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Abstract. In a hyperbolic network X, the properties of non-negative quasi-
bounded harmonic functions and singular harmonic functions are considered by
using the notion of reduced functions (balayage). Later some extensions of these
results are given with respect to the class of non-negative quasi-bounded super-
harmonic functions and the class of non-negative q-harmonic functions defined
by discrete Schrödinger operators on X.

1. Introduction

The notions of quasi-bounded harmonic function and singular harmonic function
were introduced by Parreau [4] in 1951. This concept was generalized by Arsove and
Leutwiler [2] in 1974. In this paper we define a map on the family of non-negative
functions having superharmonic majorants in X and this map is used to obtain
necessary and sufficient conditions for a non-negative harmonic function to be a
quasi-bounded harmonic function, singular harmonic function in an infinite network
X. Further this map is used to define quasi-bounded superharmonic functions in
X. Similar to the Parreau decomposition for non-negative harmonic functions, we
give a unique decomposition for a non-negative superharmonic function in X as the
sum of a quasi-bounded superharmonic function and a singular harmonic function.
We carry on the study to get a similar decomposition of Schrödinger harmonic

functions defined as solutions of ∆u(x) = q(x)u(x) where q(x) is a non-negative
real-valued function on X such that q ̸≡ 0. We say that u(x) is q−harmonic at x ∈
X if ∆qu(x) = ∆u(x)− q(x)u(x) = 0, where q(x) ≥ 0, q ̸≡ 0 and give the Parreau
decomposition as quasi-bounded q−harmonic function and singular q−harmonic
function for any positive q−harmonic function. In this case, there always exist
positive q− superharmonic functions which are not q−harmonic. Consequently
there will always exist positive q−harmonic functions on X. But it is possible
that every such q−harmonic function is bounded so that there may not be any
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singular q−harmonic function on X. We give a number of sufficient conditions for
the existence of positive singular q−harmonic functions on X.

2. Preliminaries

Let X be a countable set of vertices; a countable set Y of edges joining some
pairs of nodes is given; the resulting graph is assumed to be connected, locally finite
and without self-loops. Two vertices x and y are said to be neighbours, denoted by
x ∼ y, if and only if there is an edge joining x and y. Assume that for each pair of
distinct vertices x and y in X is associated a number t(x, y) ≥ 0 called conductance
such that t(x, y) > 0 if and only if x ∼ y; t(x, y) and t(y, x) may be different and
t(x) =

∑
y∼x

t(x, y) for every x ∈ X. Then X is called an infinite network.

Given a subset E of X, the interior
◦
E of E is defined as the set of vertices in

E all of whose neighbours are in E. Write ∂E = E \
◦
E. Let d(e, x) denote the

distance from the vertex e to x, that is the length of the path from e to x.
Let s(x) be a real-valued function defined on X. Then the Laplacian of s at

x0 ∈ X is defined by ∆s(x0) =
∑
z∼x0

t(x0, z)[s(z) − s(x0)]. A real valued function

s(x) on E is said to be superharmonic (respectively harmonic) on E if and only if

∆s(x) ≤ 0 (respectively ∆s(x) = 0) for every x ∈
◦
E; s(x) is subharmonic if and

only if −s(x) is superharmonic on E. We recall some properties of superharmonic
functions and statements of theorems which are given in [1].
Properties of superharmonic functions:

(1) Let s1 and s2 be two superharmonic functions on X. Then s1 + s2 is also
superharmonic on X.

(2) If s is superharmonic on X and α is a non-negative constant then αs is also
superharmonic on X.

(3) If s1 and s2 are two superharmonic functions on X, then inf(s1, s2) is also
superharmonic on X .

(4) If {sn} is a sequence of superharmonic functions on X such that s(x) =
lim
n→∞

sn(x) is finite at every x ∈ X, then s is superharmonic on X.

(5) Let {ui : i ∈ I} be a family ℑ of upper directed superharmonic functions on
X. That is, if u1, u2 ∈ ℑ, there exists u ∈ ℑ such that u ≥ u1 and u ≥ u2.
If u = sup{ui} is finite-valued, then u is superharmonic on X.

(6) If {ui : i ∈ I} is a family of superharmonic functions on X such that ui ≥ f
for a real-valued function f, then u = inf{ui} is superharmonic on X.

(7) Let s and t be real-valued functions in X. Let s be superharmonic and t be
subharmonic on X such that s ≥ t. Then there exists a harmonic function
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h on X such that s ≥ h ≥ t which is called the greatest harmonic minorant
of s in X.

Definition 2.1. A non-negative superharmonic function p on X is said to be a
potential if its greatest harmonic minorant is zero.

Theorem 2.2 (Riesz representation theorem). Any superharmonic function s ≥ 0
on X can be written as the unique sum of a potential and a non-negative harmonic
function on X.

Definition 2.3. An infinite network X is said to be a hyperbolic network if and
only if there exists a positive potential on X; otherwise, X is called a parabolic
network.

We assume that X is a hyperbolic network throughout the paper.
Reduced functions: Let f be a real-valued function on X. Suppose there

exists a superharmonic function s on X such that s ≥ f on X. Let F be the family
of all superharmonic functions u such that u ≥ f on X. The reduced function of f
is defined as Rf (x) = inf {u (x) : u ∈ F}.
Lemma 2.4. Let f be a real-valued function majorised by a superharmonic function
in X. Then Rf is superharmonic in X such that f ≤ Rf. If f is subharmonic at
a vertex x0, then Rf is harmonic at x0.

Proof. The family F is lower directed; for let s3 = min(s1, s2) where s1, s2 ∈ F then
s3 is a superharmonic function such that f ≤ s3 so that s3 ∈ F. Hence there exists
a decreasing sequence of functions {sn} in F such that Rf = limn→∞ sn. This
implies Rf is superharmonic such that f ≤ Rf.
Let f be subharmonic at x0. Define

fx0(x) =

{ ∑
y∼x0

t(x0,y)
t(x0)

Rf(y), if x = x0

Rf (x) , if x ̸= x0.

Then fx0(x) is superharmonic on X and harmonic at x = x0 such that f ≤ fx0 .
Thus fx0 ∈ F and hence Rf ≤ fx0 . Clearly fx0 ≤ Rf . Hence fx0 = Rf and Rf is
harmonic at x0. □
Note:

(1) If f is a subharmonic function majorised by a superharmonic function in
X, then Rf is the least harmonic majorant of f.

(2) If f ≥ 0 is majorised by a superharmonic function in X, then Rf(x) is
harmonic at every vertex where f(x) = 0.

3. Quasi-bounded and Singular harmonic functions

Parreau [4] introduced the notions of non-negative quasi-bounded harmonic func-
tions and non-negative singular harmonic functions. According to Parreau: A non-
negative harmonic function u on a Riemann surface R is quasi-bounded if it is the
limit of an increasing sequence of bounded non-negative harmonic functions on R;
u is singular if the only non-negative bounded harmonic function on R majorised
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by u is the identically zero function. Every non-negative harmonic function on R
has a unique representation as the sum of a non-negative quasi-bounded harmonic
function on R and a non-negative singular harmonic function on R.
As Parreau defined, we define a non-negative quasi-bounded harmonic function

and a non-negative singular harmonic function in an infinite network X below and
give the unique representation for every non-negative harmonic function h in X as
h = q + s, where q is quasi-bounded harmonic and s is singular harmonic in X.

Definition 3.1. A non-negative harmonic function u in an infinite network X is
quasi-bounded if it is the limit of an increasing sequence of bounded non-negative
harmonic functions in X; u is singular if the only non-negative bounded harmonic
function in X majorised by u is the function identically zero.

Note: A non-negative harmonic function u is singular if and only if s is an upper
bounded subharmonic function such that s ≤ u implies s ≤ 0.
For, if s is an upper bounded subharmonic function on X, then s+ is a bounded

non-negative subharmonic function, s+ ≤ u. Then there exists a bounded harmonic
function H on X such that s+ ≤ H ≤ u. If u is a singular harmonic function, then
H = 0; consequently s ≤ 0. The converse is obvious.
Some properties of singular harmonic functions:

(1) Let v1, v2 be two non-negative harmonic functions such that v1 ≤ v2. If v2
is singular then v1 is singular.

Proof. Let b be a bounded non-negative harmonic function in X such that
b ≤ v1; then b ≤ v2 so that b = 0. □

(2) If u, v are singular harmonic, then u+ v is singular.

Proof. Let b ≥ 0 be a bounded harmonic function such that b ≤ u + v.
Then b− v ≤ u which implies (b− v)+ ≤ u. Since (b− v)+ ≤ b, (b− v)+ is a
bounded subharmonic function such that (b− v)+ ≤ u. Since u is singular
(b− v)+ = 0 or b ≤ v. Since v is singular b = 0. □

(3) Let {vn} be a sequence of singular harmonic functions in X. Let v(x) =
∞∑
n=1

vn(x). If v(x0) < ∞ for some x0 ∈ X, then v is singular harmonic.

Proof. Since v(x0) < ∞, v(x) < ∞ for all x ∼ x0. For if x ∼ x0 and
v(x) = ∞, then

v(x0) =
∞∑
n=1

vn(x0) =
∞∑
n=1

∑
y∼x0

t(x0, y)

t(x0)
vn(y) =

∑
y∼x0

t(x0, y)

t(x0)
v(y) = ∞,

since x ∼ x0 and v(x) = ∞. This contradiction shows that v(x) < ∞ for
all x ∼ x0 and hence harmonic at x0. Since X is connected v(x) < ∞ for all
x ∈ X and harmonic in X. To show v is singular, let b be bounded harmonic

function such that 0 ≤ b ≤ v. Then b−
∞∑
n=2

vn ≤ v1 implies [b−
∞∑
n=2

vn]
+ ≤ v1.

Since the left hand side is a bounded subharmonic function and v1 is singular
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[b −
∞∑
n=2

vn]
+ = 0. Therefore b(x) ≤

∞∑
n=2

vn(x); proceeding like this we get

for any integer m > 0, b(x) ≤
∞∑

n=m

vn(x). Since
∞∑
n=1

vn(x) < ∞ for all x,

for y ∈ X, there exists m sufficiently large such that
∞∑

n=m

vn(y) < ϵ. Hence

b(y) < ϵ. Since ϵ is arbitrary, b(y) = 0. That is, b = 0. Hence v is
singular. □

Theorem 3.2. Let h > 0 be harmonic in X. Let ℘ be the set of all bounded non-
negative harmonic functions b such that b ≤ h. Then u = sup

b∈℘
b is the largest

quasi-bounded harmonic function in X such that u ≤ h and h− u is singular.

Proof. Note that ℘ is upper directed. For, if b1, b2 ∈ ℘ then sup(b1, b2) is a bounded
subharmonic function in X such that sup(b1, b2) ≤ h. This implies there exists a
bounded harmonic function w such that sup(b1, b2) ≤ w ≤ h, that is w ∈ ℘. Since
X is countable, there exists {bn} an increasing sequence in ℘ such that u = limn bn.
Hence u is a quasi-bounded harmonic function in X. Suppose q is quasi-bounded
and q ≤ h. Then q = limn qn, where {qn} is an increasing sequence of bounded
harmonic functions such that qn ≤ h. Then {qn} ∈ ℘. Hence q ≤ u. Thus u is the
greatest quasi-bounded harmonic function in X such that u ≤ h. Let v = h − u.
Suppose b0 ≥ 0 is a bounded harmonic function in X such that b0 ≤ v. Then
u+ b0 = lim(bn+ b0) is quasi-bounded such that u+ b0 ≤ h; hence u+ b0 ≤ u which
gives b0 = 0. Thus v is singular. □
Corollary 3.3. Any non-negative harmonic function h in X has a decomposition
h = q + s where q is the largest quasi-bounded harmonic function such that q ≤ h
and s is a singular harmonic function in X.

4. The operator T

Let ℑ be the class of all non-negative real-valued functions u on X admitting
superharmonic majorants. Define a map T : ℑ → ℑ as below:

If u ∈ ℑ, then there exists a non-negative superharmonic function φ on X such
that u ≤ φ+n, for any non-negative integer n. Then u−n ≤ φ implies (u−n)+ ≤ φ.
Therefore (u−n)+ ∈ ℑ. Let us denote (u−n)+ by un. Then un = 0 on En = {x ∈
X/u(x) ≤ n}, where En ⊂ En+1 and ∪En = X. Consider the reduced function of un

inX, that is, Run = inf{v : v non-negative superharmonic such that un ≤ v onX}.
Then

(1) Run is non-negative superharmonic in X and harmonic in En.
(2) un ≤ Run on X.
(3) Since {un} is a decreasing non-negative sequence in X, {Run} is also a

decreasing non-negative superharmonic sequence in X.

If we define Tu = lim
n→∞

Run, for every u ∈ ℑ, then Tu is a non-negative harmonic

function in X. For, let x0 ∈ X. Then x0 ∈ En for some n. Then Run(x) is
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harmonic at x = x0. Since Rum(x) is harmonic at x = x0 for every m ≥ n this
implies Tu is harmonic at x0. Since x0 is arbitrary, Tu is harmonic on X admitting
a superharmonic majorant. Hence Tu ∈ ℑ, for every u ∈ ℑ. Note that all non-
negative superharmonic functions are in ℑ.
Properties of the map T :

(1) If u, v ∈ ℑ and u ≤ v then Tu ≤ Tv.

Proof. For any non-negative integer n, un = (u− n)+ ≤ (v − n)+ = vn and
Run ≤ Rvn which implies Tu ≤ Tv. □

(2) If u, v ∈ ℑ then T (inf(u, v)) ≤ inf(Tu, Tv).

Proof. inf(u, v) ≤ u and inf(u, v) ≤ v. Therefore by property (1)
T (inf(u, v)) ≤ Tu and T (inf(u, v)) ≤ Tv and hence T (inf(u, v)) ≤
inf(Tu, Tv). □

(3) If u, v ∈ ℑ then T (u+ v) ≤ Tu+ Tv.

Proof. Note that (u+ v − 2n)+ ≤ (u− n)+ + (v − n)+. If (u+ v − 2n)+ =
(u+ v)2n then (u+ v)2n ≤ un+vn ≤ Run+Rvn which implies R(u+v)2n ≤
Run +Rvn. Taking limits on both sides we get T (u+ v) ≤ Tu+ Tv. □

(4) Let u ∈ ℑ and h be a non-negative bounded function inX. Then T (u+h) =
Tu.

Proof. Since h is a non-negative bounded function on X there exists a non-
negative integer m such that 0 ≤ h ≤ m on X. Hence hn = 0 for every n ≥
m so that Rhn = 0 for every n ≥ m which implies Th = 0. Since u ≤ u+ h
we have Tu ≤ T (u+ h) ≤ Tu+ Th = Tu and hence Tu = T (u+ h). □

(5) If u ∈ ℑ is superharmonic on X then Tu ≤ u.
(6) Let {un} ≥ 0 be a decreasing sequence of superharmonic functions in X

such that lim
n→∞

un = h, where h is harmonic in X. Then lim
n→∞

Tun = Th in

X.

Proof. Since h ≤ un, we have

Th ≤ Tun ≤ Th+ T (un − h) ≤ Th+ un − h.

Allowing n → ∞, we get Th ≤ lim
n→∞

Tun ≤ Th. Hence lim
n→∞

Tun = Th. □

(7) If u ∈ ℑ then Tu = TRu in X.

Proof. Since u ≤ Ru, Tu ≤ TRu. Let φ be a non-negative superharmonic
function in X such that u ≤ φ + n, for any non-negative integer n. Then
Ru ≤ φ + n, implies R(Ru)n ≤ φ. Now taking infimum over all the ad-
mitting φ, we get R(Ru)n ≤ Run, as limit n → ∞ TRu ≤ Tu. Hence
Tu = TRu. □

Theorem 4.1. Let h be a non-negative harmonic function in X. Then h is quasi-
bounded if and only if Th = 0.
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Proof. Let h be a non-negative quasi-bounded harmonic function in X. That is,
there exists an increasing sequence of non-negative bounded harmonic functions
{hn} in X such that limn→∞ hn = h. Write h = (h − hn) + hn. Since hn is a
non-negative bounded harmonic function by Properties 4 and 5 we have Th =
T ((h−hn)+hn) = T (h−hn) ≤ h−hn. Taking limit on both sides we get Th ≤ 0.
That is Th = 0. Conversely let Th = 0. Since h is non-negative harmonic,
hn = (h − n)+ is subharmonic so that Rhn is non-negative harmonic in X and
h − Rhn is harmonic in X. Now Rhn ≥ hn ≥ h − n implies h − Rhn ≤ n. Thus
{h′

n} = h − Rhn is a sequence of non-negative bounded harmonic functions in X
such that limn→∞ h

′
n = h. Hence h is quasi-bounded. □

Corollary 4.2. If u ∈ ℑ and h is a quasi-bounded harmonic function in X then
T (u+ h) = Tu.

Proof. Since u ≤ u + h, we have Tu ≤ T (u + h) ≤ Tu + Th = Tu(by Theorem
4.1). Hence T (u+ h) = Tu. □
Theorem 4.3. Let h be a non-negative harmonic function in X. Then h is singular
if and only if Th = h.

Proof. Let h be a non-negative singular harmonic function in X. Then as in
Theorem 4.1, h − Rhn is a non-negative bounded harmonic function in X such
that h − Rhn ≤ h. Since h is singular we have h − Rhn = 0 for any n. Thus
h = limn→∞ Rhn = Th. Conversely let Th = h and u be a bounded non-negative
harmonic function in X such that u ≤ h. Then by Properties 4 and 5 we have
Th = T ((h − u) + u) = T (h − u) ≤ h − u. Hence u ≤ h − Th = 0 which implies
u = 0. □
Theorem 4.4. Let Ξ be an increasingly ordered family of non-negative singular
harmonic functions in X. If h = sup

v∈Ξ
v is finite valued, then h is a non-negative

singular harmonic function in X.

Proof. We know that h is a non-negative harmonic function in X. Since h ≥ v,
Th ≥ Tv = v and we get Th ≥ h. But Th ≤ h always. Hence Th = h, that is h is
singular. □

5. Quasi-bounded superharmonic functions

Definition 5.1. (Arsove and Leutwiler [2])Extending the quasi-bounded harmonic
and singular harmonic definition to non-negative superharmonic functions, we say
that a non-negative superharmonic function v is quasi-bounded superharmonic if
Tv = 0 and singular superharmonic if Tv = v in X. Thus a singular superharmonic
function is a singular harmonic function.

Example 5.2. (1) Any non-negative bounded superharmonic function is qua-
sibounded superharmonic.

(2) Sum of two quasi-bounded superharmonic functions is quasibounded super-
harmonic.
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(3) We know any positive superharmonic function on X is the increasing limit
of potentials. For, En = {x ∈ X : d(e, x) ≤ n} are finite sets such that
En ⊂ En+1 and ∪En = X. If v > 0 is a superharmonic function in X and
REn

v , the reduced function of v on En, then by (Corollary 3.2.8 [1]) REn
v is a

potential in X. Note that the sequence {REn
v } is an increasing sequence of

potentials in X converging to v. Also if p is a positive potential in X then
Tp is harmonic and Tp ≤ p implies Tp = 0. Hence p is a quasibounded
superharmonic function in X. Thus any superharmonic function v > 0 is
the increasing limit of quasi-bounded superharmonic functions in X.

Theorem 5.3. Let {un} be a sequence of non-negative functions in X and {vn} be a
sequence of superharmoic functions in X such that un ≤ vn for every n = 1, 2, 3, ...

and
∞∑
n=1

vn(x) ̸= +∞ for each x ∈ X. Then T (
∞∑
n=1

un) ≤
∞∑
n=1

Tun.

Proof. Let u =
∞∑
n=1

un. If z0 ∈ X is any arbitrary vertex and ϵ is any positive

number, then there exists {λn}, a sequence of positive integers such that

Runλn(z0) ≤ Tun(z0) +
ϵ

2n
(n = 1, 2, 3, ...).

where Runλn is the reduced function of unλn = (un − λn)
+ on X. Also,

un ≤ Runλn + λn (n = 1, 2, 3, ...).

For every (m = 1, 2, 3, ...)

u =
m∑

n=1

un +
∞∑

n=m+1

un ≤
m∑

n=1

(Runλn + λn) +
∞∑

n=m+1

vn.

Set σm =
m∑

n=1

λn (m = 1, 2, 3, ...). Then

u ≤
m∑

n=1

Runλn + σm +
∞∑

n=m+1

vn

That is, (u− σm)
+ = uσm ≤

m∑
n=1

Runλn +
∞∑

n=m+1

vn

Ruσm ≤
m∑

n=1

Runλn +
∞∑

n=m+1

vn.
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Allowing m → ∞, we get

Tu ≤
∞∑
n=1

Runλn

Hence Tu(z0) ≤
∞∑
n=1

Runλn(z0)

≤
∞∑
n=1

Tun(z0) +
∞∑
n=1

ϵ

2n
.

ϵ being arbitrary, we get

Tu(z0) ≤
∞∑
n=1

Tun(z0).

Since z0 is arbitrary, we have T (
∞∑
n=1

un) ≤
∞∑
n=1

Tun. □

Corollary 5.4. Let {un} be a sequence of quasi-bounded superharmonic functions

in X. If u =
∞∑
n=1

un < ∞, then u is a quasi-bounded superharmonic function in X.

Proof. By Theorem 5.3, T (
∞∑
n=1

un) ≤
∞∑
n=1

Tun. Since each un is quasi-bounded su-

perharmonic, Tun = 0 which implies Tu = 0. That is, u is a quasi-bounded
superharmonic function in X. □
Theorem 5.5. Any non-negative superharmonic function v can be uniquely written
as v = vb + vs in X, where vb is a quasi-bounded superharmonic function and vs is
a singular harmonic function in X.

Proof. By Riesz representation theorem v can be uniquely written as v = p+ h in
X, where p is a potential and h is the greatest harmonic minorant of v in X. Now
by Corollary 3.3, h can be uniquely written as h = q+vs where q is a quasi-bounded
harmonic function and vs is a singular harmonic function in X. Hence v = vb + vs
where vb = p + q is quasi-bounded superharmonic and vs is a singular harmonic
function in X.
Uniqueness: Let v = v

′

b + v
′
s be another such decomposition. Since v

′
s ≤ vb + vs,

v
′
s = Tv

′
s ≤ T (vb + vs) ≤ Tvb + Tvs = Tvs = vs. Similarly, we can prove vs ≤ v

′
s.

Thus the uniqueness. □
Corollary 5.6. Let v be a non-negative superharmonic function in X. Then Tv =
vs, where vs is the singular harmonic part of v.

Proof. By Theorem 5.5 v = vb + vs, where vb is a quasi-bounded superharmonic
function and vs is a singular harmonic function inX. Tv = T (vb+vs) ≤ Tvb+Tvs =
0 + vs. Now vs ≤ v implies Tvs ≤ Tv; that is, vs ≤ Tv. Hence Tv = vs. □
Remark 5.7. (1) Let v1, v2 be two non-negative superharmonic functions such

that v1 ≤ v2. Then singular harmonic part of v1 ≤ singular harmonic part
of v2.
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(2) Let v1, v2 be two non-negative superharmonic functions in X. Then T (v1+
v2) = Tv1 + Tv2.

Proof. By Theorem 5.5 v1, v2 can be uniquely written as v1 = q1 + s1 and
v2 = q2 + s2, where q1, q2 are quasi bounded superharmonic and s1, s2 are
singular harmonic functions in X. If v1+v2 = v3 then v3 = q3+s3, where q3
is quasi-bounded superharmonic and s3 is singular harmonic in X. Since the
representation is unique s3 = s1 + s2. Now by Corollary 5.6, T (v1 + v2) =
Tv1 + Tv2. □

(3) Let {vn} be a sequence of non-negative superharmonic functions in X such

that
∞∑
n=1

vn(x) < ∞ for some x ∈ X. Then T (
∞∑
n=1

vn) =
∞∑
n=1

Tvn.

Proof. If v(x) =
∞∑
n=1

vn(x), then v(x) is superharmonic in X.
∞∑
n=1

vn =

∞∑
n=1

(qn + sn), where q′ns and s′ns are quasi-bounded superharmonic and sin-

gular harmonic parts of v′ns respectively. By Property 3 of singular har-

monic functions and by Corollary 5.4, we get
∞∑
n=1

sn is singular harmonic

in X and
∞∑
n=1

qn is quasi-bounded superharmonic in X. By Corollary 5.6,

T (v) =
∞∑
n=1

sn =
∞∑
n=1

Tvn. □

Theorem 5.8. Let v = vb + vs be the unique decomposition of a non-negative
superharmonic function v in X, where vb is a quasi-bounded superharmonic function
and vs is a singular harmonic function in X. Then inf(vb, vs) is a potential in X.

Proof. Let h be a harmonic function in X such that 0 ≤ h ≤ inf(vb, vs). Since vb is
quasi-bounded superharmonic, by Riesz representation theorem vb = p+ h1 where
p is a potential and h1 is the greatest harmonic minorant of vb. Then h−h1 ≤ p so
that h ≤ h1. Since Th1 = 0, Th = 0. Hence h = sup bn, where {bn} is a sequence of
non-negative bounded harmonic functions in X. Now h ≤ vs implies bn ≤ vs. Since
vs is singular and bn is a non-negative bounded harmonic function, we get bn = 0
for every n. Therefore h = 0. Hence inf(vb, vs) is a potential. □
Theorem 5.9. Let v be a non-negative superharmonic function in X. Then Tv is
the greatest singular harmonic minorant of v. In fact Tv = sup

h∈S
h, where S is the

family of all singular harmonic functions h in X such that h ≤ v.

Proof. S is increasingly ordered. For, sup(h1, h2) is a non-negative subharmonic
function majorized by v. Hence there exists a harmonic function u ≥ 0 such
that sup(h1, h2) ≤ u ≤ v. Since h1 ≤ u, h1 = Th1 ≤ Tu; similarly h2 ≤ Tu.
If h = Tu then by Corollary 5.6, h is a singular harmonic function such that
sup(h1, h2) ≤ h ≤ u ≤ v. Hence h ∈ S . SinceX has a countable number of vertices,
we can extract an increasing sequence {un} ∈ S such that sup

h∈S
h(x) = limn un(x)
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for each vertex x ∈ X. Now H(x) = limn un(x) is a harmonic function such that
un(x) ≤ H(x) for each n so that un(x) = Tun(x) ≤ TH(x); when n → ∞,
limn un(x) ≤ TH(x), that is H(x) ≤ TH(x). But TH(x) ≤ H(x) always so that
H(x) = TH(x) for all x ∈ X. That is H(x) is singular harmonic. H(x) ≤ v(x)
implies H = TH ≤ Tv on X. But Tv ∈ S so that H ≥ Tv. Consequently H = Tv.
That is, Tv(x) = sup

h∈S
h(x) for each x ∈ X. □

Corollary 5.10. If u ∈ ℑ, the class of all non-negative real-valued functions u on
X admitting superharmonic majorants, then T 2u = Tu. In particular if v > 0 is a
superharmonic function in X, then T 2v = v.

Proof. If u ∈ ℑ, then Ru is superharmonic, TRu is singular harmonic by Theorem
5.9 and by the Property 7 of T , Tu = TRu. Therefore Tu is singular harmonic in
X. Hence T 2u = Tu. □
Corollary 5.11. A non-negative superharmonic function v is quasi-bounded if and
only if 0 is the only singular harmonic minorant of v.

6. Quasi-bounded harmonic and singular harmonic functions in
subordinate structures.

In an infinite network X, we have defined that a function u is superharmonic in
X if and only if t(x)u(x) ≥

∑
y∼x

t(x, y)u(y) at every vertex x in X. Let us say that

{t(x, y)} defines a ∆-structure in X. Define t′ ≥ 0 a real valued function on X×X
such that:

(1) 0 ≤ t′(x, y) ≤ t(x, y) for any pair x and y in X.
(2) t′(x, y) > 0 if and only if x ∼ y.
(3) t′(x, y) < t(x, y) for atleast one pair x and y.

Then this system ∆′ of t′(x, y) is said to be subordinate to ∆. Write ∆′u(x) =

−u(x) +
∑
y∼x

t′(x,y)
t(x)

u(y).

Example 6.1. The harmonic structure defined by the Schrödinger equation
∆qu(x) = ∆u(x) − q(x)u(x) where q(x) ≥ 0, but q ̸≡ 0 in X is subordinate to
the harmonic structure defined by the Laplace equation ∆u(x) = 0 in X. For if we

take t′(x, y) = t(x) t(x,y)
t(x)+q(x)

, where q(x) ≥ 0 and q(z) > 0 for at least one vertex

z ∈ X, then ∆′u(x) = −u(x)+
∑
y∼x

t(x,y)
t(x)+q(x)

u(y) which has the same sign as ∆qu(x).

A function u(x) defined on X is said to be q−superharmonic(q-harmonic) in X if
and only if ∆qu(x) ≤ 0(∆qu(x) = 0) for every vextex x ∈ X.
A function u(x) defined on X is said to be ∆′−superharmonic(∆′-harmonic) in

X if and only if ∆′u(x) ≤ 0(∆′u(x) = 0) for every vextex x ∈ X. If a function
u(x) is ∆−superharmonic in X, then t(x)u(x) ≥

∑
y∼x

t(x, y)u(y) ≥
∑
y∼x

t′(x, y)u(y),

implies u(x) is ∆′−superharmonic in X. A positive ∆′−superharmonic function
v is a ∆′−potential if its greatest ∆′−harmonic minorant is zero. The constant
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function 1 is ∆′−superharmonic but not ∆′−harmonic in X. Hence there always
exists a ∆′−potential in X.
Now as in Section 4 define a map T ′ on the family of non-negative functions

having ∆′−superharmonic majorants on X as T ′u = lim
n→∞

R′un, where u is a non-

negative function having a ∆′−superharmonic majorant on X and R′un is infimum
of all ∆′−superharmonic functions dominating un = (u − n)+ on X. Then all
the results in Sections 4 and 5 are true in this subordinate structure also. Hence
we say that a non-negative ∆′−superharmonic function u is ∆′−quasi-bounded
superharmonic if and only if T ′u = 0 in X and u is ∆′−singular superharmonic if
and only if T ′u = u in X. Any non-negative ∆′−singular superharmonic function
is ∆′−singular harmonic in X. Constants are ∆′−quasi-bounded superharmonic
functions in X.

Theorem 6.2. Every ∆−quasi-bounded superharmonic function is a ∆′−quasi-
bounded superharmonic function in X.

Proof. Every non-negative ∆−superharmonic function is ∆′−superharmonic in X.
Since for any u ∈ ℑ, R′un ≤ Run, we get T ′u ≤ Tu. Hence if u is a ∆−quasi-
bounded superharmonic function in X, by Definition 5.1, Tu = 0 and hence T ′u =
0. Thus u is ∆′−quasi-bounded superharmonic in X. □

Existence of ∆
′−singular harmonic functions:

Since there are ∆
′−superharmonic functions in X that are not harmonic, we

can always construct positive ∆
′−harmonic functions on X. But there may not

be any positive unbounded ∆
′−harmonic functions in X in which case there can

be no non-trivial singular ∆
′−harmonic functions in X. We give a few sufficient

conditions for the existence of non-trivial singular ∆
′−harmonic functions in X.

An infinite network X is said to be ∆
′−parahyperbolic [5] if and only if 1 is a

∆′−potential in X. Consequently, an infinite network X is ∆
′−parahyperbolic if

and only if the only bounded ∆′−harmonic function in X is zero.

Remark 6.3. (1) In a ∆
′−parahyperbolic network the only ∆′−quasi-bounded

harmonic function is zero. Hence in a ∆
′−parahyperbolic network any non-

negative ∆′−harmonic function is a ∆′−singular harmonic function.
(2) Any non-trivial ∆

′− singular harmonic function in X is an unbounded ∆
′−

non-negative harmonic function.
(3) If there is no non-negative ∆

′−bounded harmonic function in X, then any
non-negative ∆

′− harmonic function is a non-trivial ∆
′− singular harmonic

function in X.
(4) Consider the minimum principle given in Theorem 3.5, [5]. Suppose this

minimum principle is valid in X; then there exists a ∆
′− singular harmonic

function in X.
(5) If the ∆

′− harmonic measure of the point at infinity (see [5]) is zero, then by
Theorem 3.6 [5] X is a ∆

′−parahyperbolic network and hence there exists
a ∆

′−singular harmonic function in X.
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(6) If there exists a ∆
′− potential p in X such that for some constant α, p ≥ α

outside a finite set, then there exists a ∆
′−singular harmonic function in

X.
For, if p ≥ α outside a finite set A, then for some constant β > 0, p ≥ β on
X. This implies β is a ∆

′−potential and hence 1 is a ∆
′−potential in X.

Therefore a ∆
′− singular harmonic function exists in X.

Example 6.4. Example of a network X in which any positive harmonic function
is unbounded. Consider the infinite ray X = {0, 1, 2, 3, ...} with transition indices
t(n, n+1) = t(n+1, n) = 1

2
, where n = 0, 1, 2, .... Let q(n) be a real valued function

defined on X such that q(0) = 1 and q(n) = 0 if n ≥ 1. In this infinite network the
only positive ∆

′− harmonic function is proportional to h(n) = 2n+ 1.

Proposition 6.5 ([6]). Let {bi}1≤i≤m be a collection of bounded positive ∆
′− har-

monic functions in X such that any positive ∆
′− harmonic function is of the form

b =
∑m

i=1 αibi for some αi ≥ 0. If there is any unbounded non-negative ∆
′− har-

monic function h in X, then there are ∆
′− singular harmonic functions in X.

Proof. Let h = q + s where q is a ∆
′−quasi-bounded harmonic function and s is a

∆
′− singular harmonic function in X. Now q = sup

n
un where {un} is a sequence of

non-negative harmonic functions on X. Now for any n ≥ 1, un =
m∑
i=1

αinbi. Suppose

lim
n
αin = ∞ for some i, then q ≥ un ≥ αinbi would imply that q = ∞. Hence for

each i, there is a constant λi > 0 such that αin ≤ λi. Hence q ≤
m∑
i=1

λibi is bounded.

Consequently, the unbounded ∆
′− harmonic function h = q + s, s ̸≡ 0. That is, a

positive ∆
′− singular harmonic function exists in X. □
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