, which naturally arises from L ↔ R symmetry for the

vector-like particles, and MV = MQ = MD (MQ = fQvS/
√

2 and MD = fDvS/
√

2) for

simplicity. Then, the naturalness requires κ < 0.1 for MV ∼ 1 TeV. Although κvH is a

contribution to the vector-like fermion masses from the Higgs, it can be ignored because of

κvH �MV . Since the contribution of κ to βλH , i.e., 24λHκ
2 − 12κ4, is always positive for

κ < 0.1, the naturalness condition also guarantees the vacuum stability. Note that κ ' 0

guarantees λHS ' 0 at any energy scale, which is required to justify our potential analysis

for eq. (2.8).

Here, we check contributions of vector-like fermions to the S and T parameters, which

are approximately given by [58, 59]

δS ≈ 43

30π

(
κvH
MV

)2

, δT ≈ 3(κvH)2

10π sin2 θWM2
W

(
κvH
MV

)2

, (3.4)

where θW and MW are the Weinberg angle and the W boson mass, respectively. For

κ < 0.1, the parameters are estimated as δS < 3 × 10−4 and δT < 2 × 10−5, which are

consistent with the precision EW data S = 0.00± 0.08 and T = 0.05± 0.07 [56].

The condition λΦ > 0 is almost always satisfied when gX is dominant in the right-hand

side of eq. (2.6), i.e., λΦ(vΦ) ∼ g4
X(vΦ). In this case, βλΦ

is positive up to the GCU scale,

and then λΦ is also positive up to the GCU scale. It is also possible to realize the critical

condition λΦ(ΛGCU) = 0 as well as λΦ > 0, where the running of λΦ is curved upward as

in the so-called flatland scenario [9, 14, 16, 21, 24]. Then, both gX and Majorana Yukawa

couplings are dominant in βλΦ
, while λΦ is much smaller than them. This means that there

is a fine-tuning to satisfy eq. (2.6).

When λS is negligible in its β function, a solution of its RGE is approximately given by

λS(µ) ≈ λS(vS)− 1

16π2

(
12f4

Q(vS) + 6f4
D(vS) + 2f4

N (vS)
)

ln
µ

vS
, (3.5)

where µ is a renormalization scale. Once vS is fixed, fQ and fD are determined to realize

the GCU, while fN remains a free parameter. To estimate the condition of λS > 0, we

assume fN = fQ = fD at µ = vS for simplicity. Then, we can find that λS is positive up

to the GCU scale for λS(vS) & 0.01. This lower bound of λS(vS) is almost unchanged for

different values of vS , because vS dependence is logarithmic.

On the other hand, when λS is dominant in βλS , the Landau pole might exist, at which

the theory is not valid from the point of view of perturbativity (triviality). The energy

scale where the Landau pole appears is approximately estimated as

ΛLP = vS exp

[
4π2v2

S

9M2
s

]
, (3.6)

– 8 –
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Figure 3. vS dependence on the upper (red) and lower (blue) bounds of Ms, which correspond

to the Landau pole and vacuum stability conditions, respectively. For the Landau pole bound, we

take ΛLP = ΛGCU = 3× 1016 GeV in eq. (3.6).

Figure 4. The upper bound of MZ′ for fixed vΦ, which depends on xH . The solid and dashed

lines show the Landau pole (3.7) and the naturalness (eqs. (2.12) and (2.13)) bounds, respectively.

For the Landau pole bound, we take ΛLP = ΛGCU = 3× 1016 GeV in eq. (3.7). The shaded region

(MZ′ < 2.6 TeV) is excluded by the LHC experiments.

where Ms =
√

2λS(vS)vS is a mass of the real singlet scalar field. Figure 3 shows vS
dependence on the upper (red) and lower (blue) bonds of Ms, which correspond to the

Landau pole and vacuum stability conditions, respectively. Since the both bounds are

almost proportional to vS , allowed values of λS(vS) are almost unchanged for different vS .

We can find a strong constraint for λS as 0.01 . λS(vS) . 0.05.

In the same way, the Landau pole also exists when gX(vΦ) is sufficiently large. The

energy scale where the Landau pole appears is approximately estimated by the one-loop
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RGE of gX as

ΛLP = vΦ exp

[
32π2v2

Φ

(44/3 + 64/3xH + 30x2
H)M2

Z′

]
, (3.7)

where MZ′ is given in eq. (2.7). Figure 4 shows the upper bound of MZ′ for fixed vΦ, which

depends on xH . The solid lines show the maximal value of MZ′ allowed in the model,

which are calculated by eq. (3.7) for ΛLP = ΛGCU = 3× 1016 GeV. Note that the peak of

solid lines at xH = −16/45 corresponds to the orthogonal basis of two U(1) gauges. The

dashed lines show the naturalness bound estimated by eqs. (2.12) and (2.13). The red,

green, and blue colors correspond to vΦ = 10, 100, and 1000 TeV, respectively. The shaded

region (MZ′ < 2.6 TeV) is excluded by the LHC experiments [60, 61]. When we define the

triviality bound as ΛGCU < ΛLP, it prohibits the regions above the solid lines. One can

see that the bound leads gX(vΦ) . 0.5 from eq. (2.7), which is almost independent of vΦ.

Since the naturalness requires the stronger constraints than the triviality bound in almost

all parameter space, we can say that the naturalness guarantees no Landau pole below the

GCU scale. Note that the both bounds are almost the same for vΦ = 10 TeV, and they

exclude MZ′ > 10 TeV.

3.3 Neutrino masses and baryon asymmetry of the universe

From the Lagrangian (2.1), the neutrino mass terms are given by

(νL, νcR, NL, N c
R)


0 mD 0 0

mT
D MM 0 0

0 0 MNL
mN

0 0 mN MNR



νcL
νR
N c
L

NR

 , (3.8)

where mD = YνvH/
√

2, MM = YMvΦ/
√

2, MNL,R
= YNL,R

vΦ/
√

2, and mN = fNvS/
√

2.

There is no mixing term between νL,R and NL,R due to the Z2 symmetry. The active

neutrino masses can be obtained by the usual type-I seesaw mechanism [36–40], i.e., mν ≈
mDM

−1
M mT

D. The heavier mass eigenvalue is nearly equal to MM , whose upper bound is

given by the naturalness of the Higgs mass. Neutrino one-loop diagram contributes the

Higgs mass as

∆m2
h ∼

Y 2
ν Y

2
Mv

2
Φ

16π2
∼
mνM

3
M

16π2v2
H

, (3.9)

where we have used the seesaw relation. For mν ∼ 0.1 eV, the naturalness requires

MM . 107 GeV.

We mention the baryon asymmetry of the universe. In the normal thermal leptogene-

sis [62], there is a lower bound on the right-handed neutrino mass as MM & 109 GeV [63].

However, the resonant leptogenesis can work even at the TeV scale, where two right-handed

neutrino masses are well-degenerated [41]. In our model, additional U(1)X gauge interac-

tions make the right-handed neutrinos be in thermal equilibrium with the SM particles [64].

A large efficiency factor can be easily obtained, and the sufficient baryon asymmetry of the
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Figure 5. Annihilation processes of the dark matter Na (a = 1, 2).

universe can be generated by the right-handed neutrinos with a few TeV masses. Since the

neutrino Yukawa coupling YN and YM almost do not depend on the other phenomenologi-

cal problems, we can do the same analysis as in ref. [64], and hence, the result is also the

same as in ref. [64].

For the vector-like neutrinos (NL,R), we consider MN = MNL
= MNR

, which naturally

arises from L ↔ R symmetry for the vector-like fermions. Then, the mass eigenvalues

are respectively MN1 = |MN − mN | and MN2 = |MN + mN | for N1 = (N c
L − NR)/

√
2

and N2 = (N c
L +NR)/

√
2. The lighter mass eigenstate N1 is a DM candidate, because its

stability is guaranteed by the Z2 symmetry. In the limit of mN → 0 (MN1 = MN2), N1 and

N2 are degenerate, and N2 is also effective for a calculation of the DM relic abundance. In

the next subsection, we will investigate the degenerate N1,2 case.

In our model, the U(1)X gauge symmetry is successfully achieved via the CW mecha-

nism. It requires λΦ(vΦ) > 0 in eq. (2.6), that is,

nνM
4
M + 2M4

N <
3

32
M4
Z′ , (3.10)

where nν is a relevant number of right-handed neutrinos, which is defined as

trY 4
M (vΦ/

√
2)4 = nνM

4
M . Thus, the Majorana masses must be lighter than the Z ′ bo-

son mass. We have made sure that this constraint is always satisfied when N1,2 explain

the DM relic abundance.

3.4 Dark matter

To calculate the DM relic abundance, we use the same formula for the DM annihilation cross

sections as in ref. [19], where a new vector-like fermion is only NL,R (or N1,2), and the SM

fermions do not have U(1)X charges. The annihilation processes are t-channel NN → φφ, t-

channel NN → Z ′φ, and Z ′ mediated s-channel NN → Z ′φ. The corresponding diagrams

are shown in figure 5. Although our model has other contributions to the annihilation

cross sections, they are all negligible in the following setup. We consider the degenerate

case for simplicity, in which there is no vector-like mass term of N . Thus, t-channel

NN → ss process and s mediated s-channel NN → νRνR process does not occur at tree

level. From eq. (3.10), (2MN )2 < M2
Z′ is always required. Then, the annihilation cross

section σ(NN → Z ′∗ → ff̄), where f is some U(1)X charged fermion, is suppressed by

1/M2
Z′ . As a result, we can use the same formula for the DM annihilation cross sections as

in ref. [19].
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Figure 6. Scatter plots in (MN , MZ′) plane (left) and (Mφ, MZ′) plane (right), which realize the

DM relic abundance ΩDMh
2 = 0.1187, and satisfy all constraints as discussed in this paper as well as

the LUX bound. The horizontal line shows the lower bound on MZ′ by the LHC experiments. The

red, pink green, cyan, and blue dots correspond to 6 TeV ≤ vΦ < 10 TeV, 10 TeV ≤ vΦ < 100 TeV,

100 TeV ≤ vΦ < 103 TeV, 103 TeV ≤ vΦ < 104 TeV, 104 TeV ≤ vΦ < 105 TeV, respectively.

The spin independent cross section for the direct detection is almost dominated by

t-channel exchange of scalars h and φ, which has been considered in ref. [19]. However, our

model has an additional contribution due to Z ′ exchange diagrams, which is given by [65]

σSI =
m2
nM

2
N

π(mn +MN )2

g4
X

M4
Z′

= 7.75× 10−42

(
µn

1 GeV

)2(1 TeV

vΦ

)4

cm2, (3.11)

where mn is the nucleon mass, and µn = mnMN/(mn + MN ) is the reduced nucleon

mass. For the DM with the masses of 100 GeV and 1 TeV, the small vΦ regions such as

vΦ < 11 TeV and vΦ < 6 TeV are excluded by the LUX experiment, respectively [67]. These

bound are stronger than the LEP bound, where vΦ < 3.5 TeV is excluded.

In the following, we consider xH = 0 (U(1)B−L) case. There are six new parameters

in the model: the U(1)B−L gauge coupling gX , the two Majorana Yukawa coupling YNL
,

YNR
, the two quartic couplings λΦ, λHΦ, and the VEV of the complex scalar field vΦ.

On the other hand, there are two conditions YNL
= YNR

and eq. (2.9), and we require

that N explains the DM relic abundance ΩDMh
2 = 0.1187 [66]. Thus, we have three free

parameters for the DM analysis.

Figure 6 shows scatter plots in (MN , MZ′) plane (left) and (Mφ, MZ′) plane (right),

which realize the DM relic abundance ΩDMh
2 = 0.1187, and satisfy all constraints as

discussed above as well as the LUX bound. The parameter space starts from the initial

values Mφ = 100 GeV, MN = 100 GeV, and MZ′ = 2.6 TeV. Although the two figures

in figure 6 are very similar, MN > Mφ is always satisfied. The region of MZ′ < 2.6 TeV

is excluded by the current LHC bound [60, 61]. Since gX . 0.5 is required to avoid the

Landau pole, the upper bound on MZ′ is given by MZ′ . vΦ, while the upper bound in

the MN,φ & 500 GeV region is given by the naturalness (2.13). In the 200 GeV . MN,φ .
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900 GeV region, the lower bound on MZ′ is given by the LUX bound. To realize the DM

relic abundance, sufficiently large annihilation cross sections are required, which induce the

lower bound on MZ′ in the MN & 900 GeV region. From figure 6, we can see the upper

bound on the DM mass as MN . 2.6 TeV, and the bound of Mφ is almost the same as MN .

4 Conclusion

To solve the gauge hierarchy problem, we have constructed a classically scale invariant

model with a U(1)X gauge extension. We have assumed the classical scale invariance

at the GCU scale, where the Higgs mass completely vanishes even with some quantum

corrections. The scale invariance is violated around the TeV scale by the CW mechanism,

and the Higgs mass can be naturally generated through the scalar mixing term. The

GCU is realized by vector-like fermions QL,R and DL,R, which respectively have the same

quantum number as the SM quark doublet and down-type quark singlet but distinguished

by the additional Z2 symmetry, and their masses lie in 800 GeV .MV . 1 TeV. The GCU

scale is ΛGCU = 3 × 1016 GeV with α−1
GCU = 35.6, and the proton life time is estimated as

τp ∼ 1037 yrs, which is much longer than the experimental lower bound τp > 8.2×1033 yrs.

In addition, we have shown that the model can explain the vacuum stability, smallness

of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abun-

dance without inducing large Higgs mass corrections. Since there are additional fermions

with the SM gauge charges, the SM gauge couplings become larger than the SM case,

which leads smaller top Yukawa couplings. Then, the β function of the Higgs quartic cou-

pling becomes larger, and hence the EW vacuum becomes stable. The smallness of active

neutrino masses and the baryon asymmetry of the universe can be explained by the right-

handed neutrinos via the type-I seesaw mechanism and resonant leptogenesis, respectively.

The DM candidate is the SM singlet Majorana fermions N1,2, and stability of the DM is

guaranteed by the additional Z2 symmetry. We have analyzed the DM relic abundance

in the degenerate case (MN1 = MN2), and found the upper bound on the DM mass as

MN . 2.6 TeV.
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A β functions in the U(1)X extended SM

We give one-loop β-functions in our model:

βgY =
g3
Y

16π2

15

2
, βg2 =

g3
2

16π2

−7

6
, βg3 =

g3
3

16π2
(−5), (A.1)

βgX =
gX

16π2

[(
44

3
+

64

3
xH + 30x2

H

)
g2
X +

15

2
g2

mix +

(
32

3
+ 30xH

)
gmixgX

]
, (A.2)
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βgmix =
1

16π2

[
gmix

(
15

2
(g2

mix + 2g2
Y ) +

(
44

3
+

64

3
xH + 30x2

H

)
g2
X

)
+

(
32

3
+ 30xH

)
gX(g2

Y + g2
mix)

]
, (A.3)

βyt =
yt

16π2

[
9

2
y2
t −

(
8g2

3 +
9

4
g2

2 +
17

12
(g2
Y + g2

mix) +

(
2

3
+

10

3
xH +

17

3
x2
H

)
g2
X

+

(
5

3
+

17

3
xH

)
gmixgX

)
+ 3(κ2

1 + κ2
2)

]
, (A.4)

βYM =
YM

16π2

[
4Y 2

M + 2trY 2
M + 2(Y 2

NL
+ Y 2

NR
)− 6g2

X

]
, (A.5)

βYNL
=

1

16π2

[
YNL

(6Y 2
NL

+ f2
N + 2(trY 2

M + Y 2
NR

)− 6g2
X) + 2f2

NYNR

]
, (A.6)

βYNR
=

1

16π2

[
YNR

(6Y 2
NR

+ f2
N + 2(trY 2

M + Y 2
NL

)− 6g2
X) + 2f2

NYNL

]
, (A.7)

βκ1 =
1

16π2

[
κ1

(
−8g2

3 −
9

4
g2

2 −
5

12
(g2
Y + g2

mix) +
1

3
(1− 5xH)gmixgX

+
1

3
(−2+2xH−5x2

H)g2
X+

1

2
(f2
Q + f2

D) + 3y2
t +

9

2
κ2

1 + 3κ2
2

)
+ 2fQfDκ2

]
,(A.8)

βκ2 =
1

16π2

[
κ2

(
−8g2

3 −
9

4
g2

2 −
5

12
(g2
Y + g2

mix) +
1

3
(1− 5xH)gmixgX

+
1

3
(−2+2xH−5x2

H)g2
X+

1

2
(f2
Q + f2

D) + 3y2
t +

9

2
κ2

2 + 3κ2
1

)
+ 2fQfDκ1

]
,

βfQ =
1

16π2

[
fQ

(
−8g2

3 −
9

2
g2

2 −
1

6
(g2
Y + g2

mix)− 2

3
(1 + xH)gmixgX

−2

3
(1 + xH)2g2

X +
1

2
(κ2

1 + κ2
2) + 15f2

Q + 6f2
D + 2f2

N

)
+ 2fDκ1κ2

]
, (A.9)

βfD =
1

16π2

[
fD

(
−8g2

3 −
2

3
(g2
Y + g2

mix) +
4

3
(1− 2xH)gmixgX −

2

3
(1− 2xH)2g2

X

+(κ2
1 + κ2

2) + 12f2
Q + 9f2

D + 2f2
N

)
+ 4fQκ1κ2

]
, (A.10)

βfN =
fN

16π2

[
−6g2

X + 2Y 2
NL

+ 8YNL
YNR

+ 2Y 2
NR

+ 12f2
Q + 6f2

D + 5f2
N

]
, (A.11)

βλH =
1

16π2

[
24λ2

H + λ2
HΦ + 2λ2

HS + λH(12y2
t − 9g2

2 − 3(g2
Y + g2

mix)− 12x2
Hg

2
X

−12xHgmixgX+12(κ2
1+κ2

2))−6y4
t −6(κ4

1+κ4
2) +

3

8

{
2g4

2 +(g2
2 +(g2

Y +g2
mix))2

}
+3xHgmixgX(g2

2 +g2
Y +g2

mix+4x2
Hg

2
X)+3x2

Hg
2
X(g2

2 +g2
Y +3g2

mix+2x2
Hg

2
X)

]
,

(A.12)

βλΦ
=

1

16π2

[
20λ2

Φ + 2λ2
HΦ + 2λ2

ΦS + λΦ(8(trY 2
M + Y 2

NL
+ Y 2

NR
)− 48g2

X) + 96g4
X

−16(trY 4
M + Y 4

NL
+ Y 4

NR
)
]
, (A.13)

βλS =
1

16π2

[
72λ2

S+2λ2
HS+λ2

ΦS+λS(48f2
Q+24f2

D+8f2
N )−12f4

Q−6f4
D−2f4

N

]
, (A.14)
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βλHΦ
=

1

16π2

[
4λHSλΦS + λHΦ

(
12λH + 8λΦ + 4λHΦ −

9

2
g2

2 −
3

2
(g2
Y + g2

mix)

−6(4+x2
H)g2

X−6xHgmixgX+6y2
t +6(κ2

1 + κ2
2)+4(trY 2

M+Y 2
NL

+Y 2
NR

)

)
+12g2

X(gmix + 2xHgX)2

]
, (A.15)

βλHS
=

1

16π2

[
2λHΦλΦS + λHS

(
12λH + 24λS + 8λHS −

9

2
g2

2 −
3

2
(g2
Y + g2

mix)

−6x2
Hg

2
X − 6xHgmixgX + 6y2

t + 6(κ2
1 + κ2

2) + 24f2
Q + 12f2

D + 4f2
N

)
−12(f2

Q + f2
D)(κ2

1 + κ2
2)− 24fQfDκ1κ2

]
, (A.16)

βλΦS
=

1

16π2

[
4λHSλHΦ + λΦS

(
24λS + 8λΦ + 8λΦS − 24g2

X + 24f2
Q + 12f2

D + 4f2
N

+4(trY 2
M + Y 2

NL
+ Y 2

NR
)
)
− 16f2

N (Y 2
NL

+ Y 2
NR

+ YNL
YNR

)
]
. (A.17)
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