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PREFACE 
 

Applications of power electronics are growing fast in industry. Accordingly, 
technological fields of power electronics is also expanding. Conventionally, power 
electronics researches are mainly targeted on basic power converter circuits and basic 
motors. The basic power converters are composed of basic circuit elements, such as 
transformers, inductors, capacitors, switches, and rectifiers. The basic motors have linear 
electric characteristics, which can be modeled by basic linear lumped circuit elements. 
Therefore, these basic techniques are commonly analyzed using the circuit theory. 
However, recent researches include various techniques that are difficult to analyze using 
the circuit theory. 

Many of these recent techniques appear to contain some keywords that explains the 
difficulty. Below this thesis gives three typical keywords. 

The first keyword is electromagnetic field application.  

Some applications utilize the electromagnetic field itself for their industrial purposes. 
For example, induction heating [1]–[3] utilizes the magnetic field not for obtaining 
reactance but for inducing eddy current in the object to be heated. Wireless power transfer 
[4]–[6] also utilizes the electric or magnetic field not for reactance but for energy transfer. 
Induction heating and wireless power transfer generally need analyses of the behavior of 
the electromagnetic field to design effective work coils and transmitters/receivers. 
However, the circuit theory can be hardly employed for calculation of the electromagnetic 
field. 

Integrated magnetic components [7]–[16] are another technique that shares this 
keyword. They utilize the magnetic field for implementing advanced electric functions. 
They generally have multiple magnetic couplings with complicated relations between the 
flux linkage and the magnetomotive force. They are known to be useful for miniaturizing 
magnetic components [7][8][11] or reducing the copper loss [9]. However, in many cases, 
the electric circuits with integrated magnetic components are difficult to analyze by the 
circuit theory because these circuits require calculation of the magnetic behavior as well 
as the electric behavior. 

The second keyword is non-linearity. 

Some applications utilize devices with significant electromagnetic non-linearity. For 
example, the switched reluctance motors [17]–[19] show intense non-linearity because 
driving the motor generally saturates the magnetic core. This motor utilizes magnetic 
saturation to achieve higher efficiency. However, magnetic saturation in the motor is 
difficult to consider in the circuit theory because magnetic saturation is dependent not on 
the current but on the magnetic flux, which is not concretely calculated in the circuit 
theory. Certainly, the magnetic saturation can be considered in the circuit theory as 
decrease of inductance as a function of the current, if there is one flux path as in the simple 
inductor. However, this approach is not necessarily applicable to the switched reluctance 
motors, which generally have more complicated dependencies of the torque output on the 



 

2 

magnetic flux of the multiple windings. Therefore, the circuit theory can be hardly applied 
directly to developing driving techniques of the switched reluctance motors. 

The third keyword is system integration. 

In recent applications, a number of power converters and motors are often integrated 
to form a system. The system often require control techniques that optimizes the behavior 
of both the entire system and each subsystem that constitutes the system. In many cases, 
the system includes mechanical subsystems, which does not belong to the power 
electronics. For example, propulsion systems [20][21] of electrified vehicles have 
multiple power converters and motors. A propulsion system generally contains the battery, 
the DC-DC converter, the inverter, and the motor. Furthermore, the system also contains 
mechanical system that transfer the torque to the wheels. Therefore, analysis of the entire 
vehicle propulsion system is difficult by the circuit theory because the behavior of the 
system depends on both the mechanics and the power electronics. 

As we have seen, the difficulties related to the three keywords appear to be originated 
to the fact that the circuit theory does not directly analyze the electromagnetism and the 
mechanics. Hence, these difficulties may be alleviated by an analytical technique that can 
cover the electromagnetism and the mechanics simultaneously. 

The purpose of this thesis is to propose novel analytical methodology to address these 
difficulties. The proposed methodology is based on Lagrangian dynamics [22][23]. 

Lagrangian dynamics is one of the most basic analytical tools of the physics. 
Lagrangian dynamics directly utilizes the principle of the least action [24], which is the 
basic rule applicable to any types of physical systems. Therefore, Lagrangian dynamics 
has an attractive feature that it can analyze both the electromagnetic systems and the 
mechanical systems. Lagrangian dynamics can also be applied to non-linear magnetic 
field as shown in Chapter 4 of this thesis. Furthermore, Lagrangian dynamics can be 
applied to systems that incorporates both the electromagnetism and the mechanics, such 
as a motor driving system. Therefore, Lagrangian dynamics may solve the above 
mentioned difficulties of the power electronics.  

Lagrangian dynamics has already been widely utilized in mechanical systems. In 
addition, some preceding works [25]–[29] have proposed the method to formulate 
Lagrangian models for basic power conversion circuits composed of basic lumped circuit 
elements, such as the inductor, the capacitor, and the switches. However, the preceding 
method has hardly been applied to more complicated electromagnetic systems including 
complicated or non-linear magnetics and mechanics. Furthermore, few examples are 
known to show how to apply Lagrangian dynamics to practical industrial applications. 

Therefore, this thesis first proposes the Lagrangian methodology for the power 
electronics in Part I. Specifically, this thesis presents a set of basic theoretical methods to 
apply Lagrangian dynamics to power electronics researches. These methods are intended 
to address difficulties related to the above mentioned three keywords. Part I consists of 
Chapter 1–4. Chapter 1 presents a generalized Lagrangian modeling method applicable 
to power converters with complicated magnetics. Chapter 2 derives methods to analyze 
integrated magnetic components. Therefore, Chapter 1 and Chapter 2 are related to the 
difficulties of the first keyword, i.e. the electromagnetic field application. Chapter 3 
derives a method of the duality transformation [30] based on the correspondence relation 
between the electricity and the magnetic flux. Therefore, this chapter is also related to the 



 

3 

first keyword. Chapter 4 derives a Lagrangian modeling method of switched reluctance 
motor and its propulsion system, which is related to the second and third keywords, i.e. 
the non-linearity and the system integration. 

Then, this thesis presents three applications of the Lagrangian methodology to practical 
power electronics in Part II. Part II consists of Chapter 5–7. Chapter 5 and Chapter 6 
contain integrated magnetic components. Therefore, the two applications are related to 
the first keyword. Chapter 7 proposes a control technique for a synchronous buck 
converter. This technique is derived by investigating the Lagrangian model incorporating 
the converter and the load as one system. Hence, this application is related to the third 
keyword. 

The followings present digests of the chapters. 

Chapter 1 provides the most basic method for Lagrangian dynamics of the power 
electronics. This chapter formulates a generalized method to compose Lagrangian models 
of static power converter circuits. Although some preceding works [25]–[29] have 
discussed Lagrangian modeling of power converter circuits composed of basic circuit 
elements, the proposed method can further be applied to modeling of complicated 
magnetic circuits. Therefore, the proposed method can be used for analyses of the 
integrated magnetic components. This chapter also presents an example that shows 
systematic analysis of the circuit behavior of a power converter with an integrated 
magnetic component. 

Chapter 2 proposes a novel method utilizing Lagrangian dynamics to derive equivalent 
circuits of integrated magnetic components for easier comprehension of the components. 
Conventionally, two methods have been known to derive equivalent circuits: The 
inductance matrix method [31] and the duality method [32][33]. However, the inductance 
matrix method generally suffers from complicated derivation procedure; and the duality 
method generally suffers from complicated resultant equivalent circuits. On the other 
hand, the proposed method provides a straightforward and systematic procedure that is 
applicable to all integrated magnetic components. Furthermore, the proposed method can 
derive simpler equivalent circuits at least in some cases. In fact, Chapter 2 presents an 
example in which the proposed method successfully derived the simplest equivalent 
circuit compared with the conventional methods. 

Chapter 3 proposes a novel method for the duality transformation [30]. The duality 
transformation is a process to transform a voltage-source converter into a dynamically 
equivalent current-source converter, and vice versa. Conventionally, the duality 
transformation is performed based on the topological transformation, which replaces 
series connections of the original circuits by parallel connections and parallel connections 
by series connections. However, the topological transformation can be applied only to 
planar circuits [30]. Therefore, the conventional method of the duality transformation 
cannot be directly applicable to non-planar circuits. Certainly, some methods [34]–[37] 
are proposed for the duality transformation of non-planar circuits. However, these 
methods can suffer from the complicated procedure; and furthermore they often suffer 
from different results, which cannot be derived by the other methods. This difficulty is 
addressed by the proposed method, which utilizes Lagrangian dynamics to avoid 
topological transformation. Along with the theory of the proposed method, Chapter 3 also 
presents an example of the duality transformation of a basic non-linear circuit to show 
that the proposed method is directly applicable to non-planar circuits. 
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Chapter 4 presents a method to compose Lagrangian model of switched reluctance 
motors. The proposed method can model the intense magnetic non-linearity of the 
switched reluctance motors. Certainly, many preceding analytical model [38]–[42] can 
also model this non-linearity. However, the Lagrangian model composed using the 
proposed method can be directly connected to the mechanical model of the load and the 
Lagrangian model of the power converters, which is discussed in Chapter 1, to form a 
Lagrangian model of the entire motor drive system including mechanical load. In fact, 
Chapter 4 presents an example of operation analysis of a simple switched reluctance 
motor drive system to show that the Lagrangian model of the entire system can be easily 
obtained by summing Lagrangian models of the constituents of the system. 

Chapter 5 presents an application of the methods presented in Chapter 1 and Chapter 
2. The integrated magnetic components are expected to miniaturize EMC filters. However, 
this technique also has a risk that lowers tolerance to the magnetic saturation, which may 
reduce the miniaturization effect by the magnetic integration. This chapter addresses this 
problem by proposing a novel integrated magnetic component that improves the tolerance 
to the magnetic saturation. A theoretical analysis and experiments verified that the 
proposed structure is equivalent to an EMC filter of series-connected differential-mode 
and common-mode inductors. Additionally, an analytical estimation revealed that the 
proposed structure successfully reduced the core volume compared with a conventional 
integrated magnetic component. 

Chapter 6 also presents an application of the methods presented in Chapter 1 and 
Chapter 2. This chapter targets on the soft-switching technique [43]–[49]. This chapter 
proposes a novel soft-switching boost chopper with an integrated magnetic component. 
The integrated magnetic component is utilized for miniaturizing a novel lossless LC 
snubber in the proposed chopper which achieves the zero-current switching turn-on and 
the zero-voltage switching turn-off. This chapter shows how this integrated magnetic 
component works in the lossless LC snubber, as well as the merits and drawbacks of the 
proposed soft-switching boot chopper compared with various conventional boost chopper 
topologies. This chapter also presents experimental results that verifies the operating 
principles of the proposed boost chopper. 

Chapter 7 presents an application of the method presented in Chapter 1. Similarly to 
the method presented in Chapter 2, this chapter utilizes the point transformation [50] of 
the Lagrangian model. Sliding-mode control for buck converters [51] is beneficial in fast 
transient response to a step load change in wide operating range. However, buck 
converters can further require better dynamic load regulation against load current 
fluctuations within the response speed of the converters. This chapter addresses this issue 
by proposing a novel control method for synchronous buck converters [52][53] using 
Lagrangian dynamics. Along with the theoretical derivation of the control method, this 
chapter also presents simulation results that successfully verified improvement in the 
dynamic load regulation against sinusoidal load current fluctuations. 

Finally, conclusions are given to the thesis. 
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C h a p t e r  1  

GENERALIZED LAGRANGIAN CIRCUIT THEORY OF STATIC 
POWER CONVERSION CIRCUIT 

 

1.1.   Introduction 

This chapter derives a Lagrangian modeling applicable to both electric and magnetic 
circuits. Power electronics theories have been mainly based on analysis of an electric 
circuit because basic power converters are composed of simple electric components such 
as capacitors, inductors, transformers, switches, and diodes. Certainly, inductors and 
transformers have magnetic circuits [1]. However, their magnetic circuits are simple 
enough to regard them as black boxes and model their electric functions by simple 
voltage-current relations. As a result, we can analyze operation of basic power converters 
entirely using the electric circuit theory. 

However, recent growing requirement for miniaturization and efficiency improvement 
attracts researchers’ attention to magnetic components with complicated magnetic 
circuits. These components are generally referred to as integrated magnetic components 
[2]–[26]. 

Application of integrated magnetic components is a useful remedy for reducing both 
the volume and the energy loss of magnetic components. An integrated magnetic 
component can integrate plural individual inductors and transformers onto a single 
magnetic core. In a well-designed component, each inductor or transformer shares its 
magnetic path and winding with others, thus reducing the total amount of core [3], [4], 
[20] and copper [5] in the circuit. In addition, the dead space between magnetic 
components may also be reduced by the integration. 

The cutback in core and copper contributes to reducing not only volume but also energy 
loss. Because the iron loss and the copper loss are generated in the core and the windings, 
their cutback generally leads to reducing the energy loss. Owing to these benefits, 
industrial applications of the integrated magnetic components are energetically proposed 
and studied in the number of cases [2]–[26]. 

On the other hand, integrated magnetic components have been rarely employed in 
practical uses. A probable reason may lie in the fact that analytical comprehension of the 
circuit behavior of the components is difficult in the conventional electric circuit theory 
because their voltage –current relation is not simple due to their complicated magnetic 
circuit structure. 

Certainly, some latest simulators can predict precise behaviors of the integrated 
magnetic components, as shown in [2], [6]. Contrarily, analytical methods are hardly 
employed for non-linear behaviors in general. Nonetheless, the analytical methods can 
ensure circuit behaviors for any possible conditions, whereas the numerical results are 

 † Reprinted, with permission, from K. Umetani, A generalized method of Lagrangian modeling of 
power conversion circuit with integrated magnetic components, IEEJ Transactions on Electrical and 
Electronic Engineering, Nov 2012. 
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valid for specific operating conditions. Hence, analytical methods still play an important 
role in circuit analysis. 

Power converters with integrated magnetic components can be analyzed directly by 
solving the electric circuits and the magnetic circuits individually and then integrating the 
results to obtain one solution. Examples of this approach are presented in [2]–[5], [7], 
[14], [17], [19], [21]. However, this brute-force analysis tends to be complicated 
compared to that only of electric circuits. Instead, multiple analytical methods that models 
electric functions of magnetic circuits have been proposed in order to allow the electric 
circuit theory to handle the integrated magnetic components. 

These methods can be classified into two major categories. One is the inductance 
matrix [8], [27]; and the other is the gyrator-capacitor modeling [6], [28]. However, 
neither of them necessarily provide a simple and systematic procedure, particularly when 
applied to highly integrated magnetic components. 

The former theory expresses a magnetic circuit by an inductance matrix [13] composed 
of the self-inductance of all windings and the mutual inductance [29] of all winding pairs. 
If the theory is applied to a single flux path, such as a basic transformer, the matrix can 
be easily found. However, as for a more complicated magnetic circuit, determining the 
matrix is generally difficult because of its great dimension and poor correspondence 
relation between the physical magnetic structure and the matrix elements. To summarize, 
the complicated modeling procedure, as well as poor correspondence relation, can hinder 
straightforward analysis of the circuit behavior.  

The latter method converts a magnetic circuit into an electric circuit with gyrators [30]. 
Unlike electric components in a real circuit, a gyrator is a non-reciprocal component 
whose impedance matrix is asymmetric. Because the model does not belong to a real 
electric circuit, its analysis is generally difficult. In addition, the gyrator-capacitor 
modeling is limited to an integrated magnetic component whose winding interlinks with 
a single magnetic path. This limitation hinders modeling leakage flux. Hence, if we 
consider leakage flux, we need to convert in advance the physical magnetic structure into 
another that allow the modeling method. To summarize, the difficulty in analysis and the 
limitation of modeling can hinder straightforward analysis of the circuit behavior. 

As we have seen, these two methods expand the electric circuit theory to analyze 
integrated magnetic components. However, this approach seems to result in complicated 
handling of a magnetic circuit. Another promising approach may lie in reconstructing a 
circuit theory that naturally incorporates both electric circuits and magnetic circuits. 

The purpose of this chapter is to derive this novel circuit theory through simplification 
of the electromagnetism. For the straightforward simplification, great concern should be 
paid on the features of the intended system. The integrated magnetic components are 
expected to be applied to power conversion circuits, i.e. energy conserving systems. In 
this respect, the Lagrangian dynamics seems to be a promising candidate for the 
simplification method. 

In [31]–[36], the Lagrangian dynamics has been applied to power converters without 
integrated magnetic components. However, their Lagrangian is based rather on the 
analogical relation between electric circuit and mechanics. For example, an inductor is 
regarded as mass, a capacitor as a spring, and charge as position. Because they do not 
contain magnetism in the concrete manner, the above-mentioned difficulty remains 
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unsolved. Indeed, the inductance matrix is utilized in [33], [34], which discuss handling 
integrated magnetic components using Lagrangian dynamics. 

In contrast to these preceding Lagrangian theories, this chapter proposes a novel 
Lagrangian theory that is naturally applicable to integration of both electric circuits and 
magnetic circuits. We will begin our discussion with expressing the electromagnetic field 
in Lagrangian dynamics. Through simplification of the electromagnetism, we obtain the 
novel circuit theory in the second section. 

For convenience, we limit our discussion to linear media in this chapter because 
analytical methods are usually applied to the linear behavior of a circuit in practice. As a 
result, we ignore the non-linear characteristic of magnetic material, such as magnetic 
saturation, hysteresis, and the dependency of the B-H curve on frequency. Accordingly, 
we also ignore non-linearity dependent on geometry of a core, which is caused by the 
non-linearity of the material and local flux distribution inside the core [37]. 

In the third section, an example of a circuit analysis is presented. The example shows 
the systematic method to derive the state-space model of a converter with an integrated 
magnetic component. From the state-space model, we can easily obtain the circuit 
behavior. 

 

 1.2.   Lagrangian Modeling 

A.     Lagrangian Expression for Electromagnetism in Linear Media 

Let us assume that the intended circuit, along with the media of electric and magnetic 
field, remains at rest in a coordinate system. Additionally we assume the linear media. 
Then the field in the coordinate is described by following Maxwell equations [38]. 

( ) ρε =Ediv , (1.1) 

( ) ( ) jEB =∂
∂− t

εµrot , (1.2) 

0B =div , (1.3) 

t∂
∂−= BErot

, (1.4) 

where E is electric field, B is flux density, ε is permittivity, µ is permeability, ρ is 
electric charge, j is current density vector. 

By introducing scalar potential ψ and vector potential A defined as (1.5) and (1.6) and 
substituting them for E and B, we can omit (1.3) and (1.4) because they are always 
satisfied. 

AB rot=  (1.5) 

t∂
∂−−= AgradψE

 (1.6) 
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The Maxwell equations in a vacuum are known to be derived by applying the following 
Lagrangian density Ld0 to the variational principle [39]: 

2

0

20
0 2

1

2
BEAj

µ
ερψ −+⋅+−=dL  (1.7) 

where ε0, µ0 are the permittivity and the permeability of vacuum, respectively. 

As (1.1) and (1.2) differ from the Maxwell equations in a vacuum only in the 
permittivity and the permeability, the Lagrangian density for (1.1) and (1.2) can be 
expressed by: 

22

2

1

2
BEAj

µ
ερψ −+⋅+−=dL . (1.8) 

The Lagrangian density Ld corresponds to that proposed by Zheng and Wang [38], if 
both current and density of monopole is assumed to be zero. 

We can confirm that (1.8) gives the Maxwell equation of a linear media. We consider 
a system of electromagnetic field and integrate Ld over a large region V containing this 
system. Then, the result of the integration gives Lagrangian Ltmp of this system. Hence, 
we have 

∫∫∫∫ −+⋅+−=
VVVV

tmp ddddL xBxExAjx 22

2

1

2 µ
ερψ . (1.9) 

where dx is the volume element. 

 Next, we take the variation of Ltmp with respect to ψ, A, and A& . The variable A&  refers 
to the time derivative of A. Hereafter; we denote the time derivative of a variable by a dot 

over the variable. We consider arbitrary infinitesimal changes δψ, δA, and A&δ  in ψ, A, 
and A& , respectively, inside the region V. On the other hand, we assume δψ=0 and 

0AA == δδ &  at the surface of V. We replace ψ, A, and A&  in (1.9) by ψ+δψ, A+δA and 

AA && δ+ , respectively. Then, we subtract Ltmp from the resultant Lagrangian Ltmp+δLtmp to 
obtain the infinitesimal change δLtmp in the Lagrangian: 

,∫∫∫∫ ⋅−⋅+⋅+−=
VVVV

tmp ddddL xB
B

xEExAjx δ
µ

δεδρδψδ  (1.10) 

where AE &δδψδ −−= grad and AB δδ rot= . In the above equation, we neglect the 

second order of δψ, δA, and A&δ . 

The third right-hand term can be developed as follows: 

∫∫∫ ⋅−⋅−=⋅
VVV

ddd xAExExEE &δεδψεδε grad  
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( ) ∫∫∫ ⋅−+Ω−=
Ω VV

ddd xAExEE &δεδψεδψε div  

( ) ,div ∫∫ ⋅−=
VV

dd xAExE &δεδψε  (1.11) 

where Ω is the surface of the region V and dΩ is its area element. 

Similarly, the fourth right-hand term in (1.10) can be developed as follows: 

.rotrot ∫∫∫∫ ⋅






−=⋅






−Ω×=⋅−
Ω VVV

dddd xA
B

xA
B

A
B

xB
B δ

µ
δ

µ
δ

µ
δ

µ  (1.12) 

Substituting (1.11) and (1.12) into (1.10) yields 

( ){ } ,rotdiv ∫∫∫ ⋅















−+⋅−+−=
VVV

tmp dddL xA
B

jxAExE δ
µ

δεδψερδ &  (1.13) 

Hence, we obtain functional derivatives δψδ /tmpL , Aδδ /tmpL , A&δδ /tmpL as follows: 

( ) .rot,,div 






−=−=+−=
µδ

δ
ε

δ
δ

ερ
δψ

δ B
j

A
E

A
E tmptmptmp LLL

&
 (1.14) 

The functional derivatives of a Lagrangian must satisfy Euler-Lagrange’s equation [39]. 
Hence, we have 

,0=−








AA δ
δ

δ
δ tmptmp LL

dt

d
&

 (1.15) 

.0=−
δψ

δ tmpL  (1.16) 

Substituting (1.14) into (1.15) and (1.16) yields (1.2) and (1.1). 

 

B.     From Electromagnetism to Circuit Theory 

Now, we consider an electric circuit contained in a volumetric region V. Then, 
integrating Lagrangian density Ld over V gives Lagrangian L of the whole circuit: 

∫=
V

ddVLL . (1.17) 

Then, we step in simplification of the above expression of L and translate it into a 
circuit theory. In the whole process we introduce the following three approximations: 
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(1) There is no field (E=0, B=0) outside the circuit component. The same holds for 
conductive wire. 

(2) There is neither charge nor current (ρ=0, j=0) outside the circuit component and 
conductive wire. 

(3) There is no interference of electric and magnetic field between components. 
Specifically, A produced by a component is ignorable inside the others. Similarly, 
ψ produced by a component is also ignorable inside the others which are not 
electrically connected by a conductive wire. 

The approximations (1) and (2) lead to Ld ≠ 0 only inside the circuit components and 
conductive wire. Therefore, we can divide the circuit region V into regions of each circuit 
component Vi and the whole conductive wire Vw, and rewrite L in the form: 

w
i

iL ll +=∑ . (1.18) 

Where i is the index of the circuit components; ℓi and ℓw is Lagrangian of a circuit 
component and the whole conductive wire, respectively, defined as follows: 

∫=
iV

di dVLl , ∫=
wV

dw dVLl . (1.19) 

The conductive wire not only constitutes a part of the Lagrangian L, but also gives 
constraints among parameters that characterize L. Since E = 0 both inside the wire and at 
the boundary of the wire, (1.1) leads to ρ = 0 there. Accordingly, as shown in Fig. 1.1(a), 
the sum of the electric charge that flows into a node of the wire equals zero. If we define 
cumulated charge q as time integrated electric current that flows across a cross-section 
surface S from the initial time t0 to the time t, i.e. by (1.20), the constraint on q at the node 
is expressed by (1.21). 

∫ ∫ ⋅=
t

t S

k dtdq
0

Sj . (1.20) 

 

 
(a) A node of conductive wire          (b) A node of magnetic path 

Fig. 1.1. Electric and magnetic constraint at node of electric current 
and magnetic flux path 
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.0=∑
k

kkqd  (1.21) 

where dS is the area element of S, and d is an integer that takes 1 if the direction of dS 
is toward the node and −1 if it is opposite direction. 

Likewise, the node of magnetic paths also gives a constraint. Consider the magnetic 
node shown in Fig. 1.1(b). If we define the magnetic flux φ by (1.22), we obtain the 
constraint expressed as in (1.23) because (1.3) leads to neither creation nor annihilation 
of the flux. 

∫ ⋅=
S

k dSBφ . (1.22) 

.0=∑
k

kkd φ  (1.23) 

Now, we suppose that the circuit Lagrangian L is the function of φ and q, as shown 
later. Then, the Lagrangian multiplier method can be employed to model the electric and 
magnetic circuit networks because (1.21) and (1.23) are holonomic constraints on φ and 
q. In the method, the modified Lagrangian L′, written in the following equation, is 
substituted for the original Lagrangian L. 

∑∑ ++=′
n

nnw
i

i qfL ),( φλll . (1.24) 

where n is the index of an electric node and a magnetic node, λ is the Lagrange 
multiplier, and f(q,φ) is the left-hand side of (1.21) or (1.23). 

A power converter is ordinarily equipped with semiconductor switches or diodes. By 
means of the switches and diodes, the wire connection of the circuit is toggled from one 
to another periodically. Therefore, a general power converter has some electric nodes 
whose constraint conditions f(q,φ) are dependent on the conduction states of the switches. 

Besides the semiconductor switches, an analysis of power converter commonly 
requires power dissipation by a load and parasitic resistance. However, our Lagrangian 
L′ itself is insufficient for including lossy devices, since it is derived from electromagnetic 
field of lossless environment, i.e. the linear media. One of the simple methods to introduce 
lossy devices is to employ Rayleigh’s dissipation function [41], [42] along with 
Lagrangian L′. Rayleigh’s dissipation function D is defined by (1.25). Then, the 
movement of the system, namely the behavior of the circuit is known to be determined 
by Euler-Lagrange equation (1.26) [41], [42]. 

2

2

1
s

s
sqRD &∑= . (1.25) 

x

D

x

L

x

L

dt

d

&& ∂
∂−=

∂
′∂−









∂
′∂

. (1.26) 



 

17 

where Rs is resistance of a resistor s, and x is any independent variable contained in 
either L′ or D. As shown later, the variable x is any one of fluxes φ, cumulated electric 
charges q, or Lagrangian multipliers λ that are independent in the system. 

Equations (1.24)–(1.26) are the basic structure of the circuit theory on Lagrangian 
dynamics. In order to perform an analysis of a real system, we should determine L′. The 
remaining question is in determining the component Lagrangian ℓi and the wire 
Lagrangian ℓw. In the next subsection, we discuss their practical expressions. 

 

C.     Component and Winding Lagrangian 

A converter circuit with integrated magnetic components is generally composed of six 
kinds of components: namely, capacitors, voltage sources, magnetic cores (including 
coreless magnetic path), conductive wires (including windings), switches (including 
diode), and loads. As mentioned above, the switches and the loads are implemented in 
the constraint terms and the dissipation function D, respectively. Thus, the remaining four 
components have their own Lagrangian expression. Among them, the Lagrangian of a 
capacitor ℓC and that of voltage source ℓE have already been identified for LC circuits in 
preceding works [43]. They are defined as follows: 

CqC 22′−=l . (1.27) 

EqE =l . (1.28) 

where q′ is the electric charge stored in the capacitor, C is the capacitance, E is the 
voltage, and q is the cumulated electric charge that flows out of the component. Note that 
q′ is not identical to the cumulated charge q. The value q′ is actually defined by (1.29), if 
we introduce the initial charge of the capacitor Q. 

qQq −=′ . (1.29) 

Equations (1.27) and (1.28) can also be derived from (1.19). As for ℓC, consider a 
simple capacitor as shown in Fig. 1.2(a). We neglect the magnetic field B and vector 

 

 
(a) Capacitor      (b) Magnetic Branch 

Fig. 1.2. Schematic illustrations of energy storage components 
used in power converter 
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potential A induced by the current in the electrode or displacement current in the dielectric 
body. Then, the Lagrangian density in the electrode is reduced to the first term of the 
right-hand side of (1.8). In addition, that of the dielectric body is reduced to the third term. 
Therefore, ℓC is obtained as follows: 

( ){ } ∫+′+∆+′−=
PV

C dVqq 2
00 2

E
εψψψl . 

.
22

1 2
2

C

q
Cq

′
−=∆+∆′−= ψψ  (1.30) 

The Lagrangian of voltage source is obtained by regarding C is infinitely great under 
condition that Q/C = E; 

.
22

22

Eqq
C

Q

C

Q

C

q
E =+−≈

′
−=l  (1.31) 

The rightmost equality in (1.31) is derived using the fact that the Lagrangian is 
invariant under adding a constant. 

Next, we step in determining the Lagrangian of a magnetic core ℓM. Here we define the 
magnetic core is a volumetric region where magnetic flux exists. Hence, a magnetic core 
includes air gaps and coreless magnetic paths, such as leakage flux paths. 

We derive ℓM again using (1.19). We divide the component region Vi into magnetic 
branches, which are segments of magnetic paths divided by magnetic nodes, as shown in 
Fig. 1.2(b). Consequently, ℓM is obtained as (1.32) by summing the volumetric 
integrations of Ld over each branch. 

.
22

22

∑∑∫ −=−=
j j

j

j V

M P
dV

j

φ
µ

B
l  (1.32) 

 

 
Fig. 1.3. Schematic illustration of a stream tube of electric current 
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where j is the index of the magnetic branches;  Vj, φ j , and Pj are the volumetric region, 
the flux and the permeance of a branch j, respectively. 

Finally, we derive the Lagrangian of the whole conductive wire ℓW. Here the conductive 
wire includes not only the wire connecting the circuit components, but also the windings 
wound on magnetic paths. In the conductive wire we regard ρ=0, E=0, and B = 0, referring 
to the above-mentioned approximations. Thus, the Lagrangian density Ld is reduced there 
to the second term of the right-hand side of (1.8). The Lagrangian ℓW is also obtained 
using (1.19). In order to straightforward calculation, we divide the component region Vi 
into stream tubes of electric current. 

Electric current including displacement current constitutes stream tubes in a circuit 
because the divergence of this current’s vector j′ equals zero. The fact is derived by 
performing the divergence on (1.2): 

( )
0divdiv =









∂
ε∂+=′
t

E
jj . (1.33) 

Because the electric and displacement current is confined to the circuit, all the stream 
tubes compose circular paths inside the region V as illustrated in Fig. 1.3. 

Now, we regard the whole paths of the electric and displacement current as a set of tiny 
stream tubes δU′. If we denote the region of the electric current in δU′ by δU, the whole 
conductive wire is a set of δU. 

 We denote the electric and displacement current inside a stream tube δU′k by δj′k. 
Furthermore, we introduce a constant Gkn as the indicator of the relation between δj′k and 
φn, where φn is the flux that passes through the winding Wn (number of turns Nn). 
Specifically, Gkn=0, if δU′k does not constitute Wn; Gkn=1, else if the current flow of 
positive δj′k and the direction of positive φn satisfy the right hand grip rule; and otherwise 
Gkn=−1. We again neglect the vector potential A induced by the displacement current, 
similarly to the discussion of the capacitor Lagrangian. We also neglect A inside the 
component in which the displacement current takes place, according to the assumption 
(3). 

Then, the volumetric integration of Ld over δUk yields:  

∑∫∫ ′=′⋅=⋅
n

nnknk

UU

NGjdVdV
kk

φδ
δδ '

jAjA . (1.34) 

The left equality is satisfied because j=j′ in the conductive wire, where E=0 according 
to the approximation (1), and A=0 in the displacement current region. 

By summing (1.34) over all stream tubes δUk in the circuit, we finally obtain ℓW as 
follows: 

∑ ∑∑ ∫ 






′=⋅=
k n

nnknk
k U

W NGjdV
k

φδ
δ

jAl  
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∑∑ ∑ =






 ′=
n

nnn
n k

kknnn qNjGN &φδφ , (1.35) 

where qn is cumulative charge that passes the winging Wn. The sign of qn is defined so 
that the current flow of positivenq&  and the direction of positive φn satisfy the right hand 

grip rule. When deriving the rightmost equality, we used that j=j′ in the winding. 

 

D.     Circuit Lagrangian 

In the discussion made in the previous subsection, the Lagrangian of the circuit 
components and the conductive wire is all determined. Summarizing the result, i.e. (1.27), 
(1.28), (1.32) and (1.35), we obtain the following expression for Lagrangian L′ of the 
whole circuit: 

( ) ( )∑∑∑∑∑ ++−−−=′
n

nn
m

mm
k k

kk

j j

j

i
iii qfqE

C

qQ

P
qNL φλ

φ
φ ,

22

22

& , (1.36) 

where i, j, k, m, n is the index of a winding, a magnetic branch, a capacitor, a voltage 
source and a node, respectively. Note that φ i  is total flux interlinking with the winding i, 
while φ j  is a total flux that passes the branch j. 

 Each term of Lagrangian L′ corresponds to a circuit component or a node of electric 
or magnetic circuit network. Hence, we can configure L′ of a circuit by directly translating 
physical structures of the electric and magnetic circuits. 

The obtained Lagrangian is different from the conventional Lagrangian [31]–[36] in 
three points: 

(1) Flux φ is introduced as an independent variable. 

(2) Constraint terms for magnetic path are introduced 

(3) Lagrangian expression that corresponds to magnetic components is divided into 
two terms: the windings and the core. 

 

 

Fig. 1.4. A magnetic circuit of a basic transformer with leakage 
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These features are implemented as natural expansion of the conventional Lagrangian, 
which is proposed for converters based on LC circuit. In fact, our Lagrangian ℓ1 for an 
inductor with a single magnetic path and a single winding (inductance Λ) is reduced to 
the same Lagrangian as the conventional theory; 

222
2

1 2

1

2

1

2
qqPN

P
qN &&&l Λ==φ−φ= . (1.37) 

Our Lagrangian is configurable directly from the structure of magnetic circuit because 
the constituting elements, i.e. the windings and the core, are modeled individually. This 
feature allows systematic modeling of integrated magnetic core. 

Leakage flux can be also implemented in our modeling, if the permeance of the leakage 
flux path is given. As an example, we derive Lagrangian of the basic transformer 
illustrated in Fig. 1.4. Translating each windings and each magnetic path into Lagrangian 
and summing the results, we obtain the following model ℓ2: 
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1.3.   Example: analysis of trans-linked three phase boost 

converter 

In this section, an example of the circuit analysis using the proposed Lagrangian is 
presented. The sample circuit is trans-linked three phase boost converter [13], which has 
an integrated magnetic component with three windings. The purpose of this example is 
to show the usefulness of Lagrangian dynamics in analyzing the circuit behavior. Here, 
we derive a state-space model of the trans-linked three phase boost converter 

 

 

Fig. 1.5. Schematic diagram of the trans-linked three phase boost 
converter 
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Figure 1.5 illustrates the schematic diagram of the trans-linked three phase boost 
converter. The magnetic core has four legs. Except one leg, each leg has its own winding 
of the same number of turns. We assume the leg with the winding, along with the top and 
bottom beams connecting the legs, is not gapped and has sufficiently high permeance 
compared to the leg without the winding. We denote the permeance of the leg without the 
winding by P.  

One terminal of each winding is connected to the junction of a diode and a switch. 
Because the wire connection of this node is toggled by the switch, its electrical constraint 
is not static but dependent on the state of the switch. This type of the node is commonly 
utilized in a power converter. As for the junction of D1 and S1, its constraint term in the 
circuit Lagrangian L′ is expressed as follows by introducing the indicator s1 such that s1 

= 1, if the switch S1 is in on-state, and else s1 = 0. 

( ){ } ( )11111111 1 BBAA qqsqqs −λ+−−λ , (1.39) 

where λA1 and λB1 are the Lagrangian multipliers. 

Expression (1.39) corresponds to the constraint condition of qA1=0 and q1=qB1, if s1=1; 
and q1=qA1 and qB1=0, if s1=0. Therefore, (1.39) successfully represents the function of 
the switch. 

As a result, the circuit Lagrangian L′ and the dissipation function D for the trans-linked 
three phase boost converter can be configured directly from Fig. 1.5: 
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Equation (1.40) is reducible because it contains several ignorable variables [44]. An 
ignorable variable is a variable x whose time derivative constitute neither Lagrangian L′ 
nor the dissipation function D. We can eliminate the variable from L′ by substituting the 
formula ∂L′/∂x=0 into the expression of L′. Hence, we can substitute λAi=λ4=λ5 and λBi = 
0 into (1.40) as a result of the formula ∂L′/∂x=0 with respect to x=q4, qAi, or qBi. 
Furthermore, we will eliminate qE, qAi, and qBi using the ignorable variables λ0, λAi, and 
λBi. Finally, we obtain the reduced expression of L′ as follows:  
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When we develop (1.40), we omit the 10th right-hand term because the term reduces 
to the same constraint as the sixth right-hand term of (1.42). 

Applying (1.42) to Euler-Lagrange equation (1.26) yields the circuit behavior: 
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Eliminating λa, λ5, and q6 from the above equations, and introducing the output voltage 
V = (Q-q5)/C, we obtain the following system of equations. 
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System (1.48) can be expressed by the state-space model, if we introduce the state 
variable u = (V φ1 φ2 φ3)T 
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where Di = 1−si and D = (D1+D2+D3)/3. In the state-space averaging method, we 
take time average on Di and D. Thus, Di and D are now real numbers that satisfy 0≤ Di 
≤1 and 0≤ D ≤1. The value 1−D i  is interpreted as duty of the switch Si; and the value 
1−D is interpreted as the averaged duty of the switches S1, S2 and S3. 

As we have seen above, the whole system of the converter is expressed by the 
movement of the output voltage, namely q5, and the fluxes. Our Lagrangian L′ regards 
the cumulated electric charge q and the flux φ as the independent variables. Because the 
electric current is dependent variables, observing all of the current is not necessarily 
sufficient to determine all of the independent flux. Indeed, the current of this example is 
expressed only by the sum of the flux, as shown in (1.50).  
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Therefore, observation of the voltage and the current is unable to determine the state 
of the system. The perfect observation of the system requires the additional observation 
of any two fluxes of φ1, φ2, and φ3. 

To summarize, as this example shows, Lagrangian L′ of a converter is directly 
configurable from the physical structures of the electric and magnetic circuits; and the 
circuit behavior is systematically obtained by applying L′ and D to Euler-Lagrange 
equation. 

 

1.4.   Conclusions 

The integrated magnetic component is expected to improve power conversion 
efficiency and downsize the total volume of magnetic components. Although a number 
of preceding works reported its usefulness, its practical applications are still limited. One 
probable reason may lie in difficulty of analytic understanding of complicated magnetic 
circuit. 

In order to address the problem, we presented a novel circuit theory that directly 
handles integration of electric and magnetic circuits. As shown in the analysis example, 
the Lagrangian model is configurable directly from the physical structure of the electric 
and magnetic circuit. Furthermore, the state-space model is systematically obtained by 
predetermined procedure. This result demonstrates that this theory can be a promising 
tool for applying integrated magnetic components to practical uses. 
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C h a p t e r  2  

LAGRANGIAN METHOD FOR DERIVING EQUIALENT 
CIRCUITS OF INTEGRATED MAGNETIC COMPONENTS 

 

2. 1.   Introduction 

This chapter proposes Lagrangian method for deriving equivalent circuit of integrated 
magnetic components. Integrated magnetic components are promising techniques to 
miniaturize magnetic components such as transformers and inductors. In a well-designed 
component, the core can be miniaturized as reported in [1], [2], [3] and the total amount 
of copper can be reduced as reported in [4]. Owing to these benefits, a number of magnetic 
structures for integrated magnetic components have been studied and reported [1]–[25]. 

However, the integrated magnetic components often have complex magnetic circuits, 
particularly if leakage flux paths are considered. As a result, their electric functions can 
be difficult to comprehend, compared to a basic inductor or transformer with a single 
magnetic path. In a direct analysis of the power converters with integrated magnetic 
components [1], [2], [4], [5], [7], [14], [17], [19], [20], both the electric and magnetic 
circuits are handled simultaneously. Accordingly, such analysis tends to be complex 
compared to that only of electric circuits. 

This approach calculates all the flux in the magnetic circuit, and thus it is useful for 
precise design of the magnetic core dimension. Conversely, the complex analysis 
procedure may hinder intuitive comprehension of the overall circuit behavior. 
Consequently, the industrial applications of the integrated magnetic components may be 
promoted by developing methods that can easily analyze circuit behaviors. 

One promising strategy is to express the electric functions of an integrated magnetic 
component as a functionally equivalent electric circuit composed of inductors and 
transformers [3], [6], [11], [13], [20], [21], [23]. Hereafter, we refer to this circuit as the 
equivalent circuit. 

To the best of the author’s knowledge, three methods are available to derive equivalent 
circuits. These methods generally derive equivalent circuits that differ from others. 
Selecting a simpler equivalent circuit may therefore contribute to effortless circuit 
analysis 

The inductance matrix method [13] is one such method. This first identifies the leakage 
inductance of all windings, and the mutual inductance [26] of all winding pairs. Each 
leakage inductance is then directly transformed into an inductor, and each of the mutual 
inductances into a transformer. Hence, the integrated magnetic component with n 
windings is generally expressed by an equivalent circuit with n inductors and n(n−1)/2 
transformers. 

 †© 2005 IEEE. Reprinted, with permission, from K. Umetani, J. Imaoka, M. Yamamoto, S. Arimura, 
and T. Hirano, Evaluation of the Lagrangian method for deriving equivalent circuits of integrated 
magnetic components: a case study using the integrated winding coupled inductor, IEEE Transactions 
on Industry Applications, Jan. 2015. 
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The duality method has also been used [27] [28]. An advantage of this method is its 
straightforward derivation process. The method first transforms the network of the 
magnetic circuit model [29] of an integrated magnetic component. Specifically, the 
series-connections of the original network are transformed into parallel connections, and 
vice versa. Each reluctance is then replaced by an inductor, and all except one of the 
magnetomotive forces are replaced by an ideal transformer. The remaining 
magnetomotive force is eliminated. Consequently, if the integrated magnetic components 
contain n windings and m reluctance, the resultant equivalent circuit derived from the 
duality method will have n−1 transformers and m inductors. 

Besides the above-mentioned methods, we can utilize Lagrangian dynamics to derive 
equivalent circuits as discussed in this chapter. Hereafter, we refer to this method as the 
Lagrangian method. This method transforms an integrated magnetic component into an 
equivalent circuit composed of as many basic transformers and inductors as the flux paths 
of the original component that can be magnetized independently. This method can thus 
be expected to yield a simple equivalent circuit, if the integrated magnetic component has 
a small number of independent flux paths. 

The purposes of this chapter are 1) to derive and formulate the method, and 2) to verify 
the method using a case study. As for the former purpose, Section 2.2 first presents an 
example of the Lagrangian method; then, it formulates the method. The Lagrangian 
method provides two techniques to derive equivalent circuits. Section 2.2 discusses the 
two techniques in Subsection 2.1.A and Subsection 2.2.B, respectively. 

As for the latter purpose, Sections 2.3–2.5 presents a case study using the integrated 
winding coupled inductor [4], [6], [21]. This integrated winding coupled inductor has 
three windings. Its magnetic circuit model, as shown in this chapter, has six reluctance, 
three magnetomotive forces, and five independent flux paths, including leakage flux paths. 
Consequently, among the three methods, the Lagrangian method is expected to yield the 
equivalent circuit with fewest magnetic components. 

Section 2.3 compares the equivalent circuits using the three methods to show that the 
Lagrangian method yields an equivalent circuit differing from those by the conventional 
methods, i.e. the inductance matrix method and the duality method. This section also 
shows that the equivalent circuit from the Lagrangian method has fewest components, as 
expected. Section 2.4 then shows theoretically that the equivalent circuit by the 
Lagrangian method is consistent with the magnetic circuit model, as are those by the 
conventional methods. Section 2.5 experimentally confirms that the equivalent circuits 
discussed in Section 2.4 are also consistent with experimental behavior of the integrated 
winding coupled inductor. Finally, Section 2.6 presents the conclusions. 

 

2. 2.   Lagrangian Method 

This section presents the Lagrangian method to translate the integrated magnetic 
component into an equivalent circuit. 

Generally, two systems show the same behavior, if their Lagrangian lead to the same 
result when applied to Euler-Lagrange equation. We denote that these Lagrangian are 
equivalent each other. Therefore, if an equivalent Lagrangian for an integrated magnetic 
component belongs to an electric circuit of basic transformers and inductors, the circuit 
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shows the same electric functions as the component. As a result, the circuit is the 
equivalent circuit. To summarize, the Lagrangian method is based on finding an 
equivalent Lagrangian that belongs to an electric circuit. 

 The Lagrangian method gives two different techniques, each of which leads to a 
different equivalent circuit. Each of them are discussed separately in Subsections 2.1 and 
2.2, respectively. These subsections first present an example using the integrated 
magnetic component employed in the trans-linked converter. The diagram of this 
component is shown in Fig. 1.5 in Chapter 1. Then, the subsections give generalized 
formulation of the method applicable to an arbitrary integrated magnetics. The variables 
used in the equations in this section are the same as that used in Section 1.3 

 

A.     Technique 1 

We presents derivation of the equivalent circuit of the integrated magnetic component 
shown in Fig. 1.5 according to the technique 1. We begin our discussion from determining 
the Lagrangian of the integrated magnetic component. Extracting the magnetism related 
terms in the equation (1.42), we obtain the Lagrangian ℓL of the integrated magnetic 
component. 
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Because the Lagrangian multiplier λa is inherent characteristic of the integrated 
magnetic circuit, we have to eliminate it to translate the Lagrangian into the circuit of 
magnetic components composed of single magnetic paths. One technique is to utilize the 
fact that the Lagrangian multiplier is an ignorable variable [30]. The ignorable variable 
can be eliminated by substituting ∂L′/∂λa=0 into (2.1). Eliminating q1 by substitution 
yields the following equivalent Lagrangian: 
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The Lagrangian expressed by (2.2) corresponds to the circuit illustrated in Fig. 2.1. 
Consequently, it is the equivalent circuit. 

Generally, the Lagrangian of a magnetic core ℓM has a quadratic form of the flux φ; and 
the magnetic constraint terms have linear forms of φ. Therefore, a Lagrangian of a 
magnetic component (regardless to integrated or discrete) ℓL can be expressed in the 
following form (2.3) by eliminating all the magnetic constraint terms according to the 
method to eliminate ignorable variables. We denote the number of independent 
cumulative electric charge and fluxes by n and k, respectively. 

AφφNφq TT
L −= &l , (2.3) 

where A is a k × k symmetrical matrix, N is a n × k matrix, q&  is a n-dimensional vector 
of the independent current, φ  is a k-dimensional vector of the independent fluxes. 



 

32 

A symmetrical matrix can be transformed into a diagonal matrix using an appropriate 
orthogonal matrix. Therefore, we transform the symmetrical matrix A into a diagonal 
matrix B by an orthogonal matrix P. If we introduce the vector Pφφ =′ , (2.3) is 
transformed into another form: 

φBφφNPq ′′−′= − TT
L

1&l . (2.4) 

The Lagrangian expressed by (2.4) corresponds to a circuit that consists of k 
independent single magnetic paths and n independent current paths. The integer p = k − 
rank(B) indicates the number of ideal transformers, because p fluxes vanish in the second 
right-hand term (2.4). 

The matrix NP−1 indicates the number of turns of the windings in the equivalent circuit. 
The (a,b)-th entry of the matrix denotes the number of turns of the winding in a-th current 
path wound on the b-th flux path. 

 

B.     Technique 2 

In Technique 2, the Lagrangian multiplier λa in (2.1) is eliminated using a cyclic 
coordinate. Consider the modified Lagrangian ℓ′L defined as (2.5). This Lagrangian is 
obtained by substituting the product of the number of turns and current of a virtual 
winding for the multiplier λa. 






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 −+−=′ ∑∑
==
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i
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i
iiL qN

P
qN φφφφ

3

1

23

1 2
&&l , (2.5) 

where Na is the number of turns of the virtual winding and qa is its cumulative electric 
charge. We take the variable qa independent of any other variables in Lagrangian or the 
dissipation function of a circuit containing ℓ′L. Then, qa is a cyclic coordinate because 
only its time derivative is contained in L′. 

 

 
Fig. 2.1. Equivalent circuit derived by Technique 1. The original 

integrated magnetic component is that employed in the trans-linked 
three phase boost converter.  
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A Lagrangian with a cyclic coordinate is known to be reduced by the following method 
[30]. If we substitute ℓ′L for L′ and qa for x in Euler-Lagrange equation (1.26) and perform 
time integration, we obtain:  

C
q a

L =
∂

′∂
&

l
, (2.6) 

where C is a integration constant. 

Then, we introduce another Lagrangian ℓ′′L defined as 

aLL qC &ll −′=′′ . (2.7) 

We substitute (2.6) into (2.7). The resultant Lagrangian ℓ′′L is known to be equivalent 
to the original Lagrangian ℓ′L. Eliminating φ1 by this substitution yields: 

( )
P

qNqNCqN a
aL 2

2

3322321

φφφφφφ −+++−−=′′ &&&l . (2.8) 

If we assume C=0, the right hand side of (2.8) equals to that of the equation (2.2). Thus, 
ℓ′′L is an equivalent Lagrangian of ℓL under condition of C = 0; and the same holds true 
for ℓ′L. Fig. 2.2 illustrates the circuit that corresponds to the Lagrangian ℓ′L. The circuit 
functions as an equivalent circuit for the integrated magnetic component, when the initial 
values are set so that C=0. Specifically, the initial values φa0, φ10, φ20, φ30 for the flux φa, 
φ1, φ2, φ3 are required to satisfy the following relation. 

00

3

1
0 =−∑

=
a

i
i φφ . (2.9) 

In this derivation method, a Lagrangian multiplier for the magnetic constraint is 
replaced by the magnetomotive force by an additionally introduced virtual current path. 

 
Fig. 2.2. Equivalent circuit derived by Technique 2. The original 

integrated magnetic component is that employed in the trans-linked 
three phase boost converter.  
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When applying the method to an integrated magnetic component, we introduce additional 
independent current paths, as much as the constraints, in the equivalent circuit. These 
additional current paths yield the additional independent variables q in the system. 
Nevertheless, the derived equivalent system preserves the original degree of freedom 
because additional constraint conditions, as many as added variables, are introduced on 
the initial values. 

Fig. 2.2 is the same equivalent circuit presented in [13]. 

 

2. 3.   Comparison of Equivalent Circuits by Different Methods 

The interleaved converter with the integrated winding coupled inductor [4] [21] is 
illustrated in Fig. 2.3. The magnetic core has three legs, each of which has a winding. 
Input current flows into winding C, and the current is then split into windings 1 and 2.  

 

 
Fig. 2.3.  Interleaved converter with the integrated winding 

coupled inductor.  

 
Fig. 2.4.  Magnetic circuit model of the integrated winding 

coupled inductor.  
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In this chapter, we ignore non-linearity due to magnetic saturation or core loss. Similar 
to the conventional methods, the Lagrangian method also does not allow non-linearity so 
far because it assumes linear media of the electromagnetic field. 

The magnetic circuit model [29] of the integrated magnetic component can be 
expressed as in Fig. 2.4. We denote the electric current of windings 1 and 2 as i1 and i2, 
respectively. The outer legs and the center leg have windings with the number of turns 
NO and NC, and the reluctances RO and RC, each of which are made by core and gaps. We 
assume that both outer legs have the same reluctance RO and the number of turns NO, 
according to the design concept of the magnetic structure. Leakage flux paths of the 
windings are implemented as the reluctance RL1–RL3. 

 

A.     Lagrangian Method 

Based on Fig. 2, we derive an equivalent circuit according to the Lagrangian method 
presented in Subsection 2.2.A. The method is based on Lagrangian expressions for an 

 

 
Fig. 2.5.  Equivalent circuit by the Lagrangian method. (a) Direct 

translation from Lagrangian. (b) Simplified circuit with fewer 
inductors. Values in brackets are the number of turns. Values without 
brackets are the self-inductance for the inductors or the mutual 
inductance for the transformers. 
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integrated magnetic component, which are directly configurable from their electric and 
magnetic network. We first translated Fig. 2.4 into Lagrangian. We then applied point 
transformation [31] to the result. Based on this, we obtained another Lagrangian 
belonging to an equivalent circuit. Finally, the equivalent circuit was obtained by 
translating the resultant Lagrangian into a physical circuit. 

As discussed in Chapter 1, the current flowing through a winding is regarded as the 
time derivative of the cumulative charge q in the Lagrangian expression, which is the time 
integration of the current i from the initial time t0 to the time t: 

∫=
t

t

k idtq
0

. (2.10) 

We denote the cumulative charge for i1 and i2 as q1 and q2, respectively. Translation of 
Fig. 2.4 yields the Lagrangian L: 
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where λ is a Lagrangian multiplier, and the dot over a variable is its time derivative. 

The term with λ is eliminated by substituting φ3=−φ1−φ2 into (2.11). Additionally, we 
replace φ1 by introducing φA=φ1+φ2/2. The purpose of introducing φA is to express the 
magnetic energy terms, i.e. the 4th–9th right-hand terms of (2.11), in the diagonal form 
of the fluxes without using the Lagrangian multiplier. Consequently, we obtain: 
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Equation (2.12) corresponds to a circuit of transformers and inductors. Translating 
(2.12) yields the equivalent circuit shown in Fig. 2.5(a). Along with the circuit diagram, 
we also present the self and mutual inductance of the constituting elements. 

The Lagrangian method preserves the number of independent fluxes. Note that φ3 is 
dependent on φ1 and φ2 because the constraint φ1+φ2+φ3=0 is represented by the last right-
hand term of (2.11). Hence, (2.11) contains five independent fluxes, namely φL1, φL2, φL3, 
φ1, φ2. Consequently, the resultant equivalent circuit is composed of five magnetic 
components, each of which consists of a single independent flux path. 

Fortunately, in this case the equivalent circuit can be simplified further, because 
inductors L1 and L2 are connected in series. By replacing them by an inductor whose 
inductance is their sum, we obtain Fig. 2.5(b), which is composed of only four magnetic 
components. The result is similar to the equivalent circuit proposed in [4]. Nonetheless, 
our result is derived automatically under the predetermined procedure. 
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B.     Inductance Matrix Method 

In the inductance matrix method, the leakage and mutual inductance are calculated for 
each winding. The leakage inductance is transformed into an inductor with the same 
inductance, and the mutual inductance is transformed into a transformer with the same 
mutual inductance. Finally, the equivalent circuit is obtained by replacing each winding 
in the original component by a series-connection of the inductor and the transformers that 
represent the leakage and mutual inductance of the windings. 

Now, we derive the equivalent circuit according to the inductance matrix method. To 
calculate the leakage and mutual inductance, we first solve the magnetic circuit model 
presented in Fig. 2.4. In the magnetic circuit, the flux follows Kirchhoff's current law, 
and the magnetomotive force follows Kirchhoff's voltage law. In calculation of the 
inductance, the method does not utilize the fact that the current of winding C is equal to 
the sum of windings 1 and 2. Therefore, we denote the current of the winding C as iC. 
Hence, we have: 
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Solving the above equations with respect to the fluxes, we obtain: 
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Fig. 2.6.  Replacing each winding of the integrated winding 

coupled inductor by an inductor representing the leakage inductance 
and transformers representing the mutual inductance. 
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We denote the total flux that interlinks with windings 1, C, and 2 as φT1, φTC, and φT2, 
respectively. Using the above equation, φT1, φTC, and φT2 can be expressed as: 
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Next, we derive the inductance matrix. Electric functions of a magnetic component can 
be expressed as an inductance matrix. As for a magnetic component with three windings, 
the general definition of the matrix is expressed as: 

 
Fig. 2.7.  Equivalent circuit by the inductance matrix method. 

Values in brackets are the number of turns. Values without brackets are 
the self-inductance for the inductors or the mutual inductance for the 
transformers. 
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where V1, VC, and V2 are the induced voltage of windings 1, C, and 2, respectively; Λ1, 

ΛC, and Λ2 are the self-inductance; and M1C, M2C, and M12 are the mutual-inductance. 
Substituting (6) into (7), the elements of the matrix are determined as follows: 
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We seek a circuit that represents the same inductance matrix, by replacing each 
winding by a series connection of an inductor and two transformers, as shown in Fig. 2.6. 
We assume that each transformer represents the magnetic coupling of a winding pair, and 
its mutual inductance is equal to the matrix element that corresponds to the coupling. 
Furthermore, it is assumed that the transformers have the same number of turns as the 
original winding. 

Note that the self-inductance of the original winding equals the sum of self-inductance 
of the inductor and transformers. In other words, the self-inductance of the inductor 
corresponds to the leakage inductance [32] of the original winding. If the self-inductance 
of the inductors that replace windings 1, C, and 2 are denoted as L1, LC, and L2, 
respectively, we obtain:  
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Finally, we obtained the circuit illustrated in Fig. 2.7. Obviously, this is the equivalent 
circuit of the integrated winding coupled inductor. The equivalent circuit has three 
inductors, because the method yields as many inductors as the windings. It also has three 
transformers, which are as many as the winding pairs. 

 

C.     Duality Method 

The detailed process of this method is presented in [27], [28]. We followed this process 
to derive the equivalent circuit for Fig. 2.4. 

The duality method does not require calculation of the inductance matrix or translation 
of the magnetic circuit into Lagrangian expression. Instead, it requires the following two 
steps. 

The first step is to transform the magnetic circuit network. In this transformation, each 
series-connection of the network is replaced by a parallel-connection, and vice versa. 

The second step is to replace each element of the magnetic circuit model by an electric 
component. In this step, each reluctance is replaced by an inductor, and all except one 
magnetomotive forces are replaced by an ideal transformer. The remaining 
magnetomotive force is eliminated to extract a pair of terminals. The primary windings 
of the ideal transformers and the pair of terminals correspond to the windings of the 
original integrated magnetic component. 

Consequently, the equivalent circuit for Fig. 2.4 is obtained as Fig. 2.8. The equivalent 
circuit contains six inductors, which is as many as the reluctance in Fig. 2.4. It contains 
two transformers, which equals the magnetomotive force less one. 

 

 
Fig. 2.8.  Equivalent circuit by the duality method. Values in 

brackets are the ratios of the number of turns. Values without brackets 
are the self-inductance for the inductors. 
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D.     Comparison between the Equivalent Circuits 

As seen above, the three methods yield their own equivalent circuits, all of which differ. 
Compared to Fig. 2.7 and Fig. 2.8, Fig. 2.5(b) contains fewer magnetic components. In 
this case, the Lagrangian method thus yields simpler equivalent circuit. Hence, in some 
cases the Lagrangian method can be a helpful method for discussing the overall electric 
functions of an integrated magnetic component. For example, the Lagrangian method 
may possibly be useful in some cases when we invent a novel magnetic structure. 

The main drawback of the Lagrangian method is that the voltage induced in the 
windings of the integrated magnetic component does not appear in the equivalent circuit, 
because generally a winding is not directly replaced by transformers and inductors. On 
the other hand, the equivalent circuits produced by the inductance matrix and duality 
methods directly present the induced voltage of any windings. The reason is that a 
winding is replaced by a series of connected inductors and transformers in the inductance 
matrix method, and by the primary winding of an ideal transformer or a pair of terminals 
in the duality method. Therefore, if it is necessary to discuss the induced voltage to design 
the insulation of the windings, the inductance matrix or duality methods seem preferable. 

 

2. 4.   Analytical Equivalence of the Equivalent Circuits with the 

Magnetic Circuit Model 

This section confirms that the equivalent circuit from the Lagrangian method has the 
same electric functions as the original magnetic circuit, similar to the equivalent circuits 
by the conventional inductance matrix and duality methods. For this purpose, we show 
that Fig. 2.5(b) is functionally equivalent to the original magnetic circuit, as well as Fig. 
2.7. In order to discuss the functional equivalence, we employed the magnetic energy 
expressed as a function of current. 

The electrical function of an integrated magnetic component can be fully determined 
if the magnetic energy E(i1,i2,…) is given as a function of the electric current. Here, we 
present a brief explanation of the reason. 

We consider an arbitrary magnetic component with multiple current paths, and denote 
the voltage induced through the current path j as Vj. Because input energy equals the 
increase in magnetic energy, we have: 

∑∑ ∂
∂=

j

j

jj
jj dt

di

i

E
iV , (2.19) 

where ij is the current of the current path j. 

Because the magnetic energy is a quadratic form of the current, ∂E/∂ij is a linear form 
of the current. By partially differentiating (2.19) with respect to the current, we obtain: 
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Equation (2.20) indicates that the energy expression E(i1,i2,…) is sufficient to 
determine the electrical input-output relation of the magnetic component. Hence, we only 
need to show that Fig. 2.5(b) and Fig. 2.7 belong to the same energy expression as that of 
the magnetic circuit model, in order to confirm the properness of the equivalent circuits. 

First, we derive the energy expression for Fig. 2.4. The magnetic energy EM of the 
whole magnetic circuit model is: 
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The energy expression of Fig. 2.4 is obtained by expressing the above equation as a 
function of i1 and i2. With a view to this purpose, the fluxes φ1–φ3 are expressed as 
functions of  i1 and i2 in advance. Substituting iC=i1+i2 into (2.14) yields: 
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Substituting (2.14) and (2.22) into (2.21) leads to: 
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This is then compared with the energy expression of Fig. 2.5(b) and Fig. 2.7. The 
energy expression ELag for Fig. 2.5(b) is: 
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On the other hand, the energy expression EMatrix for Fig. 2.7 is: 
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Table. 2.1. Specifications of the Prototype Converter.  

 
 

 
Fig. 2.9.  Photograph of the integrated winding coupled inductor 

employed for the prototype converter. 
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Equations (2.23)–(2.25) can be developed to obtain EM=ELag=EMatrix. Consequently, 
both Fig. 2.5(b) and Fig. 2.7 are shown to have the same electric functions as the magnetic 

 
Fig. 2.10.  Experimental and simulated waveforms of the current 

of the winding 1 (i1) and the voltage across S1 (VS1). (a) Experiment. 
(b) Simulation based on the Lagrangian method. (c) Simulation based 
on the inductance matrix method. 
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circuit model. 

 

2. 5.   Consistency with Experimental Behavior 

This section confirms consistency of the equivalent circuits with experimental behavior 
of the integrated magnetic component. Current waveforms of the converter shown in Fig. 
2.3 were simulated utilizing the equivalent circuit shown in Fig. 2.5(b) and Fig. 2.7. The 
results were then compared with the experimental waveforms of a prototype converter 
with the integrated magnetic component. We employed SCAT K.460PR1 (Keisoku Giken 
Co., Ltd.) as the simulator. 

The specifications of the prototype are given in Table 2.1, and a photograph of the 
magnetic component in Fig. 2.9. To simplify the waveform, the converter was operated 
under the continuous conduction mode. Hence, RO is designed to be far smaller than the 
design concept presented in [4]. We equipped no gap on the outer legs. The reluctance of 
the magnetic circuit is estimated from results of inductance measurement of the magnetic 
component. Details of the estimation are presented in the appendix. 

First, we compared the experimental and simulated waveform of the current i1, when 
the duty ratio is set at 0.3. The result is shown in Fig. 2.10. Figure 2.10(a) is the 
experimental waveform, and Fig. 2.10(b) and Fig. 2.10 (c) are the simulated waveforms 
of the equivalent circuits by the Lagrangian method and the inductance matrix method, 
respectively. The two simulated waveforms are identical, indicating equivalency between 
the two equivalent circuits, as expected from the previous section. In addition, the 
simulation predicted the experimental waveform well, except for surge current during the 
switching of S1 and S2. 

Next, we compared the simulated current ripple of i1 with the experimental result over 
several duty ratios. The result is shown in Fig. 2.11. As expected from the previous section, 
the simulation of the two equivalent circuits resulted in the same current ripple. In 

 

 
Fig. 2.11.  Experimental and simulated ripple current in the current 

of the winding 1 (i1) 
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addition, the simulation successfully predicted dependency of the ripple current on duty 
ratio. Hence, the result also supported consistency of the equivalent circuit with the 
experiment. Certainly, the experiment showed that the ripple current was slightly smaller 
than predicted when the duty ratio was set at 0.4. The reason for this is not clear. However, 
the surge current during switching of S1 and S2 may have caused measurement deviation 
of the ripple current. 

Consequently, we concluded that the experiment also supported the properness of the 
equivalent circuits. 

 

2. 6.   Conclusions 

This chapter proposed a Lagrangian method to derive the equivalent circuit of an 
integrated magnetic component. This method is expected to derive a simpler circuit than 
the conventional inductance matrix and duality methods, when applied to an integrated 
magnetic component with few flux paths that can be magnetized independently. An 
example using the integrated winding coupled inductor verified that the Lagrangian 
method actually derives simplest equivalent circuit of the integrated winding coupled 
inductor compared to the conventional methods. 

In addition, this chapter investigated equivalent circuits of the integrated winding 
coupled inductor in order to verify the properness of the equivalent circuit by the 
Lagrangian method. The equivalent circuits were derived using the Lagrangian, 
inductance matrix, and duality methods, respectively. Then, this chapter investigated the 
consistency of the equivalent circuit by the Lagrangian method with the magnetic circuit 
model, and the experimental behavior of the integrated winding coupled inductor. The 
results showed the equivalent circuit was functionally equivalent to the magnetic circuit 
model, and predicted the experimental behavior as well as the equivalent circuit produced 
by the inductance matrix method. 

Consequently, these results support that the Lagrangian method provides proper 
equivalent circuits, and in some cases is useful for deriving simple equivalent circuits. 

 

2. 7.   Appendix 

The reluctance of the prototype of the integrated winding coupled inductor was 
estimated based on measurement of the self-inductance of all windings, and the mutual 
inductance of all winding pairs. The self-inductance is the inductance of a winding when 
all the other windings are opened. The result of the measurements is presented in Table 
2.2. 

We can analytically express the inductance as functions of the reluctance. By equating 
the expression to the measured inductance, the reluctance can be determined.  

The expression of the self and mutual inductance are already obtained in (2.17) by the 
inductance matrix method. However, this does not indicate that the inductance matrix 
method is more useful than the Lagrangian method, because we can also derive the same 
result by the latter. In order to prove this, we here employ the Lagrangian method to derive 
the expression. 
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We consider that the windings in Fig. 2.4 are disconnected each from the other. Then, 
Lagrangian L′ of Fig. 2.4 can be described introducing qC, which is the cumulative charge 
through the winding C: 

( ) ( ) ( ) 2
1133222111 2

1
LLLOLCCLO RqNqNqNL φφφφφφφ −+−+++−=′ &&&   

( )321
2

3
2

2
2

1
2

33
2

22 2
1

2
1

2
1

2
1

2
1 φφφλφφφφφ +++−−−−− OCOLLLL RRRRR . (2.26) 

We simplify (2.26) by eliminating λ and introducing φA=φ1+φ2/2. Then, we have: 
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First, we determine the mutual inductance M1C between the windings 1 and C. By 
substituting q2=0, we can obtain the equivalent circuit of the magnetic component, when 
the winding 2 is opened: 
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Now, we consider Lagrangian Ltemp of an arbitrary circuit with the magnetic component 
represented by (2.28). In other words, Ltemp contains the above Lagrangian L'. Because 
Ltemp does not contain φL3 except L', Euler-Lagrange equation (1.26) of Ltemp with respect 
to φL3 gives φL3=0. Therefore, we can eliminate φL3 from (2.28), obtaining: 

2
222

2
1111

2
1 2

1
2
1

LLLCCLLLOAOAO RqNRqNRqNL φφφφφφ −+−−−−=′ &&&   

2
221 422

φφ 






 +−






 ++ OC
CC

O RR
qNq

N
&& . (2.29) 

The above Lagrangian can be translated into Fig. 2.12(a). Therefore, the mutual 
inductance M1C is:  
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Next, the self-inductance Λ1 of winding 1 is obtained by further opening winding C. 
Substituting qC=0 into (2.29) yields: 
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We eliminated the term with φL2 in (2.31), because Euler-Lagrange equation with 
respect to φL2 now yields φL2= 0.  

Equation (2.31) corresponds to series-connected inductors whose inductances are 
NO

2/RL1, NO
2/2RO, and NO

2/(2RO+4RC), respectively. Therefore, we have: 
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Table. 2.2. Measurement Result of Self- and Mutual Inductance 

 
 

 
Fig. 2.12.  Translation from Lagrangian expression into circuit 

diagram. (a) Equation (19). (b) Equation (25). 
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Similarly, the self-inductance ΛC of winding C is obtained by substituting q1=0 into 
(2.29). Then, φL1=0 and φA=0 can be substituted, according to the similar reason described 
above. As a result, we have: 
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Equation (2.33) corresponds to series connected inductors whose inductances are 
NC

2/RL2 and 2NC
2/(RO+2RC). Hence, we have: 

CO

C

L

C
C RR

N

R

N

2
2 2

2

2

+
+=Λ . (2.34) 

Then, we determine the mutual inductance M12 between windings 1 and 2. Now, only 
winding C is opened. Thus, substitute qC=0 into (2.27) to obtain: 
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Note that we eliminated the term with φL2, similarly as in (2.31). Equation (2.35) can 
be translated into Fig. 12(b). Therefore, the mutual inductance M12 is:  
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According to similar discussion to obtain (2.30) and (2.32), we obtain the self-
inductance Λ2 of winding 2 and the mutual inductance M2C between windings 2 and C: 
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Finally, the reluctance can determined by equating Table 2.2 with (2.30), (2.32), (2.34), 
(2.36)–(2.38), obtaining the values of reluctance shown in Table 2.1. 
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C h a p t e r  3  

LAGRANGIAN METHOD FOR DERIVING ELECTRICALLY DUAL 
POWER CONVERTERS APPLICABLE TO NON-PLANAR CIRCUIT 

TOPOLOGIES 
 

3. 1.   Introduction 

The duality principle [1] is widely recognized as one of the most basic features of 
power converters. Power converters can be primarily classified as voltage-source 
converters, which convert electrical energy from a voltage source, and current-source 
converters, which convert energy from a current source. In general, voltage-source 
converters have dynamically equivalent current-source counterparts and vice versa. This 
correspondence relationship is called as the duality principle. 

The duality principle is often utilized in power electronics research. One of its most 
common uses is in the derivation of novel circuits [2]–[4]. In other words, novel circuits 
may be discovered by deriving dual converters from their already known counterparts. In 
other cases, the principle can be utilized for analyzing circuit behavior [5]. For this 
purpose, the circuit behavior of the dual are first analyzed instead of focusing on the target 
circuit, and then the behavior of the target circuit is inferred from the result. 

These methods of utilizing the duality principle require duality transformation, namely, 
the derivation of the duals. If the original circuits have a simple topology, their duals can 
be guessed in many cases. However, complicated circuits generally do not allow an 
intuitive approach. Hence, several analytical methods of duality transformation have been 
studied and proposed. 

The basic method of duality transformation is based on the interchange between the 
voltage and the current of every component in the original circuit [1]. The interchange 
can be performed by means of topological transformation, through which series 
connections of the original circuit are replaced by parallel connections and parallel 
connections by series connections. 

However, topological transformation is applicable only to planar circuits [1], which do 
not contain any pair of wires crossing each other without connection. Meanwhile, many 
non-planar circuits are known to have their own duals, although the duals are not related 
to the original circuits perfectly by topological transformation. Thus, the basic method of 
the duality transformation is not directly applicable to deriving duals for non-planar 
circuits. 

To address the problem, some techniques [6]–[9] that apply topological transformation 
partially to avoid non-planarity have been proposed. However, they seem to raise another 
problem in that a dual derived by a technique cannot necessarily be derived by another 

 † Reprinted, with permission, from K. Umetani, Lagrangian method for deriving electrically dual 
power converters applicable to non-planar circuit topologies, IEEJ Transactions on Electrical and 
Electronic Engineering, Jul. 2016. 
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technique, as presented below. Accordingly, the duality transformation of non-planar 
circuits still seems to require intuitive insight in selecting an appropriate technique in 
order to derive a desired dual. Therefore, the application of the duality principle can 
probably be promoted by proposing a more universal method of duality transformation 
that derives all possible duals systematically. 

The following discussion of the aforementioned problem uses specific examples of 
non-planar circuits. Figure 3.1(a) illustrates a typical three-phase voltage-source inverter. 
Because this circuit is widely utilized in the industry, its duality has been actively 
researched [6]–[11]. We apply the previously reported methods to this circuit to show that 
none of them can derive all duals. 

In one method [6][7], the original circuit is disassembled into a set of planar circuits 
by adding ideal transformers. Then, the resulting planar circuits are individually 
converted by topological transformation, and finally, they are assembled into a dual. 
Consequently, the derived dual contains the additional transformers introduced in the 
disassembly process. According to the method, we obtain the dual illustrated in Fig. 3.1(b) 
from the original inverter shown in Fig. 3.1(a). The method is beneficial as a systematic 
procedure of transformation. Nonetheless, there is still a dual that cannot be derived by 
the method. In fact, the circuit illustrated in Fig. 3.1(c) is also known to be a dual [10][11]. 
However, the circuit cannot be derived by the method, because it contains no transformer. 

Contrarily, two methods have been proposed that derive Fig. 3.1(c). One utilizes the 
fact that every instantaneous current path of the original inverter forms a planar circuit 
[8]. The method derives the dual by applying topological transformation to the 
instantaneous current patterns of every operation mode, and then, it seeks a circuit that 
provides the transformed current patterns as its operation mode. The other method 
replaces each leg of the original inverter with a voltage-controllable voltage source and 
then applies a topological transformation [9]. These methods are successfully applied to 
the three-phase inverter. However, their universal applicability remains unclear, because 

 

 
Fig. 3.1.  Three phased voltage source inverter and its duals 

(a) Voltage Source Inverter (b) Dual Inverter A

(c) Dual Inverter B

(a) Voltage Source Inverter (b) Dual Inverter A

(c) Dual Inverter B
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it is not ensured that they always yield planar networks for any non-planar circuits. 
Furthermore, they are also unable to derive all duals, because they add no ideal 
transformer, and consequently, they do not lead to Fig. 3.1(b). 

The abovementioned difficulty is closely related to the method of avoiding non-
planarity in order to apply the topological transformation. Therefore, the problem may be 
addressed by inventing another method of duality transformation that does not utilize 
topological transformation. The aim of this chapter is to propose a candidate by discussing 
another approach to duality transformation. 

Instead of topological transformation, the proposed method is based on Lagrangian 
dynamics. According to Lagrangian dynamics, every power converter has its own 
Lagrangian [12]–[14] expression. The dynamics provides systematic methods to 
transform a Lagrangian into another dynamically equivalent Lagrangian. The proposed 
method first expresses the original circuit as Lagrangian. Then, the Lagrangian is 
transformed using Lagrangian dynamics into another equivalent Lagrangian that belongs 
to the dual. Finally, the transformed Lagrangian is translated into a physical circuit 
topology to obtain the dual. 

The next section theoretically discusses formulation of the proposed method. Section 
3.3 explores two examples of duality transformation. These examples derive already-
known duals to verify the proposed method. In particular, one example systematically 
derives both Fig. 3.1(b) and Fig. 3.1(c) from Fig. 3.1(a), suggesting that the proposed 
method is more universal for deriving various duals of non-planar circuits. 

 

3. 2.   Duality Transformation by Lagrangian Dynamics 

A.    Lagrangian Modeling 

Many previous papers have discussed Lagrangian modeling for power converters. The 
typical modeling method [12][13] regards energy in inductors as kinetic energy and 
energy in capacitors as potential energy. Thus, the method models a circuit of inductors 
and capacitors by the Lagrangian 

 
Fig. 3.2.  Holonomic constraints of electric and magnetic node 
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where i, j, and k are the indexes of the inductors, capacitors, and voltage sources, 
respectively; Λi is the inductance of the inductor i, and qi is the electric charge that flows 
through it; Cj is the capacitance of the capacitor j, and qj is the charge stored in it; Ek is 
the voltage of the voltage source k, and qk is the charge that flows from it. The dot above 
a variable indicates its time derivative. Hence, charge q is the physical charge stored in a 
capacitor in the second right-hand term of (3.1), and it is also the time integrated current 
[14] as defined by (3.2) in the first and third right-hand terms. 
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where t is the time, t0 is the initial time, and I is the current that flows through the 
component under consideration. 

This modeling is limited to power converters composed only of inductors and 
capacitors. Thus, it cannot handle converters with transformers or magnetic circuits. To 
address this problem, a novel Lagrangian formulation was proposed recently [14]. The 
method models the windings and the magnetic paths separately. The first right-hand term 
of (3.1) is split into the Lagrangian of the windings (the first right-hand term of (3.5)) and 
that of the magnetic paths (the second right-hand term of (3.5)). 

In addition, the definition of charge q is unified to (3.2). This enables the electrical 
networks to be implemented as a set of holonomic constraints, each defined at a node 
representing that the sum of the charge flowing into the node should remain zero, as 
shown in Fig. 3.2(a). 

A switch on the current path is modeled by regarding a node connected to the current 
path as a holonomic constraint that can be switched according to the state variable of the 
switch. For example, the constraint of the node shown in Fig. 3.2(a) is expressed as q1 − 
dq2 + q3 = 0, where d is a function of the switching state that takes d = 1 in the on-state 
and d = 0 in the off-state. Therefore, the constraint at the electrical node r can be generally 
expressed as 

( ) ( ) 0);( 2211 =++= Lqszqszsqf rrr , (3.3) 

where fr(q;s) is a linear function of the charge q1, q2, … ; s is the state variable of 
switches; and zr1, zr2, … are functions of s or constant integers that take any one of +1, 0, 
or −1. 

Similarly, the magnetic networks are implemented as a set of holonomic constraints 
representing that the total flux flowing into a magnetic node should remain zero, as shown 
in Fig. 3.2(b). For example, the constraint at the node shown in Fig. 3.2(b) is expressed 
as φ1 − φ2 + φ3 = 0. Thus, the constraint at the magnetic node u can be generally be 
expressed in the following form: 

( ) ( ) 0)( 2211 =++= Lφηφηφ ssg uuu , (3.4) 
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where gu(φ) is a linear function of the flux φ1, φ2, …; and ηu1, ηu2, … are constant 
integers that take any one of +1, 0, or −1. 

Consequently, the general expression of the Lagrangian has the form 
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where n and m are the indexes of windings and branches of magnetic paths, 
respectively; Nn is the number of turns of the winding n, qn is the charge that flows through 
it, and φn is the flux that links with it; Pm is the permeance of the branch m of a magnetic 
path, and φm is its flux; Qj is the initial charge of the capacitor j, and qj is now the charge 
that flows from its positive node; λEr is the Lagrangian multiplier for the electrical node 
r; and λMu is the Lagrangian multiplier for the magnetic node u. The number of turns N is 
defined as the positive or negative number whose absolute value equals the physical 
number of turns of a winding. The positive value of N means that the winding is wound 
so that the positive value of its flux φ and the positive value of its current q&  satisfies 
Ampere’s right-hand screw rule. Otherwise, N is negative. 

The Lagrangian model presented in (3.5) still does not contain energy dissipating 
components. Therefore, it cannot express the output load and resistors in the circuit. To 
model these components, we introduce Reighley’s dissipation function [15] D as 
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where w is the index of the branches of current paths; REw is the energy dissipation 
coefficient at the branch w, and qw is the charge that flows through it; and RMm is the 
energy dissipation coefficient at the branch m. 

Then, the circuit behavior of the model is obtained according to the Euler–Lagrange 
equation [14] defined as 
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where x is any one of the independent variables contained in L or D. With regard to the 
modeling of the power conversion circuit discussed in this paper, x is any one of charge, 
flux, or a Lagrangian multiplier. 

The first right-hand term of (3.6) indicates the energy dissipation caused by a change 
of the electric charge, namely the current. Indeed, we can regard RE as the resistance. On 
the other hand, the second right-hand term indicates dissipation by the change of the flux. 
Although these terms represent different types of dissipation, a resistor with resistance R 
can also be modeled using RM, for the reason discussed below. 
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Consider an imaginary magnetic device illustrated in Fig. 3.3(a). The device has a 
winding with the number of turns NMR wound on a closed magnetic core with infinite 
permeance PMR and finite dissipation coefficient RMR. The initial value of the flux φMR is 
set to zero. Then, the Lagrangian LMR and the dissipation function DMR of the device are 
obtained as 
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MR
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P
qNL φφφ && ≈−=
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, (3.8) 
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2
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D

φ&= , (3.9) 

where qMR is the electric charge that flows through the winding. We can derive the 
approximation in (3.8) by neglecting φMR

2/2PMR. The flux φMR is a finite value, because 
the voltage across the winding, i.e., MRMRN φ& , is finite and the initial value of φMR is zero. 

Therefore, φMR
2/2PMR is infinitely small and we can approximate the term as zero. 

We further consider a circuit with Lagrangian LA and the dissipation function DA. We 
assume that the circuit contains the magnetic device of Fig. 3.3(a). We also consider 
Lagrangian L′A and the dissipation function D′A in which the contribution of the magnetic 
device is omitted from LA and DA. Hence, LA = L′A + LMR and DA = D′A + DMR. 

Because the flux φMR is not contained in L′A and D′A, we obtain the following equation 
as a result of applying LA and DA to the Euler–Lagrange equation with respect to φMR. 

MRMRMRMR RqN φ&& = . (3.10) 

The result shows that the voltage across the windings of the magnetic device is 
proportional to the current of the winding. Consequently, the magnetic device of Fig. 
3.3(a) is equivalent to a resistor with resistance NMR

2/RMR. 

As discussed above, resistors can be implemented by electric dissipation expressed by 
the first right-hand term of (3.6) or by magnetic dissipation expressed by the second right-
hand term. In this paper, we allow both expressions. 

 
Fig. 3.3.  Analytical models of current source and resistance 
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Equations (3.5) and (3.6) model only a voltage-source converter, because they do not 
contain a Lagrangian expression for a current source. However, the dual of a voltage-
source converter generally contains a current source. Hence, we should extend the 
Lagrangian expression to model circuits with current sources by adding the Lagrangian 
of a current source to (3.5). The Lagrangian of a current source is obtained as follows. 

It is known that the Lagrangian of a voltage source can be obtained by regarding a 
voltage source as a capacitor with infinite capacitance(14). Similarly, the Lagrangian of a 
current source can be obtained by regarding a current source as an inductor with infinite 
inductance.  

We consider another imaginary magnetic device illustrated in Fig. 3.3(b). The device 
has a winding with the number of turns NS and a magnetic path with infinite permeance 
PS. Now, we assume that the initial value φS0 of the flux in the magnetic core is not zero. 
If we denote the time-dependent variation of the flux as φS, the total flux is, therefore, the 
sum of φS0 and φS. We further denote the initial current of the winding as I. According to 
Ampere’s law, we obtain φS0 = NSIPS. Hence, φS0 is infinitely large. Then, the Lagrangian 
LS of the device is obtained by calculating the first and second terms of the right-hand 
side of (3.5): 
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Because φS0 is infinitely large, we can approximate the above equation by neglecting 
the second-order of φS, obtaining (3.12). Note that the Lagrangian is invariant by adding 
a constant or time derivative of an arbitrary function [16]. 
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If we apply (3.12) to (3.7) with respect to φS, we obtain .constIqS ==& . Hence, the 

Lagrangian LS certainly expresses the current source. Note that NS does not affect the 
behavior of the current source, and therefore, we can assign any arbitrary value to NS. 

Consequently, circuits with current sources have the Lagrangian form of (3.13), which 
is obtained by merging (3.12) with (3.5). 
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where i is the index of the current sources, Ni is an arbitrary number assigned to the 
current source i, I i is its current, and φi is its imaginary flux. We included the first right-
hand term of (3.12) in the first right-hand term of the above equation. 
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B.    Duality Transformation of the Lagrangian Model 

The conventional method of duality transformation is based on the interchange 
between the current and the voltage of every component in the circuit. However, duality 
transformation interchanges not only the current and the voltage, but also the electric 
charge and the flux linkage, as noted by S. D. Freeland [1]. Hence, it seems to be also 
natural to base duality transformation on interchange between the charge and the flux. 

There is a useful merit of changing the basis to the interchange between charge and 
flux from the interchange between current and voltage. The interchange between current 
and voltage requires a change of the circuit network topology, because Kirchhoff’s law 
imposes different constraints on current and voltage, and the interchange without 
changing the network generally breaks the law. For this reason, this approach entails a 
topological transformation.  

On the other hand, charge and flux have the same kind of constraints. In particular, the 
sum of the charge that flows into a node of an electric circuit is required to be zero, and 
the same stands for the sum of the flux into a node of a magnetic circuit. As a result, the 
flux and the charge can be interchanged only by regarding an electric network as a 
magnetic network and a magnetic network as an electric network in principle. 
Accordingly, this approach does not need a topological transformation. Indeed, the mere 
interchange of networks results in magnetic circuits with switches, which cannot be 
realized by a physical circuit. This requires another transformation that moves the 
switches from magnetic circuits onto electric circuits. 

Now, we consider the interchange between the charge and the flux in the Lagrangian 
dynamics in order to formulate the duality transformation. The charge and the flux are 
both independent variables in the Lagrangian and dissipation functions. Therefore, 
renaming the flux as the charge and vice versa suffices to perform the interchange, and 
the result yields a Lagrangian representing a dynamically equivalent system. 

For convenience, we assume that the initial charge in the capacitors is zero. If we 
rename the charge and the flux in the general forms of Lagrangian and the dissipation 
function shown in (3.13) and (3.6), we obtain 
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The second, third, fourth, fifth, and seventh right-hand terms of (3.14) have the same 
form as (3.13). Additionally, (3.15) has already the same form as (3.6). Furthermore, 
among the elements f(φ;s) that constitute the sixth right-hand term of (3.14), those that 
are independent of s can be regarded as the seventh right-hand term of (3.13). Therefore, 
we can translate (3.14) and (3.15) into a physical circuit, if we successfully convert the 
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first right-hand term and the switch-dependent elements of the sixth right-hand term of 
(3.14) into the form of (3.13). Below, we discuss the method for such a conversion. 

We add the first right-hand term of (3.14) to the sum of the subset of elements in the 
sixth right-hand term of (3.14) and denote it as LF. We assume that LF includes at least all 
the switch-dependent elements of the sixth right-hand term. Then, we can express LF in a 
matrix form, using the fact that f(φ;s) is a linear form of φ: 
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where r′ is the index of constraints that are included in the subset, ϕϕϕϕ is the vector of the 
flux variables defined as ϕϕϕϕT = (φ1, φ2, …), N is a matrix composed of the numbers of turns, 
q is the charge variables defined as qT=(q1, q2, …), λλλλE is the vector of Lagrangian 
multipliers defined as λλλλE

T=(λE1, λE2, …), and Z is a matrix whose elements are functions 
of the state variable s or constant integers that take any one of +1, 0, or −1. 

We replace each Lagrangian multiplier λEr′ by the time-derivative of an additionally 
introduced imaginary charge qλr′ multiplied by an additionally introduced imaginary 
number of turns Nλr′. Nλr′ is a constant value and we can assign any arbitrary integer to 
Nλr′. We assume that the initial value of qλr′ is zero for convenience. Because the initial 
values of fluxes are given so that the initial value of f(φ;s) equals zero, the result of 
replacement is equivalent to the original, as shown in the appendix. This technique is 
based on a well-known method [17] for eliminating a cyclic coordinate from the 
Lagrangian. Then, we obtain 
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where fλ is the vector defined as fλT=(Nλ1qλ1, Nλ2qλ2, …). 

Because the Lagrangian is invariant by adding the time derivative of an arbitrary 
function, we can develop (3.17) as 
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We further introduce additional imaginary number of turns N′λ, additional imaginary 
charges q′λ, and additional Lagrangian multipliers λ′E. Again, we can assign any arbitrary 
constant integers to N′λ and we assume that the initial value of q′λ equals zero. We 
introduce the constraint that f′λ = Nq − ZTfλ, where f′λ is a vector defined as f′λT = (N′λ1q′λ1, 
N′λ2q′λ2, …). Then, we can express the Lagrangian LF by the equivalent expression 
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where λλλλ′E is a vector defined as λλλλ′ET=(λ′E 1, λ′E 2, …). 

For convenience, we rewrite (3.19) in the summation form. Then, we have 
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where α is the index of the flux variables in (3.14) (i.e., the charge variables in the 
original Lagrangian (3.13)), β is the index of the charge variables in (3.14) (i.e., the flux 
variables in the original Lagrangian (3.13)), nαβ is the element of N, and zr′α is the element 
of Z. 

First, we consider a fortunate case in which all nαβ are any one of +A, 0, or −A, where 
A is an arbitrary positive integer. Then, (3.20) results in the same form as the first and 
sixth right-hand terms of (3.13) because we can set N′λα and Nλr′ to −A or A. For example, 
if we set all N′λα and Nλr′ to A, we have 
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where ζαβ = nαβ/A, and λ″Eα are Lagrangian multipliers defined as λ″Eα = λ′EαA. 

Note that ζαβ and zr′α take any one of +1, 0, or −1. Therefore, (3.21) indicates that the 
first and sixth right-hand terms of (3.14) are successfully transformed into the form of 
(3.13). 

The above discussion is based on a specific case. However, even in the other cases, we 
can transform LF into the form of (3.13). 

Second, we consider a case in which all nαβ are any one of +A, 0, or −A except one 
element nα′β′. In this case, we further introduce an additional imaginary charge q′κ and an 
additional Lagrangian multiplier  λκ. Then, we have 
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We replace the Lagrangian multiplier λκ by the time-derivative of an additional 
imaginary flux φκ. The result of replacement is equivalent to the original, as shown in the 
appendix. (We regard the flux φ as the charge q, and qλ as φκ in the appendix.) As a result, 
we obtain 
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Equation (3.23) has the same form as the first and sixth right-hand terms of (3.13). 
Even if there is more than one element not following the relation that requires nαβ to be 
any one of +A, 0, or −A, we can transform LF into the form of (3.13) in a similar manner 
to (3.22) and (3.23). Therefore, we can generally transform LF into the form of (3.13). 
Consequently, (3.14) and (3.15) can be generally converted into the form of (3.13) and 
(3.6) according to the abovementioned procedure. 

It is worth noting that (3.14) and (3.15) can be converted into multiple equivalent 
expressions in the form of (3.13) and (3.6) because one resultant expression can yield 
other equivalent expressions in the form of (3.13) and (3.6). This indicates that we can 
obtain multiple duals by translating these equivalent Lagrangian expressions into circuit 
topologies.  

For example, we can replace the Lagrangian multiplier for an arbitrary electric node 
with the time-derivative of an additionally introduced imaginary charge multiplied by an 
additionally introduced imaginary number of turns. This replacement yields another 
equivalent Lagrangian in the form of (3.13) as shown below. 

Let Lmult be a Lagrangian multiplier term of an electrical node. According to (3.3), Lmult 
have the following general form: 
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( ) ( )( )L++= 2211 qszqszLmult λ , (3.24) 

where λ is a Lagrangian multiplier. 

Introducing an additionally imaginary flux φ and an additionally imaginary number of 
turns N, we can obtain another equivalent expression for Lmult: 
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The terms independent of s in the right-most side of (3.25) already have the form of 
the first right-hand term in (3.13). However, even if there are terms dependent on s, we 
can convert Lmult into the form of (3.13). For example, let ( ) φii qsNz &  be the only term 

dependent on s. Further introducing an additional charge qω and an additional Lagrangian 
multiplier λω, we obtain an equivalent expression 

( )( )iiiimult qszqqNzqNqNzqNzL −+−−−−−= ++ ωωω λφφφφ L&&L&& 112211 . (3.26) 

Even if there is more than one term dependent on s, we can transform Lmult into the 
form of (3.13) in a similar manner to (3.26). Consequently, we can generally obtain 
another equivalent Lagrangian in the form of (3.13) by replacing the Lagrangian 
multiplier term of an electrical node. 

In addition, we can obtain another simpler equivalent Lagrangian in the form of (3.13), 
if a resultant Lagrangian expression is reducible. For example, if the i-th element φi of the 
flux vector ϕϕϕϕ in (3.19) is not contained anywhere in the resultant Lagrangian and the 
resultant dissipation function except the terms originating from LF, we obtain that N′λiq′λi 

= const. as a result of the Euler–Lagrange equation of the resultant Lagrangian and 
dissipation function with respect to φi. This indicates that q′λi = 0 because the initial value 
of q′λi is zero. Hence, we can eliminate q′λi and φi by substituting q′λi = 0 into the resultant 
Lagrangian. 

In addition, we can eliminate the Lagrangian multiplier terms for magnetic nodes in 
the resultant Lagrangian. The terms are originally the switch-independent constraints 
among f(φ;s) in (3.14). Additionally, they represent the magnetic network of a magnetic 
circuit. Therefore, direct translation of the resultant Lagrangian yields a dual with 
integrated magnetic components. In this case, we can reduce the Lagrangian into another 
that corresponds to a dual without integrated magnetic components by utilizing the 
technique proposed in the previous work [14]. 

 

C.    Composing a Dual Circuit Topology  

The previous subsection obtained the Lagrangian and dissipation functions of a dual 
by interchanging the charge and the flux. As we have seen, these Lagrangian and 
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dissipation functions can be obtained in the form of (3.13) and (3.6). In this subsection, 
we discuss the method to compose the physical circuit topology of the dual from these 
resultant Lagrangian and dissipation functions. 

As discussed in the previous work [14], each term of (3.13) and (3.6) has a 
correspondence relation with a component of a physical circuit topology. Therefore, we 
can configure the topology utilizing this relationship. The following are the steps to 
configure the topology: 

1. Configure electric and magnetic networks from constraints at the nodes. These 
constraints are represented by the sixth and seventh right-hand terms of (3.13). 
Place switches on the electric network so that this network is consistent with the 
constraints. 

2. Place windings on the electric network so that they interlink with the magnetic 
network as represented by the first right-hand term of (3.13). 

3. Place permeance on the magnetic network as represented by the second right-
hand term of (3.13). 

4. Place infinitely large permeance with infinitely large initial flux on the magnetic 
network as represented by the fifth right-hand term of (3.13). Find structures 
shown in Fig. 3.3(b), and replace them with current sources. 

5. Place capacitors and voltage sources on the electric network as represented by 
the third and fourth right-hand terms of (3.13), respectively. 

 
(a)  

 
(b)  

Fig. 3.4.  Analytical models of voltage-source buck chopper and 
its dual. (a) Voltage source buck chopper. (b) Dual chopper. 
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6. Place resistors on the electric network as represented by the first right-hand term 
of (3.6). 

7. Place magnetic dissipation on the magnetic network as represented by the 
second right-hand term of (3.6). Find the structures shown in Fig. 3.3(a), and 
replace them with resistors. 

(If there is a magnetic path without any permeance or magnetic dissipation, we consider 
the path to have infinitely large permeance.) 

 

3. 3.   Examples of Duality Transformation 

A.    Buck Chopper 

Figure 4.4(a) illustrates a voltage-source buck chopper. Because its circuit topology is 
planar, we easily obtain the dual chopper illustrated in Fig. 4.4(b) according to the 
conventional method [1]. The purpose of this subsection is to confirm that the same dual 
results from the proposed method. 

First, we translate Fig. 4.4(a) into Lagrangian L and the dissipation function D 
according to the method of Lagrangian modeling [14]. 

( )LEE
CL

LL dqqEq
C

q

P
qNL −++−−= 1

22

22
λφφ&  

( ){ } ( )RCLL qqqqdq −−+−−+ 322 1 λλ , (3.27) 

2

2

1
RqRD &= , (3.28) 

where d is the variable that indicates the on-state and the off-sate of switch S1. If S1 is 
in the on-state, then d = 1. If S1 is in the off-state, then d = 0. We assume that the initial 
value of all charge is zero.  

 The charge q2 appears only in the sixth right-hand term of (3.27). Because (3.7) with 
respect to q2 results in λ2 = 0, the term with λ2 does not affect the circuit behavior. Hence, 
we eliminate the term in the following discussion. 

Now, we rename the charge as the flux and the flux as the charge in (3.27) and (3.28), 
obtaining the Lagrangian L′ and the dissipation function D′ as 

( ) ( )RCLLEE
CL

LL dE
CP

q
qNL φφφλφφλφφφ −−+−++−−=′ 31

22

22
& . (3.29) 

2

2

1
RRD φ&=′ . (3.30) 

Next, we introduce additional electric charges q1 and q3 and replace the Lagrangian 
multipliers λ1 and λ3 with 1qN&−  and 3qN&−  in the same manner as (3.17) and (3.18). 

(Because the number of turns that appears in the Lagrangian (3.27) is only N, we can set 
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Nλ1, Nλ2, … and N′λ1, N′λ2, … to N or  −N.) We denote the sum of the first, fifth, and sixth 
right-hand terms of (3.29) as Ltmp. Then, we have 

( ) ( )RCLLELLtmp qNdqNqNL φφφφφφ −−−−−= 31 &&&  

( )31331 qdqqNqNqNqN LLRCE +−+−−= φφφφ &&&& . (3.31) 

Then, we introduce additional charge variables q′E, q′C, q′R, and q′L and additional 
Lagrangian multipliers λ′E, λ′C, λ′R, and λ′L. We develop (3.31) in the similar manner as 
(3.19)–(3.21), obtaining 

( ) ( )31 qqqNqqqNL CCCCEEEEtmp −′′+′−−′′+′= λφλφ &&  

( ) ( )313 qdqqqqNqqqN LLLLLRRRR −+−′′+′+−′′+′− λφλφ &&  

( ) ( )31 qqqNqqqN CCCCEEEE −′′+′+−′′+′−= λφλφ &&  

( ) ( )313 qdqqqqNqqqN LLLLLRRRR −+−′′+′−−′′+′+ λφλφ && . (3.32) 

The Lagrangian multipliers λ′E, λ′C, and λ′R represent obvious relations that q′E = q1 
and q′C = q′R = q3. Therefore, we eliminate λ′E, λ′C, and λ′R by substituting the relations 
into (3.32): 

( )31331 qdqqqqNqNqNqNL LLLLLRCEtmp −+−′′+′−++−= λφφφφ &&&& . (3.33) 

Replacing the first, fifth, and sixth terms of (3.29) by (3.33), we have  

R
C

C
L

EE qN
C

qN
P

q
EqNL φφφφφ 3

2

3

2

1 22
&&& +−+−+−=′  

( )31 qdqqqqN LLLLL −+−′′+′− λφ& . (3.34) 

Note that φL appears only in the seventh right-hand term of L′. Hence, the Euler–
Lagrange equation (3.7) of L′ and D′ with respect to φL yields Nq′L = const. This indicates 
that q′L = 0 because the initial value of q′L is zero. Finally, we can simplify L′ by 
substituting q′L = 0 into (3.34), obtaining 

( )313

2

3

2

1 22
qdqqqN

C
qN

P

q
EqNL LLR

C
C

L
EE +−′−+−+−+−=′ λφφφφφ &&& . (3.35) 

Equations (3.35) and (3.30) represent the physical circuit illustrated in Fig. 3.4(b). The 
result shows that the proposed method also derives Fig. 3.4(b) as the dual corresponding 
to Fig. 3.4(a). 
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B.    Three Phase Inverter 

This subsection derives the duals shown in Fig. 3.1(b) and Fig. 3.1(c) from the original 
circuit shown in Fig. 3.1(a). We translate Fig. 3.1(a) into the Lagrangian L and dissipation 
function D, obtaining (3.36) and (3.37). We define the circuit parameters, charge, and 
fluxes as illustrated in Fig. 3.5(a). 

PPP
EqqNqNqNL E 222

2
3

2
2

2
1

332211

φφφφφφ −−−+++= &&&  

( ) ( ) ( ){ }2331223111 qqdqqdqqdqE −−−−−−+ λ  

( )( ) ( )( ){ ( )( )}2331223112 111 qqdqqdqqdqE −−−−−−−−−+ λ , (3.36) 

( )2
3

2
2

2
12

1
qqqRD &&& ++= , (3.37) 

where d1, d2, and d3 are the variables that indicate the on-state and off-state of switches 
S1, S2, and S3, respectively. If the switches are in the on-state, the variable equals 1. If 
the switches are in the off-state, the variable equals zero. 

The constraint represented by the term with λ2 is the same as that with λ1. Hence, we 
can eliminate the term with λ2. Then, we rename the charge as the flux and the flux as the 
charge in (3.36) and (3.37), obtaining 

P

q

P

q

P

q
EqNqNqNL E 222

2
3

2
2

2
1

332211 −−−+++=′ φφφφ &&&  

( ) ( ) ( ){ }3132321211 φφφφλ ddddddE −−−−−−+ , (3.38) 

( )2
3

2
2

2
12

1 φφφ &&& ++=′ RD . (3.39) 

Next, we introduce additional charge qλ and replace the Lagrangian multiplier λ1 by 

λqN&− . (Because the number of turns that appears in the Lagrangian (3.38) is only N, we 

can set Nλ1, Nλ2, … and N′λ1, N′λ2, … to N or  −N.) Again, we assume that the initial value 
of qλ is zero. We denote the sum of the first, second, third, and eighth right-hand terms of 
(3.38) as Ltmp2. Then, we develop Ltmp2 in the same manner as (3.17) and (3.18): 

3322112 qNqNqNLtmp φφφ &&& ++=  

( ) ( ) ( ){ }313232121 φφφφλ ddddddqN E −−−−−−− &  

 ( ){ } ( ){ }23221211 qqddNqqddNNq E −−−−−−= λλλ φφφ &&&  
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( ){ }3133 qqddN −−− λφ& . (3.40) 

 
(a) Voltage source inverter 

 
(b) Dual inverter A 

 
(c) Dual inverter B 

 
Fig. 3.5.  Analytical model of the three-phase voltage source 

inverter and its duals. 
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 Then, we introduce additional charges qE, qA, qB, and qC and additional Lagrangian 
multipliers λE, λA, λB, and λC. Developing (3.40) in a similar manner as (3.19)–(3.21), we 
obtain 

( ) 3212 φφφλφ λ
&&&&

CBAEEEEtmp NqNqNqqqNqL −−−−+=  

( ){ } ( ){ }232121 qqddqqqddq BBAA +−−++−−+ λλ λλ  

( ){ }313 qqddqCC +−−+ λλ  

( ) 321 φφφλφ λ CBAEEEE qNqNqNqqqN &&&& +++−+−=  

( ){ } ( ){ }232121 qqddqqqddq BBAA +−−++−−+ λλ λλ  

( ){ }313 qqddqCC +−−+ λλ . (3.41) 

The Lagrangian multiplier λE represents an obvious relation that qE = qλ. Thus, we 
substitute the relation into (3.41) to eliminate λE. In addition, with a view to helping the 
translation of (3.41) into a physical circuit, we additionally introduce the charge qU, qV, 
and qW: 

( ) λqddqU 21 −= , (3.42) 

( ) λqddqV 32 −= , (3.43) 

( ) λqddqW 13 −= . (3.44) 

At the same time, we introduce additional Lagrangian multipliers λU, λV, and λW to 
introduce additional constraints (3.42)–(3.44) into (3.41). Then, we can rewrite (3.41) as 

3212 φφφφλ CBAEtmp qNqNqNqNL &&&& +++−=  

( ) ( )21 qqqqqq VBBUAA +−++−+ λλ  

( ) ( ){ }λλλ qddqqqq UUWCC 213 −−++−+  

( ){ } ( ){ }λλ λλ qddqqddq WWVV 1332 −−+−−+ . (3.45) 

Replacing the first, second, third, and eighth terms of (3.38) by (3.45), we obtain 

P

q

P

q

P

q
qNqNqNEqNL CBAEE 222

2
3

2
2

2
1

321 −−−++++−=′ φφφφφλ &&&&  

( ) ( ) ( )132 qqqqqqqqq UAAWCCVBB +−++−++−+ λλλ  

( ){ } ( ){ } ( ){ }λλλ λλλ qddqqddqqddq WWVVUU 133221 −−+−−+−−+ . (3.46) 
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Note that we always have the relation qU + qV + qW = 0 from the definition and that the 
value of d1 − d2, d2 − d3, and d3 − d1 is one of 1, 0, or −1. Consequently, we can translate 
the Lagrangian (3.46) and the dissipation function (3.39) into the dual circuit illustrated 
in Fig. 3.5(c). 

In order to derive another dual, we adopt the constraint qU + qV + qW = 0 instead of qW 

= (d3 − d1)qλ implemented by the term with λW in (3.46). This does not affect the system, 
because we can derive qW = (d3 − d1)qλ from the newly introduced constraint qU + qV + qW 

= 0 and the constraints already implemented by the terms with λU and λV. By rewriting 
the constraint term, we obtain (3.47), which is equivalent to (3.46): 

P

q

P

q

P

q
qNqNqNEqNL CBAEE 222

2
3

2
2

2
1

321 −−−++++−=′ φφφφφλ &&&&  

( ) ( ) ( )321 qqqqqqqqq WCCVBBUAA +−++−++−+ λλλ  

( ){ } ( ){ }λλ λλ qddqqddq VVUU 3221 −−+−−+  

( )WVUW qqq +++ λ . (3.47) 

Now, we introduce an additional flux φW and an additional number of turns NW. 
According to the similar process as in (3.24) and (3.25), we can replace the Lagrangian 
multiplier λW with WWN φ&  to obtain an equivalent Lagrangian: 

P

q

P

q

P

q
qNqNqNEqNL CBAEE 222

2
3

2
2

2
1

321 −−−++++−=′ φφφφφλ &&&&  

( ) ( ) ( )321 qqqqqqqqq WCCVBBUAA +−++−++−+ λλλ  

( ){ } ( ){ } ( )WVUWWVVUU qqqNqddqqddq +++−−+−−+ φλλ λλ
&

3221  

P

q

P

q

P

q
qNqNqNEqN CBAEE 222

2
3

2
2

2
1

321 −−−++++−= φφφφφλ &&&&  

( ) ( ) ( )321 qqqqqqqqq WCCVBBUAA +−++−++−+ λλλ  

( ){ } ( ){ } ( )WVUWWVVUU qqqNqddqqddq &&& ++−−−+−−+ φλλ λλ 3221 . (3.48) 

Translating (3.48) and (3.39) into a physical circuit yields the dual illustrated in Fig. 
3.5(b). 

This result shows that the proposed method derives both of the duals presented in Fig. 
3.1(b) and Fig. 3.1(c). 

 



 

73 

3. 4.   Conclusions 

The duality principle is one of the basic features that many power converters exhibit, 
and has been widely utilized in power electronics research. When utilizing the principle, 
we generally need to perform duality transformation, which derives the dual circuit from 
an original circuit. Although methods of duality transformation have been proposed in 
previous studies, they sometimes lead to different duals when applied to non-planar 
circuits. Moreover, the dual derived by one method is not necessarily derived by another. 
This seems to hinder systematic derivation of the duals of non-planar circuits, because we 
have to choose an appropriate method to obtain the desired dual. 

As a probable candidate of a universal and systematic method that derives all possible 
duals, this paper proposes a novel method for duality transformation. The proposed 
method employs Lagrangian dynamics as the basis, whereas the conventional methods 
are based on topological transformation. Because the proposed method does not need a 
topological transformation, it is applicable to non-planar circuits in the same manner as 
to planar circuits. Thus, it probably avoids the abovementioned problem, which seems to 
be related to the difficulty in applying topological transformations to non-planar circuits. 

In order to verify the proposed method, we presented two examples of duality 
transformation: One is the buck chopper, and the other is the three-phase inverter. 
Particularly, the latter is a representative non-planar circuit, from which the conventional 
methods lead to either one of two different duals. The proposed method succeeded to 
derive both of the two duals deductively. These examples suggest that the proposed 
method is a prospective candidate for a universal and systematic method of the duality 
transformation. 

 

3. 5.   Appendix: Equivalency of Additional Charge Introduced to 

Replace a Lagrangian Multiplier 

This section shows that the two Lagrangian expressions L1 and L2 shown in (3.49) and 
(3.50) are equivalent, if the initial values of fluxes are given so that the holonomic 
constraint f(φ;s) equals zero. The constraint f(φ;s) is given as a function of fluxes. 

( )sfLL ;1 φλ+= , (3.49) 

( )sfqNLL ;2 φλλ &+= , (3.50) 

where L is the Lagrangian contained in both expressions, λ is a Lagrangian multiplier, 
Nλ is the turn number of an additionally introduced winding, and qλ is additionally 
introduced charge. Nλ is a constant value and we can assign any arbitrary value to it, and 
qλ is assumed to be contained in neither L nor the dissipation function. 

We substitute (3.50) into the Euler-Lagrange equation (3.7) with respect to qλ and 
perform time integration. Then, we obtain 
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( ) CsfN
q

L ==
∂
∂

;2 φλ
λ&

, (3.51) 

where C is an integration constant. 

Then, we introduce another Lagrangian L3, defined as 

λqCLL &−= 23 . (3.52) 

Now, we substitute (3.51) into (3.52) and denote the result as L′3. According to 
Lagrangian dynamics [17], L′3 is a known equivalent to L2. Expressing the substitution 
by introducing an additional constraint, we obtain L′3 as 

( )( )CsfNqCLL −′+−=′ ;23 φλ λλ&  

( )( ) ( )( )CsfNqCsfNL −+−′+= ;; φφλ λλλ & , (3.53) 

where λ′ is an additional Lagrangian multiplier. 

Because the Lagrangian multiplier term ensures Nλf(φ;s) −C = 0, we can eliminate the 
term ( )( )CsfNq −;φλλ& . Then, we have 

( )( )CsfNLL −′+=′ ;3 φλ λ . (3.54) 

According to (3.51), f(φ;s) is constant. Hence, C equals the initial value of f(φ;s), which 
is given as zero. Substituting C = 0 into (3.54) yields 

( )sfNLL ;3 φλ λ′+=′ . (3.55) 

Renaming λ′Nλ as λ in the above equation, we obtain L1. Consequently, L1 is equivalent 
to L′3 and therefore to L2. 
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C h a p t e r  4  

FLUX-BASED LAGRANGIAN FORMULATION FOR MODELING 
NONLINEARITY OF CONCENTRATED-WINDING SWITCHED 

RELUCTANCE MOTORS 
 

4. 1.   Introduction 

Switched reluctance motors (SRMs) attract researchers’ attention to their robust 
mechanical construction and cost effectiveness [1][2]. Nonetheless, practical applications 
of SRMs are still requiring control techniques that can solve the two difficulties: 1. large 
torque ripple, 2. large current ripple in the power supply to the motor drivers. 

These difficulties are related with intense magnetic non-linearity of SRMs [1]–[3]. 
Therefore, SRM control should preferably consider the non-linearity. In addition, solving 
these difficulties often suffers from slow current response at the aligned position due to 
large inductance. Therefore, SRM control should preferably consider the flux waveforms 
to minimize the flux change rate, because it is limited by the voltage applicable to the 
phase winding. At the same time, SRM control may preferably consider behaviors of both 
the motor and its driver simultaneously, because the current ripple in the power supply, 
as well as the flux response, is dependent on both the motor and the driver.  Consequently, 
progress in SRM control seems to be promoted by an analytical flux-based non-linear 
SRM model that can be directly combined with circuit models of motor drivers 

As designing tools of SRM control, a number of analytical formulation for modelling 
SRMs have been proposed [4]–[15]. However, few of them meet the above requirements 
perfectly. 

The purpose of this chapter is to propose a candidate that meets the requirements. This 
chapter employed Lagrangian dynamics as a modelling method because it can model 
kinetics and magnetics simultaneously. Furthermore, chapter 1 proposed Lagrangian 
formulation for electric circuits, enabling Lagrangian SRM models to be connected to 
motor driver models. Compared to the prior Lagrangian formulation reported in [13], the 
proposed formulation provides flux-based models and incorporates magnetic non-
linearity. 

This chapter is composed of the following 4 sections. Section 4.2 discusses Lagrangian 
expression of a system in which both kinetics and electromagnetics take place 
simultaneously. Particularly, we discuss the case of non-linear electromagnetic media. 
Section 4.3 derives the Lagrangian formulation of SRMs. First, we derive a generalized 
formulation of SRMs. Then, we discuss more simplified formulation, which the author 
believe to give more practical model of SRMs. Section 4.4 presents an operation analysis 
of a simple SRM driving system to show properness of the derived Lagrangian 
formulations. This section also shows that the proposed Lagrangian formulations 

 †Reproduced by permission of the Institution of Engineering & Technology, from K. Umetani, M. 
Yamamoto, and E. Hiraki, Simple flux-based Lagrangian formulation to model nonlinearity of 
concentrated-winding switched reluctance motors, 27 Oct. 2015. 
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provides flux-based non-linear models that can be analyzed in combination with 
Lagrangian models of motor driving circuits. 

 

4. 2.   Lagrangian Density of Kinetics and Electromagnetism 

A.    Lagrangian Density of Electromagnetic Fields in Non-Linear Media  

This subsection derives an expression for Lagrangian density of electromagnetic field 
in non-linear media. We start our discussion from Maxwell’s equations: 

( ) ,0,div =xB t  (4.1) 

( ) ( )
,0

,
,rot =

∂
∂+

t

t
t

xB
xE  (4.2) 

( ) ( ) ,,,div xxD tt ρ=  (4.3) 

( ) ( ) ( ) ,,
,

,rot xj
xD

xH t
t

t
t =

∂
∂−  (4.4) 

where t is the time; x is the position vector; D and B are the electric and magnetic flux 
density vectors, respectively; E and H are the electric and magnetic field vectors, 
respectively; ρ is the electric charge; and j is the electric current vector. 

We introduce the scalar potential ψ(t,x) and the vector potential A(t,x) such that 

( ) ( ) ,,rot, xAxB tt =  (4.5) 

( ) ( ) ( ) ( ) ( ),,grad,,grad
,

, xxAx
xA

xE ttt
t

t
t ψψ −−=−

∂
∂−= &  (4.6) 

where a dot over a variable is its time derivative. 

Equations (4.5) and (4.6) automatically satisfy (4.1) and (4.2). Therefore, we only need 
to find a Lagrangian representing (4.3) and (4.4) as a function of ψ, A, and A& . 

For convenience, we assume that D and H implicitly depend on ψ and A only through 
E and B, respectively. In other words, D is a function of t, r, and E; and H is a function 
of t, r, and B. This indicates that we ignore the relativistic effects caused by moving media 
and regard the velocity of the media is sufficiently small compared to the light speed. 

Particularly, in the linear media, in which D and H are proportional to B and H, 
respectively, the Lagrangian density Ld_lf of the electromagnetic field is proposed in 
Chapter 1 as  

( ) ( ) ( ) ,
,2

1
,

2

1
,,_ BB

x
EExAjAA ⋅−⋅+⋅+−=

t
tL lfd µ

ερψψ &  (4.7) 

where ε(t,x) and µ(t,x) are the permittivity and permeability, respectively. 
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Now, we extend the Lagrangian density to include expressions for the electromagnetic 
field in the non-linear media, in which D and H are non-linear functions of E and B, 
respectively. As a possible candidate, we consider the Lagrangian density Ld_nf defined as 

._ ∫∫ ⋅−⋅+⋅+−=
B

0

E

0

BHEDAj ddL nfd ρψ  (4.8) 

In linear media, we have D=εE and H=B/µ. Therefore, (4.8) is a natural extension of 
Ld_lf. In order to confirm properness of this Lagrangian, we examine whether it yields 
(4.3) and (4.4). 

We consider a system of electromagnetic field and integrate Ld_nf over a large region V 
containing this system. Then, the result of the integration gives Lagrangian La of this 
system. Hence, we have 

( ) ,,, ∫ ∫∫ ∫∫∫ ⋅−⋅+⋅+−=
VVVV

a ddddddL
B

0

E

0

BHxEDxxAjxAA ρψψ &  (4.9) 

where dx is the volume element. 

 Next, we take the variation of La with respect to ψ, A, and A& . We consider arbitrary 
infinitesimal changes δψ and δA in ψ and A inside the region V. Therefore, we assume 
δψ=0 and 0AA == δδ &  at the surface of V. We replace ψ A, and A&  in (4.9) by ψ+δψ, 
A+δA and AA && δ+ , respectively. Then, we subtract La from the resultant Lagrangian 
La+δLa. Noting that D and H depend implicitly on ψ and A through E and B, we obtain 
the infinitesimal change δLa in Lagrangian La as 

,∫∫∫∫ ⋅−⋅+⋅+−=
VVVV

a ddddL xBHxEDxAjx δδδρδψδ  (4.10) 

where AE &δδψδ −−= grad and AB δδ rot= . 

The third right-hand term can be developed as follows: 

,div

div

grad

∫∫

∫∫∫

∫∫∫

⋅−=

⋅−+Ω−=

⋅−⋅−=⋅

Ω

VV

VV

VVV

dd

ddd

ddd

xADxD

xADxDD

xADxDxED

&

&

&

δδψ

δδψδψ

δδψδ

 (4.11) 

where Ω is the surface of the region V and dΩ is its area element. 

Similarly, the fourth right-hand term in (4.10) can be developed as follows: 
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∫

∫∫∫

⋅−=

⋅−Ω×=⋅−
Ω

V

VV

d

ddd

xAH

xAHAHxBH

δ

δδδ

rot

rot

 (4.12) 

Substituting (4.11) and (4.12) into (4.10) yields 

( )

( ) ,rot

div

∫

∫∫

⋅−+

⋅−+−=

V

VV

a

d

ddL

xAHj

xADxD

δ

δδψρδ &

 (4.13) 

Hence, we obtain functional derivatives δψδ /aL , Aδδ /aL , A&δδ /aL as follows: 

.rot,,div Hj
A

D
A

D −=−=+−=
δ
δ

δ
δρ

δψ
δ aaa LLL

&  (4.14) 

The functional derivatives of a Lagrangian must satisfy Euler-Lagrange’s equation. 
Hence, we have 

,0=−








AA δ
δ

δ
δ aa LL

dt

d
&

 (4.15) 

.0=−
δψ
δ aL

 (4.16) 

Substituting (4.14) into (4.15) and (4.16) yields (4.3) and (4.4). Consequently, the 
Lagrangian density Ld_nf is confirmed to be a proper Lagrangian of the electromagnetic 
field in non-linear media. 

 

B.    Lagrangian Density Incorporating Kinetics and Electromagnetism 

Although the Lagrangian density Ld_nf provides proper equations of the 
electromagnetism, it is not sufficient to derive a Lagrangian formulation for modeling a 
SRM. The reason is that the motor converts the electromagnetic energy into the kinetic 
energy, or vice versa. Hence, the Lagrangian model of a motor must comprise the kinetics 
as well as the electromagnetism, whereas Ld_nf defined in (4.8) does not comprise the 
kinetics. 

In order to incorporate both the kinetics and the electromagnetism, we introduce a 
Lagrangian density Ld defined as 

( ) ( ) ( ) ( ) ,
2
1

,,,, _
2

nfd
s

ss
s

sssssd LUmL +−−−= ∑∑ rxxrxrAArr δδψ &&&  (4.17) 
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where s is an identifier of point masses, ms is the mass of a point mass s, rs(t) is the 
position vector of the point mass s, δ is the Dirac’s delta function in 3 dimensions, and 
Us(x) is the kinetic potential for the point mass s. 

Because now we discuss the motion of point masses with or without electric charge, 
we give definitions to ρ(t,x) and j(t,x) in Ld_nf incorporated in Ld as a distribution and a 
flow of charged point masses, e.g. electrons:  

( ) ( ),, ∑ −=
s

ssqt rxx δρ
 (4.18) 

( ) ( ),, ∑ −=
s

sssqt rxrxj δ&
 (4.19) 

where qs is the charge of the point mass s. As for a point mass without electric charge, 
we regard qs=0. 

The first and second right-hand terms of (4.17) do not contain the scalar and vector 
potentials, i.e. ψ or A. In addition, the above definitions are also free from ψ or A. 
Therefore, the newly introduced Lagrangian density also yields the proper equations of 
the electromagnetic field, i.e. (4.3) and (4.4), as a result of taking variation with respect 
to ψ, A, and A& . 

Accordingly, we only need to confirm that Ld yields a proper equation of motion of a 
point mass. For this purpose, we take variation with respect to sr&  and rs. 

Again, we consider a system in which the kinetics and the electromagnetics take place 
and integrate Ld over a spatial region V that covers the system. Then, the result of 
integration is Lagrangian Lb of the system. Hence, we have 

( ) .,,,, ∫=
V

dssb dLL xAArr && ψ  (4.20) 

Now, we consider arbitrary infinitesimal changes sr&δ and δrs in sr&  and rs. We replace  

sr&  and rs in (4.20) by ss rr && δ+ and rs+δrs, respectively. Then, we subtract Lb from the 

resultant Lagrangian to obtain infinitesimal change δLb in the Lagrangian. As a result, we 
have 

( ){ } ( ){ } ( )

( ){ } ( )( ) ,, sssss

V

sss

V

sssss

V

sssb

tqmdT

dqmdTL

s

s

rrArxrrx

xrxrArxrrx

r

r

&&

&&

δδδ

δδδδδ

⋅++⋅−∇=

−⋅++⋅−∇=

∫

∫∫
 (4.21) 

where ( ) .
2

1
,, 2 Arrxr ⋅+−−≡ ssssssss qqUmtT &&& ψ The operator 

sr∇  is the three 

dimensional nabla with respect to position vector rs; namely, 

( )szsysx
T rrr

s
∂∂∂∂∂∂=∇ /,/,/r  in 3D Cartesian coordinate, if we express rs as a vector 
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( )szsysx
T rrr ,,  in the coordinate. In the rightmost equality, we used the fact that rs is 

confined inside the region V of the system. 

The first term of the rightmost side can be developed as follows: 

( ){ } ( ){ }

( ){ } ( ) ( )

( ){ } ( ) ( ) ,∫∫

∫∫

∫∫

−⋅∇+−⋅∇−=

−⋅∇+−⋅∇−=

⋅−∇−=⋅−∇

V

sss

V

sss

V

sss

V

sss

V

sss

V

sss

dTdT

dTdT

dTdT
s

xrxrxrrx

xrxrxrrx

xrrxxrrx

xx

xx

xr

δδδδ

δδδδ

δδδδ

 (4.22) 

where the operator x∇  is the three dimensional nabla with respect to position vector x; 

namely, ( )tzyx ∂∂∂∂∂∂=∇ /,/,/x  in 3D Cartesian coordinate, if we express x as a vector 

( )tzyx ,,  in the coordinate.  

If we apply the Gauss’ divergence theorem to the first term of the rightmost side, we 
can find that the term vanishes because the value represented by braces in the term equals 
to zero anywhere on the surface of the region V. As a result, we obtain 

( ){ } ( ) ( ) ( )

( ) ( ) ( ) ( ){ ( ){ }} .,,,

,,

sssssssssss

ssss

V

sss

V

sss

tqtqtqU

tTdTdT

ssss

ss

rrArrArrr

rrrxrxrxrrx

rrrr

rxr

δψ

δδδδδ

⋅×∇×+∇⋅+∇−∇−=

⋅∇=−⋅∇=⋅−∇ ∫∫
&&

&

 (4.23) 

According to (4.21) and (4.23), we obtain functional derivatives: 

( ) ( ) ( ) ( ) ( ){ },,,, ssssssssss
s

b tqtqtqU
L

ssss
rArrArrr

r rrrr ×∇×+∇⋅+∇−−∇= &&ψ
δ
δ

 (4.24) 

( )., ssss
s

b tqm
L

rAr
r

+= &
&δ

δ
 (4.25) 

Consequently, Euler-Lagrange’s equation with respect to sr&  and rs yields 

( ){ } ( ) ( )
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,,

=×∇×−∇+∇++=

×∇×−∇⋅−
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d

sss
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rArrrrAr

rArrAr

rrrAr

rrr

rr

rr

&&&&

&&

&

ψ

ψ

 (4.26) 

The rightmost equality in (4.26) can be simplified using E and B according to (4.5) and 
(4.6): 

( ) ( ) ( ){ }.,, ssssssss ttqUm
s

rBrrErr r ×++−∇= &&&  (4.27) 
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Equation (4.27) is a proper equation of motion of a point mass under influence of 
Lorenz force. 

Consequently, the Lagrangian density Ld is confirmed to provide the kinetics as well 
as the electromagnetism in non-linear media, indicating that we can compose a 
Lagrangian expression for a SRM based on Ld. 

 

4. 3.   Lagrangian Formulation of a Switched Reluctance Motor 

This section derives the Lagrangian formulation for modeling a concentrated-winding 
SRM. The motor is assumed to have multiple rotor pole pairs; and each rotor pole pair 
has as many stator poles as the phases, likewise the motor shown in Fig. 4.1. Hence, each 
phase consist of series-connected as many windings as the rotor pole pairs. 

The Lagrangian model Lm of the SRM can be obtained by integrating the Lagrangian 
density Ld over a spatial region Vm that covers the motor; namely, 

.∫=
mV

dm dLL x  (4.28) 

For convenience, we assume that effect of the kinetic potential Us(x), e.g. the gravity, 
is sufficiently small and that the motor is electrically neutral at any part of the motor. 
Hence, we can substitute Us(x)=0 and ρ(t,x)=0. In addition, we can also ignore D(x) 
because of (4.3) and ρ(t,x)=0. As a result, we obtain: 

( )

.
2

1

2

1

2

2

∫ ∫∫∑

∫ ∫∫∫∑

⋅−⋅+=

⋅−⋅+−=

mm

mmm

VVs
ss

VVV s
sssm

dddm

ddddmL

B

0

B

0

BHxxAjr

BHxxAjxrxr

&

& δ

 (4.29) 

 
Fig. 4.1.  Example of a concentrated-winding switched reluctance 

motor. 
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The first term of the rightmost side of (4.29) represents the total kinetic energy of the 
system. As for a normal motor with a rotating rotor, only the rotor is a moving part. Hence, 
the term equals to the kinetic energy of the rotor, obtaining 

,
2

1

2

1 22 θ&& r
s

ss Im =∑ r  (4.30) 

where Ir is the moment of inertia of the rotor and θ is the mechanical angle.  

The second term of the rightmost side is the volume integration of the scalar product 
of the current density vector j and the vector potential A. Because the windings on a stator 
and a rotor is the only parts that carry the current, the term can be obtained by integrating 
the scalar product over the windings. According to Chapter 1, the result can be expressed 
as follows: 

,∑∫ =⋅
i

iii

V

qNd
m

φ&xAj  (4.31) 

where i is the index of the phase, Nj is the number of turns of a winding belonging to 
the phase i, and φi is the sum of the flux interlinking with the windings of the phase i. The 
variable qi is the cumulative charge of the phase i defined as 

,∫∫ ⋅=
S

t

t

i ddtq
o

Sj  (4.32) 

where t0 is the initial time, S is the cross-section of the wire of a winding belonging to 
the phase i, and dS is the area element. 

The third term of the rightmost side represents the total magnetic energy stored in the 
motor. Because the mechanical angle θ and the fluxes φ1, φ2, …suffice to determine the 
magnetic state of the motor, the third term can be expressed as a function only of θ and 
φ1, φ2, … . 

Now, we seek for the function. We imagine that the rotor position is fixed. We denote 
the energy inflow per second to the motor through the phase i as Pi. If the voltage Vi is 
applied to the phase i, then Pi can be expressed as 

,
dt

d
F

N

IN

dt

d
NIVP i

i
i

iii
iiii

φφ ===  (4.33) 

where Ii is the current through the winding i and Fi≡NiIi is the magneto-motive force 
of the winding. The magneto-motive force Fi is generally the function of the mechanical 
angle θ and the fluxes φ1, φ2, … . 

We consider making an infinitesimal change δφi in φi by applying the voltage Vi during 
small period δt. Then, the energy δEi added to make the change δφi is 
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.ii
i

iii Ft
dt

d
FtPE δφδφδδ ===  (4.34) 

Next, we consider making infinitesimal changes δφ1, δφ2, … in φ1, φ2, … during small 
period δt. The total energy δE added to make the changes is 

.∑∑ ==
i

ii
i

i FEE δφδδ  (4.35) 

Because we assume that the rotor position is fixed, the energy δE equals to the increase 
in the magnetic energy stored in the motor. Hence, the magnetic energy in the rotor can 
be expressed as the total energy added through the windings to generate the fluxes φ1, φ2, 
… . If we denote the magnetic state of the motor as a vector ϕ= (φ1, φ2, …) t, we obtain 

,φFBHx
φ

0

B

0

ddd
mV

∫∫ ∫ ⋅=⋅  (4.36) 

where dϕ= (dφ1, dφ2, …) t and is a function of θ and  φ1, φ2, …  defined as F= (F1, F2, 
…) t. 

Note that Fi cannot be replaced by another expression for the magneto-motive force 

iiqN &  because Fi is defined under the imaginary condition that the rotor position is fixed. 

The right-hand side of (4.36) is integrated under this imaginary condition. On the other 
hand, iiqN &  is the real magneto-motive force. Therefore, replacing Fi by iiqN &  will result 

in improper integration in (4.36). 

As discussed above, all three terms in the right-most side of (4.29) has been simplified. 
As a result, we obtain a simplified expression for the motor Lagrangian Lm: 

 
Fig. 4.2.  Example of a switched reluctance motor driving system. 
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.
2

1 2
φF

φ

0

dqNIL
i

iiirm ∫∑ ⋅−+= φθ &&  (4.37) 

Equation (4.37) employs the magneto-motive force to express the electric properties of 
the motor. However, the inductance may actually be more widely utilized than the 
magneto-motive force. If the inductance is more convenient, we can rewrite the motor 
Lagrangian Lm based on the inductance. 

Let M be the inductance matrix of the windings in the motor. According to a definition 
of the inductance matrix, we have 
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 (4.38) 

where N is a diagonal matrix whose diagonal element is Ni: 

.

00

00

00
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1

















=
O

N

N

N  (4.39) 

Generally, each element of the inductance matrix M is a function of the mechanical 
angle θ and the fluxes φ1, φ2, … . Integrating (4.38) with respect to time, we obtain the 
magneto-motive force vector F expressed using the inductance matrix: 

∫
−=

φ

0

φNMF .21 d  (4.40) 

Substituting (4.40) into (4.37), we obtain the motor Lagrangian Lm expressed using the 
inductance matrix. 

.
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1 212
φφNM

φ

0

φ

0

ddqNIL
i

iiirm ∫ ∫∑ ⋅








−+= −φθ &&  (4.41) 

If we can neglect the mutual inductances between the windings, we can approximate 
the inductance matrix as a diagonal matrix whose diagonal elements are the self-
inductance Λ1, Λ2, … . In this case we can simplify the equation (4.41): 

.
2
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0 0

2
2 ∑∫ ∫∑ Λ

−+=
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i
i

i
i

i
iiirm
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dqNIL
φ φ
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 (4.42) 
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If we can further neglect magnetic saturation of the self-inductance, we can regard the 
self-inductance Λi as a constant and further simplify the motor Lagrangian: 

.
22

1 2
2

2 ∑∑ Λ
−+=

i
i

i

i

i
iiirm

N
qNIL φφθ &&  (4.43) 

 

4. 4.   Analytical Verification of Lagrangian Formulation 

This section theoretically confirms that the motor Lagrangian Lm can yield proper 
equations of motor driving. We consider a simple motor driving system as shown in Fig. 
4.2. In this system, a 3-phase concentrated winding SRM is driven by a battery (i.e. a 
constant voltage source) and a basic inverter under a basic load. We analyze this system 
using Lm to verify that the result is the same as the well known equations. 

In the first step, we compose Lagrangian Lsys of this whole system as a sum of 
Lagrangian of the inverter, the motor, and kinetic load: 

,loadminvsys LLLL ++=  (4.44) 

where Linv and Lload are Lagrangian of the inverter and the kinetic load, respectively. 

Lagrandian Linv can be configured from Lagrangian modeling of the electronic circuit 
as discussed in Chapter 1. According to Chapter 1, we obtain 








 −+= ∑
i

iiEEinv qsqEqL λ . (4.45) 

where E is the voltage of the power source, qE is the charge supplied from the power 
source, λ is the Lagrangian multiplier, and ζ is the dissipation coefficient of the load. 
Parameter si is the switching-state indicator. If S1i, S4i are in the on-state, si=1; if S2i, S3i 
are in the on-state, si=−1; and if S1i, S3i or S2i, S4i are in the on-state, si=0. 

Lagrangian Lload can be configured according to kinetics of a rigid body. According to 
[16], we have 

2

2

1 θ&mload IL = . (4.46) 

where Im is the moment of inertia of the kinetic load. 

Besides, we introduce the dissipation function Dsys [17] of the driving system in order 
to express kinetic energy dissipation at the kinetic load. According to [17], we can express 
Dsys as 

2

2

1 θζ &=sysD . (4.47) 



 

88 

First, we adopt the general expression (4.37) as Lm. As a result, Lagrangian Lsys of the 
whole system can be expressed as follows: 

φF
φ

0

dqNIqsqEqIL
i

iiir
i

iiEEmsys ∫∑∑ ⋅−++






 −++= φθλθ &&& 22

2

1

2

1
. (4.48) 

Now, we apply (4.47) and (4.48) to Euler-Lagrange equation (1.26). Euler-Lagrange 
equations with respect to qE, λ, qi, φi, and θ yield the following equations: 

0=+ λE , (4.49) 

0=−∑
i

iiE qsq , (4.50) 

iii sN λφ −=& , (4.51) 

( ) 0,,, 21 =− L& φφθiii FqN , (4.52) 

( ) θζ
θ

θ
φ

&&& −=⋅
∂
∂++ ∫ φF

φ

0

dII rm , (4.53) 

where a bar with subscript ‘φ’ indicates that the partial derivative is taken while keeping 
all φi constant. We eliminate the Lagrangian multiplier from (4.49) and (4.51), and rewrite 
(4.49)–(4.53). Then, we have 

∑=
i

iiE qsq , (4.54) 

EsN iii =φ& , (4.55) 

( )L& ,,, 21 φφθiii FqN = , (4.56) 

( ) φF
φ

0

dII rm ∫ ⋅
∂
∂−=++=

φθ
θζθτ &&& . (4.57) 

Equation (4.55) gives dynamics of the flux in the SRM. Furthermore, (4.56) and (4.57) 
give the phase current iq&  and the torque τ as non-linear functions of the flux. Therefore, 

the proposed Lagrangian SRM formulation provides a flux-based model that can express 
non-linearity of SRMs.  

Equations (4.54)–(4.56) are apparently proper. Equation (4.54) indicates the 
conservation of the electric charge at the inverter because the charge from the power 
supply equals to the charge flowing through high-side switches S1u–w and S3u–w of the 
motor driver. Equation (4.55) indicates Faraday’s law. Equation (4.56) indicates that the 
phase current equals to the magnetomotive force Fi(θ, φ1, φ2, …).  
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Equation (4.57) gives a torque; and is also appropriate because its right-most side 
equals to the partial derivative of magnetic co-energy W* with respect to θ while keeping 
the phase current constant. In fact, W* can be expressed as 

( ) ( ) φFFφFφ

φ

0

F

0

ddFFW ∫∫ ⋅−⋅=⋅= LL ,,,,,, 2121
* φφθθ . (4.58) 

If we assume infinitesimal change δθ in the mechanical angle θ under constant phase 
current, we can obtain the change δ W* in W* as follows: 
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where bars with subscript ‘cur’ indicate that the partial derivative is taken while 
keeping all the phase current constant. Developing (4.59), we obtain 
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 (4.60) 

where bars with subscript ‘φ’ indicate that the partial derivative is taken while keeping 
all the flux φi  constant. 

Finally, we obtain the following relation: 
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Equation (4.61) indicates that (4.57) is a proper equation of torque. 

Consequently, the generalized motor Lagrangian given by (4.37) is found to yield 
proper equations of motor driving. 

Next, we adopt the simplified formulation (4.43) as Lm. Substituting (4.43), (4.45), and 
(4.46) into (4.44), Lagrangian Lsys of the whole system can be obtained as 
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Now, we apply (4.47) and (4.62) to Euler-Lagrange equation (1.26). Euler-Lagrange 
equations with respect to qE, λ, qi, φi, and θ yield the following equations after eliminating 
the Lagrangian multiplier: 

∑=
i

iiE qsq , (4.63) 
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Equation (4.64) gives dynamics of the flux in the SRM. Furthermore, (4.65) and (4.66) 
give the phase current iq&  and the torque τ as non-linear functions of the flux. Therefore, 

the simplified Lagrangian SRM formulation given by (4.37) also provides a flux-based 
model. Substituting (4.65) into (4.66), we obtain the well-known expression for torque: 
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In the second equality in the above equation, a bar at ∂/∂θ is eliminated because Λi is 
assumed to be a function only of θ. 

Consequently, the simplified motor Lagrangian given by (4.43) is also found to yield 
proper equations of motor driving. 

 

4. 5.   Conclusions 

Practical applications of switched reluctance motors (SRMs) require control techniques 
that can solve large torque ripple and large current ripple in power supply. In order to 
promote development of these techniques, this chapter proposed a Lagrangian 
formulation for flux-based non-linear SRM models. This formulation can be analysed in 
combination with Lagrangian circuit models of motor drivers. Properness of the 
formulation is supported by an example of operation analysis of a simple SRM driving 
system. 
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C h a p t e r  5  

MAGNETIC STRUCTURE INTEGRATING DIFFERENTIAL-MODE 
AND COMMON-MODE INDUCTORS WITH IMPROVED 

TOLERANCE TO DC SATURATION 
 

5. 1.   Introduction 

Recently, high power density is intensely required for switching converters. 
Accordingly, their circuit components are also required to be miniaturized. Particularly, 
magnetic devices for EMC filters, such as differential-mode (DM) inductors and 
common-mode (CM) inductors, often occupy a significant volume. Therefore, a number 
of techniques [1]–[11] have been proposed to miniaturize DM and CM inductors. 

A promising approach is to integrate a DM inductor and a CM inductor into a single 
device. As well-known examples [1]–[3], highly integrated structures are proposed based 
on planar magnetic cores. These structures are beneficial in further integrating capacitors 
by inserting a dielectric layer between a pair of planar windings. However, these 
structures can suffer from excessive copper loss in high power applications because 
planar core generally requires long wire length for the windings. The same benefit and 
problem also tend to occur in the structures in which conductive foils are used as windings 
[4] because the foils tend to have large DC resistance compared to thick wires. Therefore, 
high power applications often prefer integration techniques based on bulk core with 
windings of thick wire. 

This type of techniques has also been reported in a number of studies. These techniques 
can be classified into two major categories. One is the structural integration [5]–[8], which 
integrates DM and CM inductors on separate magnetic cores partly sharing the windings. 
Techniques of this category are beneficial in reducing the dead space because the cores 
can be closely placed by sharing the windings. The other category is the magnetic 
integration [9]–[11], which integrates DM and CM inductors on a single magnetic core. 
Techniques of this category allow sharing not only the windings but also the core between 
the DM and CM inductors. Compared to the structural integration, the magnetic 
integration can offer further miniaturization because the total core volume may also be 
reduced by sharing magnetic paths. 

On the other hand, the magnetic integration has a drawback that the CM inductance, as 
well as the DM inductance, can saturate because the DC flux induced by the DM current 
can cause magnetic saturation in the shared magnetic path. This may require expanding 
the cross-section of magnetic paths to design necessary tolerance to the magnetic 
saturation not only of the DM inductance but also of the CM inductance. As a result, the 
miniaturizing effect of the magnetic integration may be hindered. 

 † Reprinted, with permission, from K. Umetani, T. Tera, and K. Shirakawa, A Magnetic Structure 
Integrating Differential-Mode and Common-Mode Inductors with Improved Tolerance to DC 
Saturation, IEEJ Journal of Industry Applications, May 2015. 
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An effective strategy to alleviate the problem is to suppress the DC flux. This strategy 
generally requires increasing the equivalent number of turns NDM that link with the flux 
induced by the DM current. Below, we show the reason. 

As an analogy to the basic inductor with a single magnetic path, we can define NDM as 
the ratio [12] of the total flux linkage to the flux, when only DM current is applied. Hence, 
we obtain (5.1), if we assume constant DM inductance LDM. 

,
DM

DMDM
DM

IL
N

φ
≡  

,
DM

DMDM
DM N

IL=∴φ  (5.1) 

where φDM is the flux induced by the DM current IDM. 

Accordingly, we can express the DC flux φDC induced by the DC component IDC in IDM 
as follows: 

.
DM

DCDM
DC N

IL=φ  (5.2) 

Because LDM and the maximum value for IDC are generally specified as requirement, 
increasing NDM is indispensable to suppressing φDC. 

However, as shown in this chapter, NDM is restricted to only half of the total number of 
turns on the conventional magnetic structure employed in the prior works [9]–[11]. 
Therefore, the conventional structure often suffer from large DC flux induction. Due to 
the problem, the conventional structure may not offer effective miniaturization of DM 
and CM inductors. 

The purpose of this chapter is to address the problem by proposing a novel magnetic 
structure. In the proposed structure, more winding turns can be assigned to NDM than the 
conventional structure in order to suppress the DC flux induction. As a result, further 
reduction in the core volume can be expected, if magnetic saturation is a determining 

 
Fig. 5.1.  Magnetic structures integrating DM and CM inductors. 

(a) Proposed structure. (b) Conventional structure. 
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factor in the cross-sectional area of the magnetic paths, as is often the cases when large 
LDM or large IDC is specified. 

This chapter investigates the proposed structure in the following four sections. Section 
5.2 analyzes the operating principles of the proposed structure theoretically. Then, 
Section 5.3 verifies the operating principles experimentally. Section 5.3 also verifies that 
the proposed structure can miniaturize the discrete DM and CM inductors by the magnetic 
integration. Section 5.4 analytically compares the core volume between the proposed and 
conventional structures to verify the core reduction effect of suppressing the DC flux. In 
this comparison, the core dimensions are estimated under the same wire length and under 
the same specifications in which magnetic saturation dominantly determines the cross-
sectional area of magnetic paths. Finally, Section 5.5 presents the conclusions. 

 

5. 2.   Proposed Magnetic Structure 

A.    Operating Principles  

Figure 5.1(a) illustrates the proposed magnetic structure. The structure has a core with 
three legs. The center leg has a gap and two windings with the same number of turns. The 
windings on the center leg are both wound so that DM current induce the same direction 
of flux. Each of the outer legs has a winding connected in series with one of the windings 
on the center leg. The windings on the outer legs have the same number of turns and are 
wound so that DM current induce the flux in the outer leg in the direction that reinforces 
the flux in the center leg. 

On the other hand, the conventional magnetic structure employed in the prior works 
[9]–[11] is magnetically equivalent to Fig. 5.1(b). It differs from the proposed structure 
in the windings on the center leg.  

Electrical functions of the proposed structure are equivalent to series-connected 
discrete DM and CM inductors, as well as the conventional structure. Below, we show 
the reason utilizing the Lagrangian modeling. 

As discussed in Part I, the Lagrangian modeling offers a systematic method to 
transform an integrated magnetic component into an equivalent circuit of basic 
transformers and inductors, each of which consists of a single closed magnetic path. In 
this method, we first translate the physical magnetic structure into Lagrangian, which can 
be directly configured from their electric and magnetic networks. Then, we apply a point 
transformation [13] to the Lagrangian, obtaining another Lagrangian that belongs to a 

 
Fig. 5.2.  Magnetic circuit model of the proposed structure. 
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circuit of basic transformers and inductors. Finally, we again translate the resultant 
Lagrangian to obtain the equivalent circuit. 

Now, we apply this method to the proposed structure. The magnetic circuit of the 
proposed structure can be expressed as Fig. 5.2. NC and NO are the numbers of turns of 
the center leg windings and the outer leg windings, respectively. RC and RO are the 
reluctance of the center leg and the outer legs, respectively. The two outer legs are 
designed to have the same reluctance RO according to the designing concept of the 
proposed structure. We denote the electric charge that flows through the winding A and 
B as q1 and q2, respectively. Then, translating Fig. 5.2 yields the following Lagrangian L:  

2
3

2
2

2
122213211 2

1
2
1

2
1 φφφφφφφ OCOCCOO RRRqNqNqNqNL −−−−−+= &&&&  

( )321 φφφλ +++ , (5.3) 

where λ is a Lagrangian multiplier; φ1, φ2, and φ3 are the fluxes of the left outer leg, the 
center leg, and the right outer leg, respectively. A dot over a variable indicates its time 
derivative. 

The Lagrangian multiplier can be eliminated by substituting φ3=−φ1−φ2 into (5.3). 
Then, we have 

( ) 222121211 φφφφφ qNqNqNqNL CCOO &&&& −−+−=  

( )2
21

2
2

2
1 2

1
2
1

2
1 φφφφ +−−− OCO RRR . (5.4) 

Next, we apply a point transformation to the result. The purpose of this transformation 
is to convert the magnetic energy terms in (5.4), i.e. the fifth, sixth, and seventh terms, 
into a diagonal form of the fluxes. Then, the resultant Lagrangian corresponds to a circuit 
of magnetic components each made of a single closed magnetic path. Introducing a flux 
φA defined as φA=φ1+φ2/2 to eliminate φ1, we obtain 

 
Fig. 5.3.  Equivalent circuit of the proposed structure. 
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Lagrangian obtained in (5.5) can be translated into a series connection of discrete DM 
and CM inductors as illustrated in Fig. 5.3. The flux φ2 constitutes a DM inductor that has 
two windings with the number of turns NC+NO/2, whereas φA constitutes a CM inductor 
that has two windings with the number of turns NO. Note that NC=0 corresponds to the 
conventional structure. Because NC=0 in Fig. 5.3 gives the equivalent circuit for the 
conventional structure, the number of turns on its equivalent DM inductor equals to only 
half of the total number of turns on the conventional structure. Thus, the proposed 
structure increases the number of turns on the DM inductor by 2NC by adding two 
windings with the number of turns NC. On the other hand, it keeps the number of turns on 
the CM inductor unchanged. 

 

B.    Merits and Drawbacks 

Now, we examine whether the proposed structure allows its equivalent DM inductor to 
have greater number of turns than the conventional structure. For this purpose, we 
compare the number of turns on the equivalent DM inductor between the proposed and 
conventional structures under the same total wire length and the same core dimensions. 

First, we investigate the wire length per turn on the center and outer legs. As we have 
seen in the previous subsection, the flux through the center leg φ2 corresponds to the flux 
of the DM inductor. On the other hand, the relations φ1=φA−φ2/2 and φ3=−φA−φ2/2 
indicate that the fluxes through the outer legs are the sum of the flux of the CM inductor 
and half the flux of the DM inductor. Hence, the cross-sectional area AO of the outer leg 
should be designed at least greater than half the cross-sectional area AC of the center leg. 
Accordingly, we have  

.2 OC AA ≤  (5.6) 

If we assume the same cross-sectional shape among the center and outer legs, we obtain 
the following relation between the perimeter lC of the center leg and the perimeter lO of 
the outer leg using the fact that the perimeter is proportional to the square root of the 
cross-sectional area: 

,2 OC ll ≤  

.2 OC ll <∴  (5.7) 

Equation (5.7) shows that one turn on the center leg is shorter than two turns on the 
outer legs. On the other hand, one turn on the center leg is equivalent in the DM inductor 
in Fig. 5.3 to two turns on the outer leg. Therefore, the proposed structure can equip its 
DM inductor with the same number of turns using shorter wire than the conventional 
structure. In other words, the proposed structure can equip the DM inductor with a greater 
number of turns under the same total wire length. 
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This indicates that the proposed structure can effectively suppress the DC flux induced 
by the DC component in the DM current. Because the DC flux flows in both the center 
and outer legs, excessive DC flux increases not only RC but also RO, causing saturation of 
both the DM and CM inductance. Hence, the proposed structure can suppress saturation 
of both the DM and CM inductance, thus avoiding the center and outer legs from being 
designed with expanded cross-section to ensure necessary tolerance to saturation. 

Table. 5.1.  Requirement specifications and evaluation results of the 
prototypes. 

 

 Requirement 
Proposed 

Structure 

Discrete 

Inductors 

DM Inductancea 60µH 61µH 60µH 

DM Saturation Currentb  22.5A 26.4A 22.8A 

CM Inductancea 440µH 476µH 447µH 

CM Saturation Currentb 22.5A 31.1A — 

DC Resistance 16.5mΩ 16.1mΩ 16.4mΩ 

a)  Inductance is specified when the DM current of 16A is applied. 

b)  DM current when the DM or CM inductance decreases to 75% of its initial value. 

 

 
Fig. 5.4.  Physical structure of the prototype of the proposed 

structure. 
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On the other hand, the proposed structure has smaller number of turns on the outer legs 
than the conventional structure under the same total wire length. Therefore, the proposed 
structure has a drawback that its equivalent CM inductor has a smaller number of turns 
than the conventional structure. This indicates that the proposed structure requires smaller 
RO in order to keep the same CM inductance as the conventional structure. 

If reducing RO inevitably requires for expanding the cross-section of the outer legs, for 
example when we cannot employ a core material with higher permeability, the proposed 
structure may not lead to effective reduction in the core volume. However, the proposed 
structure can offer effective core reduction in other conditions, for example when 
designing necessary tolerance to the DC flux determines the cross-sectional area rather 
than designing necessary value for RO. We present a case study to estimate the core 
reduction effect under this condition in Section 5.4. 

 

5. 3.   Experiments 

The purpose of this section is to confirm experimentally the operating principles of the 
proposed structure. The experiment evaluated the following two subjects. One is the 
functional equivalence of the proposed structure to the discrete DM and CM inductors. 
The other is miniaturization of the discrete inductors by the magnetic integration using 
the proposed structure.  

 

A.    Prototypes 

We developed two prototypes providing the DM and CM inductance under the same 
requirement specifications presented in Table 5.1. One is the proposed structure; and the 
other is the series-connected discrete DM and CM inductors. These specifications were 
designed as a part of an input filter of a PFC converter, whose maximum input AC current 
was set at 16Arms. In this application, the input current has the frequency far lower than 

 
Fig. 5.5.  Photographs of the prototype of the proposed structure. 

(a) Front side. (b) Rear side. 
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the DM noise. Hence, the input current can be regarded as the DC component in the DM 
current. We specified the DM and CM inductance at the instantaneous input current of 
16A. In addition, we required the saturation current of the DM and CM inductance to be 
greater than the maximum instantaneous input current, i.e. 22.5A. 

Both prototypes were made of ferrite cores with similar permeability and saturation 
flux density. The prototype of the proposed structure is made of PC40 (TDK Corporation), 
whereas that of the discrete inductors is made of PC47 (TDK Corporation). PC40 and 
PC47 have the typical relative permeability of 2300 and 2400, respectively; and they have 
the saturation flux density of 510mT and 530mT, respectively. We designed these 
prototypes to have the same vertical dimension and the same average height so that the 
horizontal dimension reflects the volume. 

Figure 5.4 illustrates the physical structure of the prototype of the proposed structure. 
In the prototype, we placed the flattened center leg in the front side and the outer legs in 
the rear side. This disposition is beneficial in enhancing the CM inductance by 
minimizing flux path length through the two outer legs. Additionally, for easy assembly, 
we installed two gaps in the top and bottom beams near the center leg, respectively, to 
provide the reluctance RC (corresponding to the gap on the center leg in Fig. 5.1). 
Contrarily, we installed no gap on the outer legs. The photographs of the prototype are 
presented in Fig. 5.5. 

The cross-sectional area of the center leg was designed so that the maximum 
instantaneous input current approximately induces the saturation flux density there. 
Meanwhile, we designed the cross-sectional area of the outer leg 1.19 times as great as 
that of the center leg. Because the DC flux in the outer leg is half of that in the center leg, 
the DC flux density in the outer leg does not exceed 42% of the saturation flux density. 
Hence, the outer leg was designed with sufficient margin of the DC flux to suppress the 
CM inductance decrease. 

 
Fig. 5.6.  Photograph of the prototype of the discrete inductors. 
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On the other hand, the prototype of the discrete inductors was made of two basic PQ 
cores, as shown in Fig. 5.6. We designed wire of their windings to have the similar cross-
sectional area as the prototype of the proposed structure. In addition, we designed this 
prototype to have similar DC resistance as the prototype of the proposed structure, as 
shown in Table 5.1. 

 

B.    Functional Equivalence between the Prototypes 

We confirmed that the proposed structure is functionally equivalent to series-connected 
discrete inductors by evaluating conversion ratios between DM and CM noise, i.e. CM 
voltage response to DM noise excitation and DM voltage response to CM noise excitation. 
The conversion ratios must vanish in series-connected ideal DM and CM inductors. 
Hence, we need to verify that the prototype of the proposed structure shows as small 
conversion ratios as the prototype of the discrete inductors. 

Evaluation circuits of the conversion ratios are presented in Fig. 5.7. We connected the 
windings A and B in series as shown in Fig. 5.7(a) and Fig. 5.7(b). Then, we applied AC 
voltage signal with the amplitude of ±5Vpeak to the series-connected windings. 

 
Fig. 5.7.  Evaluation circuits of the conversion ratios between DM 

and CM noise. (a) Evaluation of CM noise response to DM noise 
excitation. (b) Evaluation of DM noise response to CM noise excitation. 
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Now, we express the voltage induced in each winding using the DM voltage VDM and 
the CM voltage VCM. If we denote the induced voltage in the winding A and B as VA and 
VB, respectively, we have 





−=
+=

.

,

DMCMB

DMCMA

VVV

VVV
 (5.8) 

Note that the AC signal voltage corresponds to VA−VB, i.e. 2VDM, in Fig. 5.7(a) and to 
VA+VB, i.e. 2VCM, in Fig. 5.7(b). Hence, the AC signal is a DM voltage source that excites 
DM noise current in Fig. 5.7(a) and a CM voltage source that excites CM noise current 
in Fig. 5.7(b).  

We connected the midpoint between the terminals of the AC signal to the ground. Then, 
we measured the voltage potential at the connecting point of the windings A and B. The 
measured voltage represents the CM voltage response −VCM in Fig 5.7(a) and the DM 
voltage response −VDM in Fig. 5.7(b). We obtained the conversion ratios by normalizing 

 
Fig. 5.8.  Measured conversion ratios. (a) Ratio of CM noise 

response to DM noise excitation. (b) Ratio of DM noise response to CM 
noise excitation. 
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the amplitude of the measured voltage by half the amplitude of the AC signal voltage. 
The normalized voltage in Fig. 5.7(a) corresponds to the ratio of CM noise response to 
DM noise excitation, and that in Fig. 5.7(b) corresponds to the ratio of DM noise response 
to CM noise excitation. 

We examined the conversion ratios in the frequency range below 500kHz because the 
dimensional resonance may deteriorate the soft-magnetic property of the ferrite core 
above the frequency. Figure 5.8 shows the results. The ratios of the proposed structure 
were found approximately as small as those of the discrete inductors. Both the prototypes 
showed the ratio of CM noise response smaller than 7% and the ratio of DM noise 
response smaller than 1% below 500kHz. 

Consequently, we concluded that the two prototypes are approximately equivalent each 
to the other in their electrical functions, as expected from the theory. 

 

C.    DM and CM Filtering Capability 

Next, we confirmed that the two prototypes have similar filtering capability by 
evaluating the DM and CM inductance as well as the DM and CM saturation current. The 
evaluation methods are as follows. 

Figure 5.9 illustrates the evaluation circuit of the DM inductance and the DM saturation 
current. The windings A and B were connected in series in a similar manner as in Fig. 
5.7(a). Therefore, DM voltage was applied to the prototype during the on-state of the 
switch S1. We held S1 in the on-state until the DM current sufficiently saturated the 
prototype. At the same time, we measured the applied voltage VCOIL and the DM current 
ICOIL. The current ICOIL increased monotonically during the on-state of S1 as illustrated in 
Fig. 5.9(b). Hence, we obtained the DM inductance LDM as the differential inductance 
[12] defined by 

,
dtdI

V
L

COIL

COIL
DM =  (5.9) 

where t is the time. The DM inductance LDM can be obtained as a function of ICOIL. The 
DM saturation current is the DM current ICOIL when LDM decreases to 75% of its value at 
ICOIL=0A. 

The method to evaluate the CM inductance is slightly more complicated than the 
method for the DM inductance. Figure 5.10(a) illustrates the evaluation circuit. In this 
experiment, we further connected the capacitor C1 with the capacitance of 1nF between 
the ground and the connecting point of the windings A and B. Then, we held the switch 
S1 in the on-state until the DM current increased to the predetermined level IDC as 
illustrated in Fig. 5.10(b). After the turn-off of S1, the DM current circulated through the 
diode D1. The circulating DM current maintained itself for a while because no DM 
voltage was applied to the prototype. 
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At the same time, an LC oscillation occurred between the capacitor C1 and the 
prototype. This oscillation was excited at the turn-off of S1, because the voltage VC of the 
capacitor C1 was approximately half of the supply voltage of 15V at the turn-off of S1 
and then VC was going to settle finally to zero as the oscillation was dissipated. As a result, 
the voltage and current waveforms can be illustrated as Fig. 5.10(b). Note that the voltage 
VC equals to the CM voltage VCM of the prototype when the DM current circulates through 
D1. Therefore, this oscillation corresponds to the LC oscillation between C1 and the CM 
inductance LCM of the prototype. Hence, we obtained LCM according to 

,
1

2
1 OSC

CM
C

L
ω

=  (5.10) 

where C1 is the capacitance of C1 and ωOSC is the angular frequency of the oscillation. 
The CM inductance LCM can be obtained as a function of IDC by determining LCM at 
various levels of IDC. The CM saturation current is the DM current IDC when LCM 
decreases to 75% of its value at IDC=0A. 

The measurement results of LDM and LCM are presented in Fig. 5.11. As summarized in 
Table 5.1, evaluation results of both the prototypes met the requirement specifications. 
They showed approximately the same DM and CM inductance. On the other hand, the 
proposed structure showed slightly better DM saturation current than the discrete 
inductors. As for saturation of the CM inductance, only the proposed structure has the 

 
Fig. 5.9.  Method to evaluate the DM inductance and the DM 

saturation current. (a) Evaluation circuit. (b) Voltage and current 
waveforms in the evaluation process. 

S1

D1

30V

15V

Prototype
Winding A

Winding B

ICOIL

VCOIL

(a)

Time

Time
ICOIL

VCOIL

S1 is turned on S1 is turned off

0

0

15V

−15V

(b)



 

106 

saturation current because the discrete CM inductor does not saturate by the DM current. 
Nonetheless, the proposed structure showed CM saturation current far above the 
requirement specification.  

Consequently, the prototypes are confirmed to have similar filtering capability. 

 

D.    Comparison of the Volume 

Finally, we compared the volume between the prototypes. The result is shown in Fig. 
5.12. Because the prototypes have the same vertical dimension and the same average 
height, the horizontal dimension reflects the total volume including the dead space. 
Comparing the horizontal dimension between the prototypes, we found that the proposed 
structure reduced the total volume by 31%. 

 
Fig. 5.10.  Method to evaluate the CM inductance and the CM 

saturation current. (a) Evaluation circuit. (b) Voltage and current 
waveforms in the evaluation process. 
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This reduction effect was contributed not only by eliminating dead space but also by 
reducing the core. According to comparison of the net core volume, we found that the 
proposed structure also reduced the core volume by 17%. Consequently, we concluded 
that the proposed structure successfully miniaturized the discrete inductors. 

 

5. 4.   Core Reduction Effect of Suppressing DC Flux 

This section analytically estimates the core reduction effect of the proposed structure 
in comparison with the conventional structure shown in Fig. 5.1(b). For this purpose, we 
estimates the core dimensions of the conventional structure, when the same specifications 
as Table 5.1 is applied and the same physical core structure as Fig. 5.4 is employed. We 
determine the core dimensions of the conventional structure by modifying the prototype 
of the proposed structure discussed in the previous section. Then, we compare the core 
volume between the estimated conventional structure and the prototype of the proposed 
structure. 

 
Fig. 5.11.  Measurement results of (a) the DM inductance LDM and 

(b) the CM inductance LCM. 
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When estimating the conventional structure, we set the total wire length the same as 
the prototype of the proposed structure. Hence, the DC resistance can be kept the same 
without expanding the cross-section of the wire. On the other hand, we expand the cross-
section of magnetic paths to keep the DM and CM saturation current the same as the 
prototype of the proposed structure. For convenience, we assume the same cross-sectional 
shapes of the center and outer legs as the prototype of the proposed structure, when we 
expand the cross-section. In addition, we adjust RC and RO to keep the DM and CM 
inductance the same as the prototype of the proposed structure. When we adjust RO, we 
change the permeability of the core material while keeping the saturation flux density 
unchanged. As for adjusting RC, we assume that reluctance of the air gaps mainly 
contributes RC and we adjust the gap length to obtain appropriate value for RC. 

In the first step, we compose the conventional structure directly on the magnetic core 
employed in the prototype of the proposed structure. Because the total wire length is kept 
unchanged, this conventional structure has the outer leg windings with the number of 
turns NO_temp set at 16. 

Next, we expand the cross-section of the magnetic core. We assume to enlarge the 
cross-sectional area of the outer leg by a factor α. Then, the number of turns NO_mod of the 
outer leg windings after this modification should be changed according to (5.11) because 
the perimeter of the cross-section is expanded by √α. 

.16__ αα == tempOmodO NN
 (5.11) 

In order to estimate α that provides the same CM saturation current as the proposed 
structure, we consider the DC flux in φ2 when the DC component in the DM current equals 
to the CM saturation current. We denote the DC flux in the expanded core at the CM 
saturation current as φ2_mod, and that in the prototype of the proposed structure as φ2_org. 

 
Fig. 5.12.  Comparison of the volume between the prototypes. (a) 

Proposed structure. (b) Discrete inductors. 
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Because we require the same DM inductance LDM and the same CM saturation current, 
we have the following relation according to (5.2) and Fig. 5.3: 

,
202

__

__

_2

_2

modOmodO

orgOorgC

org

mod

NN

NN
=

+
=

φ
φ  (5.12) 

where NC_org and NO_org are the numbers of turns of the center leg windings and the 
outer leg windings in the prototype of the proposed structure, respectively. 

Because the reluctance RO determines the CM inductance, increase rate of RO at the 
CM saturation current must be the same as the prototype of the proposed structure in order 
to accomplish the same CM saturation current. Accordingly, the DC flux density in the 
outer legs at the CM saturation current must be designed to be the same as the prototype 
of the proposed structure. Hence, we have 

.
_2

_2

org

mod

φ
φ

α =
 (5.13) 

Equations (5.11)–(5.13) determine α and NO_mod: 

.13,56.1 _ ≈≈ modONα  (5.14) 

The DC flux density in the center leg at the DM saturation current must also be 
designed to be the same as the prototype of the proposed structure in order to accomplish 
the same DM saturation current. As a result, we also need to expand the cross-section of 
the center leg by α, according to similar discussion to obtain (5.13). In addition, we need 
to expand the cross-section of the top and bottom beams by α because the DC flux also 
flows through the beams. 

The above discussion also determines the gap length at the top and bottom beams of 
the estimated core of the conventional structure. Let lg_mod and lg_org be the gap length of 

 
Fig. 5.13.  Top view of (a) the core in the prototype of the proposed 

structure and (b) the estimated core of the conventional structure. The 
solid lines illustrate the outline of the top beam core; and the dotted lines 
illustrate the outline of the center and outer legs. 
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the estimated core and the proposed structure, respectively. Applying Ampere’s law to 
the closed flux path passing through the center leg and one of the outer legs, we obtain 
the following equation: 

( ) ,22 ___ satorgOorgCorgg
g

sat INNl
B +=
µ

 (5.15) 

,2 __ satmodOmodg
g

sat INl
B =
µ

 (5.16) 

where Bsat is the DC flux density at the DM saturation current Isat, and µg is the absolute 
permeability of the gap material. From (5.15) and (5.16), we obtain: 

.
20

13

2 __
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_ =
+

=
orgOorgC

modO

orgg

modg

NN

N

l

l  (5.17) 

Substituting lg_org=0.0014m into (5.17), we obtain lg_mod: 

.00091.0_ ≈modgl  (5.18) 

Finally, we obtain the estimation result of the core dimensions as shown in Fig. 5.13. 
If we assume the height of the legs the same as the prototype of the proposed structure, 
the net core volume of the conventional structure is estimated as 3.5×104mm3. On the 
other hand, the net core volume of the proposed structure is 2.0×104mm3. Consequently, 
the proposed structure is found to reduce the core volume by 41% compared to the 
conventional structure. 

 

5. 5.   Conclusions 

The magnetic integration is an attractive technique to miniaturize EMC filters. Prior 
works have reported EMC filters that applied this technique to integrate a DM inductor 
and a CM inductor. However, the conventional magnetic structure employed in these 
works can often suffer from the magnetic saturation of the DM or CM inductance, because 
the equivalent number of turns for the DM inductance is restricted to only half of the total 
number of turns and it can be insufficient to suppress DC flux induction. This may lead 
to expanding the cross-section of magnetic paths to ensure necessary tolerance to the 
magnetic saturation, thus hindering the miniaturization effect of the magnetic integration. 

To address the problem, this chapter proposed a novel structure that allows assigning 
more turns to the DM inductance than the conventional structure. We confirmed that the 
proposed structure is equivalent to series-connected discrete DM and CM inductors both 
theoretically and experimentally. Furthermore, we confirmed experimentally that the 
proposed structure can miniaturize the discrete DM and CM inductors. 
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An analytical estimation was carried out to evaluate core reduction effect of the 
proposed structure in comparison with the conventional structure. The result revealed that 
the proposed structure reduced the core volume by 41% under the same total wire length 
and under the same specifications, in which saturation by the DC flux is a determining 
factor in the cross-sectional area of magnetic paths. 

These results demonstrate effectiveness of the proposed structure for miniaturizing 
EMC filters. 
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C h a p t e r  6  

UNIDIRECTIONAL BOOST CHOPPER WITH SNUBBER ENERGY 
REGENERATION USING AN INTEGRATED MAGNETIC 

COMPONENT 
 

6. 1.   Introduction 

Recently, growing awareness of environmental protection gives rises to public concern 
to vehicles with less environmental burden, such as Electric Vehicles (EVs), Hybrid 
Vehicles (HVs), and Fuel Cell Vehicles (FCVs).  

These vehicles are propelled by electric motors. The motors are driven by inverters, 
which convert DC power from battery into AC power. When the vehicles travel at high 
speed, the inverters need to provide large amplitude of AC voltage to the motors in order 
to overcome large induction of the counter electromotive force. Consequently, the 
inverters often require high DC voltage supply. For this reason, some practical propulsion 
systems equip boost choppers between the batteries and the inverters [1][2]. 

However, the additional boost choppers tend to lower the conversion efficiency. 
Moreover, there are risks that the resulting increase of energy loss may overload the 
limited cooling capability of the vehicle. Therefore, the choppers need to improve their 
efficiency. 

As widely known, the soft-switching technique is a useful remedy for the purpose. 
Various circuits have been reported in the proceeding works [3]–[21]. However, their 
application to vehicular propulsion generally seems to be impeded by the fact that the 
load of the chopper, along with the output voltage, varies largely according to traveling 
conditions. Particularly, the following four difficulties can be listed as the probable reason. 

First, some circuit topologies tend to suffer from a limitation on soft-switching 
capability in some operating conditions, as reported in the works [3][4]. This possibly 
results in considerable decrease of efficiency under certain driving conditions. Thus, a 
soft-switching circuit is preferably capable of soft-switching regardless of the input-
output voltage relation and the operating modes, such as the continuous or the 
discontinuous conduction mode. 

Second, some circuit topologies tend to need high computational capability or large-
sized memory for implementing soft-switching control. For example, many circuits, as 
reported in the works [5]–[10], utilize LC oscillation as the mechanism to achieve soft-
switching. In such cases, the soft-switching control may require calculation of 
trigonometric functions or reference to large-sized table in order to find optimal timing 

 † Reprinted, with permission, from K. Umetani, F. Iwamoto, and K. Yagyu, A unidirectional boost 
chopper with snubber energy regeneration using a coupled inductor, IEEJ Transactions on Electrical 
and Electronic Engineering, May 2014. 
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for the switching to coincide with the oscillation. Thus, a soft-switching circuit is 
preferably controlled by a simple algorithm composed of basic calculations as arithmetic 
operations. 

Third, some circuit topologies tend to suffer from large cost-up due to additional 
switches for implementing soft-switching function. For example, many circuits, including 
those reported in the works [11]–[17], have one or more additional switches, which 
conduct the inductor current to an alternative current path during switching operation of 
the main switches. Consequently, current rating of the additional switches is designed to 
tolerate maximum inductor current of all possible operations. If the range of load power 
is large, as is often the cases in vehicular propulsion, the additional switches may 
contribute the cost-up significantly due to their large current rating. 

Certainly, there is a soft-switching technique [18][19] in which this drawback is 
alleviated by utilizing a transformer. In this technique the additional switch can be 
designed to conduct smaller current than the inductor current. However, the switch still 
needs to conduct at least half of the inductor current. Thus, a soft-switching circuit is 
preferably implemented by fewest additional switches and they preferably conduct far 
smaller current than the inductor current. 

Fourth, some circuit topologies require additional voltage or current stress on the main 
switch of the boost chopper. For example, the circuits proposed in the works [20][21] are 
beneficial in meeting all the first three preferable points. However, their main switch 
inevitably conducts greater current than the inductor current momentarily after their turn 
on. As a result, these techniques may require greater current rating for the main switch in 
order to tolerate the additional current stress under the momentary heavy load during 
sudden acceleration of vehicle. Thus, a soft-switching circuit is preferably free from 
additional stress on the main switch. 

Solving the above mentioned difficulties possibly helps the soft-switching technique 
to be applied in practical vehicular choppers. Nevertheless, we have few candidates that 
meet all the preferable points so far. The purpose of this chapter is to propose a soft-
switching unidirectional boost chopper as a candidate for a propulsion system of FCVs. 
In addition to solving the above mentioned difficulties, the proposed converter further 
reduces the circuit volume by integrating the magnetic components in the auxiliary circuit 
into an integrated magnetic component. 

 
Fig. 6.1.  Proposed boost chopper. 
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Section 6.2 presents the proposed circuit and explains its circuit behavior. Section 6.2 
also presents the integrated magnetic component employed in the proposed converter. 
Section 6.3 discusses the soft-switching control. Section 6.4 then presents experimental 
results to confirm soft-switching operation and efficiency improvement. 

 

6. 2.   Proposed Chopper 

A.    Circuit Overview  

The proposed unidirectional chopper is presented in Fig. 6.1. The circuit is composed 
of the basic chopper made of the main switch S1 and the main diode D1, and an additional 
circuit surrounded by the dotted line. The circuit diagram is similar to the previously 
reported technique [18][19]. However, the additional circuit enables S1 to achieve Zero-
Current Switching (ZCS) at the turn on instead of Zero-Voltage Switching (ZVS). As for 
the turn off, it enables S1 to achieve ZVS. The auxiliary switch Sa also achieves ZCS at 
the turn on. Contrarily, Sa is not capable of soft-switching at the turn off. Nonetheless, its 
turn-off loss is generally ignorable compared to reduction of the switching loss of S1, 
because it conducts far less current than S1 does, as shown later. 

The additional circuit contains magnetic devices expressed by an equivalent circuit of 
Ta1 (Ta2), La1, and La2. Ta1 and Ta2 are windings of a coupled inductor. Contrary to 
the preceding technique [18][19], in which Ta1 should have the larger winding turn 
number than Ta2, the proposed circuit allow Ta2 to have far larger turn number than Ta1, 
enabling small current in Ta2 suffice to induce far larger current in Ta1. The devices La1 
and La2 are inductors. The inductor La1 is indispensable for soft-switching operation. On 
the other hand, La2 is not necessary for the circuit function. However, it is implemented 
naturally as leakage inductance of Ta2 in many cases because Ta2 tends to have a large 
number of turns and thus it is generally made of thin wire. 

The inductors Ta1 (Ta2), La1, and La2 are able to be implemented on a single magnetic 
core, as shown in Fig. 6.2. The two windings A and B on a pair of E cores suffice to 
accomplish the circuit function of all the three inductors. The coupled inductor Ta1 (Ta2) 

 
Fig. 6.2.  An example of implementing Ta1, Ta2, La1, and La2 by 

a single magnetic core and two windings. 
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is implemented at the center leg, where the windings A and B are magnetically coupled 
each to the other. The inductor La1 is implemented by the windings at the outer legs, 
along with the leakage inductance of the winding A. The inductor La2 is the leakage 
inductance of the winding B. In the next subsection, we present the detailed demonstration 
that the magnetic device shown in Fig. 6.2 is equivalent to Ta1 (Ta2), La1, and La2 by 
means of the Lagrangian dynamics. 

 

B.    Equivalency of Integrated Magnetic Component  

As shown in Chapter 2, Lagrangian dynamics can be utilized to transform a 
complicated magnetic circuit into an equivalent electric circuit. Here, we apply the 
method to the integrated magnetic component illustrated in Fig. 6.2.  

First, we describe magnetic structure of the component as a magnetic circuit model of 
electromotive force and reluctance. The model is presented in Fig. 6.3(a). Each 
electromotive force corresponds to a winding on a magnetic path. We denote the number 
of turns by N1–N4. Additionally, we denote the electric current in the winding A and B by 

1q&  and 2q& , respectively. 

The reluctance RG1 represents the reluctance of gaps and core of outer legs, while RG2 
represents that of center leg. We assume, for convenience, that the two outer legs have 
the same reluctance. Leakage magnetic paths of the windings are implemented as the 
reluctance RL1–RL4. The fluxes that flow through RG1, RG2, and RL1–4 are denoted as φ1–3 
and φL1–4. 

The Lagrangian L that belongs to Fig. 6.3(a) is expressed by the following equation: 
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where λ is a Lagrangian multiplier. 

As a Lagrangian multiplier is an ignorable variable [22], the Lagrangian multiplier term 
can be eliminated by substituting (6.2) into (6.1). 

0321 =++ φφφ . (6.2) 

As a result, we obtain: 
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Then, we introduce fluxes φΑ defined as follows:  

21 2

1φφφ +≡A . (6.4) 

Now, we substitute (6.4) into (6.3). The result is obtained as follows: 
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Fig. 6.3.  Magnetic model of the integrated magnetic component 
and magnetic devices in its equivalent circuit. (a) Original integrated 
magnetic component. (b) Equivalent circuit. 
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( ) 2
33313

2
1131 2

1
LLLAGA RqNRqNN φφφφ −+−++ &&  

2
44424

2
22212

2
11111 2

1

2

1

2

1
LLLLLLLLL RqNRqNRqN φφφφφφ −+−−−− &&& . (6.5) 

The Lagrangian given by (6.5) corresponds to an electric circuit that consists of basic 
magnetic devices, such as ideal transformers and inductors. The magnetic circuits 
translated from the Lagrangian are presented in app. Fig. 6.3(b). Note that the four 
inductors that consist of fluxes φΑ and φL1-φL3 have windings that share the same electric 
current, i.e. they are connected in series. Thus, we can replace them by a single inductor 
whose inductance equals the sum of their inductance. 

Consequently, we finally obtain the equivalent electric circuit presented in Fig. 6.4. 
The result indicates that the integrated magnetic component shown in Fig. 6.2 implements 
Ta1(Ta2), La1 and La2 of the proposed chopper. 

 

C.    Circuit Behavior  

This subsection discusses the circuit behavior under the continuous conduction mode. 
The voltage and current waveforms are illustrated in Fig. 6.5; and the schematic 
illustration of current flow in each operating mode is shown in Fig. 6.6. 

In Mode 1, the proposed chopper operates the same as the basic chopper. The main 
switch S1 is in the off-state and the current of L1 flows into the output terminal through 
the diode D1. Then, in Mode 2, Sa is turned on. The turn-on of Sa is ZCS, because the 
current of La2 is zero at the time and the inductance of La2 suppresses rising of the drain 
current of Sa. Because Sa is now in the on-state, the output voltage is applied to Ta2 and 
the induced voltage appears in Ta1, which is magnetically coupled with Ta2. The induced 
voltage is applied to La1, thus increasing the current that flows from L1 to the output 
terminal through Da1, Ta1, and La1. Consequently, the current path from L1 to the output 
shifts from the path through D1 to that through La1. The current of Ta2 is far smaller than 

 
Fig. 6.4.  Electric circuit translated from (6.5) 
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that of Ta1, because Ta2 has far greater number of turns than Ta1. Therefore, the current 
of Sa is far smaller than that of L1, which allows Sa to have smaller current rating compare 
to S1. 

When the current of L1 has shifted the path entirely, the current of D1 falls to zero. 
Then, S1 is turned on, and the operation steps in Mode 3. Because most current of L1 
flows through La1, the inductance of La1 suppresses rising of the drain current of S1 at 
the turn on. As a result, ZCS is achieved at the turn on of S1. 

In Mode 3, the current of La1 decreases because negative voltage is applied to La1. 
After the La1 current falls to zero, instantaneous negative current flows until reverse 
recovery of Da1. The inductance of La1 forces to flow the negative current. In order to 
protect Da1 from overvoltage due to the current, the zenar diode Za and the diode Da4 
are equipped in parallel with Ta1 and La1. They dissipate the destructive current by 
circulating it through La1, Ta1, Za, and Da4. 

In Mode 4, the auxiliary switch Sa maintains the on-state, although the current of La1 
has already fallen to zero. As the induced voltage in Ta1 is smaller than the inverse 

 
Fig. 6.5.  Operating waveforms of the proposed chopper under the 

continuous current mode. 
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voltage applied to Da1, no current is induced in La1. Thus, the coupled inductor Ta2 
operates as an inductor, and the snubber capacitor Ca is discharged through Ta2 and La2. 

After Ca is discharged below a predetermined voltage level, Sa is turned off and the 
operation steps in Mode 5. The current of Ta2 flows to the output terminal through La2 
and Da3, to discharge Ca until its voltage falls to zero. Although the turn-off of Sa is hard-
switching, the switching loss can be suppressed to an ignorable level compared to S1 
because the conduction current of Sa is smaller than that of S1. 

In Mode 5, the negative voltage induced in Ta1 should not induce circulating current 
through Ta1, which results in additional conduction loss. This is the reason why we do 
not employ a clamping diode [23] for Ta1 and La1, but employ the zenar diode Za and 
the diode Da4. 

 
Fig. 6.6.  Operating sequence of the proposed chopper under the 

continuous current mode. 
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The operation in Mode 5 determines the minimum zenar voltage for Za. The zenar 
voltage should be greater than the maximum induced voltage of Tal during Mode 5. 
Because the voltage applied to Ta2 does not exceed the output voltage, the induced 
voltage of Ta1 is less than the output voltage divided by the turn ratio of Tal to Ta2. 
Therefore, the zenar voltage should be greater than this voltage. 

The circuit behavior in Mode 6 is the same as that in the normal chopper. The main 
switch S1 is in the on-state and the current of L1 gradually increase. 

Then, S1 is turned off in Mode 7. Because Ca is entirely discharged at the beginning 
of the mode, the current of L1 flows into Ca through Da2. As a result, rising of the drain 
voltage of S1 is suppressed and ZVS is achieved at the turn off of S1. 

After the capacitor Ca is entirely charged to the output voltage, the current of L1 then 
flows into the output terminal through D1. Finally, the circuit operation returns to Mode 
1. 

The circuit behavior in the discontinuous conduction mode is almost the same as the 
above. The only difference is that Mode 2 and Mode 3 is omitted, because the current of 
L1 has fallen to zero at the end of Mode 1 and thus the current no longer need to shift the 
path to that through Tal and Lal. Therefore, Sa is turned on simultaneously with the turn-
on of Sl. 

As discussed above, the additional circuit always conducts current from the drain of S1 
to the output terminal, thus adding no current stress to S1. Besides, the voltage across S1 
is confined between zero and the output voltage because of diode clamping by D1 and 
the body diode of S1. Hence, the proposed chopper adds the same voltage stress on S1 as 
the basic hard-switching chopper that consists of S1 and D1. 

Consequently, the proposed chopper can operate under both the continuous conduction 
mode and the discontinuous conduction mode. Furthermore, the current of Sa is smaller 
than that of L1, which allows Sa to have smaller current rating compared to S1. And 
neither voltage nor current stress is added to S1 by the soft-switching operation. 

The next section discusses the remaining requirements listed in the introduction, 
namely the soft-switching capability regardless to the input and the output voltage and 
that the control of Sa is implementable by basic arithmetic operations. 

 

6. 3.   Control of Auxiliary Switch Sa 

In order to accomplish the soft-switching of S1, the controller of Sa is required to fulfill 
the following two operations. One is to shift the Ll current entirely from D1 to the 

 
Fig. 6.7.  Definition of voltage and current in the additional 

inductors. 
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additional circuit in Mode 2. This operation ensures the ZCS turn-on. The other is to 
discharge Ca entirely at the end of Mode 5. And this operation ensures the ZVS turn-off.  

This section discusses the control of Sa analytically to show that the above two 
requirements are both achievable regardless to the input and the output voltage and that 
they are able to be implemented arithmetically. 

 

A.    ZCS Turn-on  

This subsection discusses the control of Sa for the ZCS turn-on. 

Let VTa1, VLa1, and VLa2 be the voltage of Ta1, La1, and La2, as shown in Fig. 6.7. In 
addition, we denote the current of Ta1 and Ta2 as ITa1 and ITa2, and denote the inductance 
(self-inductance) of the inductors simply by their name. We regard the leakage inductance 
of the coupled inductor Ta1 (Ta2) is contained in La1 and La2. Thus, the coupling 
coefficient of the coupled inductor is regarded as 1. For convenience, we define the 
terminals A–D as shown in Fig. 6.7. 

Throughout Mode 2, the voltage potential difference between the terminal A and B 
remains zero and that between the terminal C and D equals to the output voltage VOUT. 
Therefore, we have the following relations in Mode 2: 

0, 1121 =−=+ TaLaOUTLaTa VVVVNV ; (6.6) 
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where N is the turn ratio of Ta2 to Ta1. 

Introducing the total current IS that flows into the additional circuit, i.e. IS=ITa1+ITa2, we 
obtain (6.8) from the above equations. 
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The right-hand side of (6.8) is almost constant, because the output voltage VOUT is 
decoupled by the output capacitor. Hence, we can approximate the increase rate of IS as 
constant. The duration of the Mode 2, which we denote as ∆t2, is obtained as the time for 
IS to rise from zero to the current of L1 at the turn on, which we denote as ION . 
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Equation (6.9) shows that ∆t2 can be determined for any input and output voltage and 
current, unless ∆t2 does not exceed the on-state period of S1. Note that α is a constant. 
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Therefore, ∆t2 is proportional to ION/VOUT and thus can be set by multiplication and 
division. 

 

B.    ZVS Turn-off  

Next, we step in Sa control for the ZVS turn-off. 

The ZVS turn-off can be achieved at any input and output voltage and current. The 
reason is explained as follows. During Mode 3 and Mode 4, inverse voltage is applied to 
the diode Da2. As are result, the snubber capacitor Ca is electrically isolated from the 
main chopper made of S1 and D1. Hence, Ca can be entirely discharged at any conditions 
by maintaining the auxiliary switch Sa in the on-state for sufficiently long time. 

Furthermore, the ZVS turn-off is also able to be controlled arithmetically. As shown in 
the successive discussion, the duration of Mode 3 (∆t3) is approximately proportional to 
ION/VOUT. If the duration of Mode 4 (∆t4) is set, for example, at the constant time which 
suffice to discharge Ca entirely at all input and output conditions, then the on-state 
duration of Sa is calculated by summation, multiplication and division. The duration ∆t3 
and ∆t4 can be determined according to the following discussion. 

First, we determine the current IA and I′A which ITa1 and ITa2 reach at the end of Mode 
2, respectively. The current IA and I′A is obtained from (6.6), (6.7) and (6.9), as follows: 
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We then determine ∆t3. In Mode 3, the voltage potential difference between the 
terminal A and B equals to −VOUT. The difference between the terminal C and D 
approximately equals to VOUT because Mode 3 is generally too short to discharge Ca. Thus, 
we obtain the following relation: 

OUTTaLaOUTLaTa VVVVVNV −=−=+ 1121 , . (6.11) 

The decrease rate of ITa1 is obtained from (6.7) and (6.11): 
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The right-hand side of (6.12) is again a constant. Hence, ∆t3 is obtained as the time for 
ITa1 to fall from IA to zero: 
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   where 
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Consequently, ∆t3 is shown proportional to ION/VOUT. 

Next, we determine the constant time for ∆t4. Here, we adopt the least time that suffices 
to discharge Ca entirely at the end of Mode 5 under all operating conditions. Note that 
the discharge time is longest, when ITa2 is equals to zero and the voltage across Ca (VCa) 
equals to its maximum possible value, i.e. VOUT, at the beginning of Mode 4. For this 
reason, the discontinuous conduction mode takes the longest discharge time, and ∆t4 is 
determined by discussing the operation under the mode. 

In Mode 4 and Mode 5, the coupled inductor Ta2 works as an inductor. Accordingly, 
the additional circuits in the operation mode are expressed by the equivalent circuits 
illustrated in Fig. 6.8. The equivalent circuits show that VCa can be obtained by 
considering the LC oscillation made of Ta2, La2 and Ca. The voltage VCa oscillates 
around zero in Mode 4, and around VOUT in Mode 5. For convenience, we denote the value 
of ITa2 and VCa at the end of Mode 4 as IB and VB respectively. According to the 
conservation of oscillatory energy, we have the following simultaneous equations: 
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Solving the above equations, we obtain VB= VOUT/2. On the other hand, VCa is expressed 
by the following equation, if we introduce the time t whose origin is set at the beginning 
of Mode 4: 

 
Fig. 6.8.  Equivalent circuits of the additional circuit for Mode 4 

and Mode 5. 
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Finally, ∆t4 is obtained as the time when VCa falls to VB: 
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Equations (6.13) and (6.16) show that the ZVS turn-off can be implemented by 
determining Sa control timing by arithmetic operations on ION and VOUT. 

 

6. 4.   Experiment 

Circuit behavior of the proposed boost chopper and resulting improvement of 
conversion efficiency are evaluated experimentally. 

Circuit behavior is examined by observation of operating waveforms and switching 
waveform of S1. Improvement of efficiency is examined by comparing the efficiency 
between the proposed chopper and the basic hard-switching chopper, i.e. the chopper that 
only consists of S1 and D1. In addition, we estimated the breakdown of the total loss to 
confirm contribution of the soft-switching of S1 to the improvement. 

Table. 6.1.  Specifications of the prototype. 

Rating VOUT=400V, POUT*=5kW 

Frequency 60kHz 

S1 SPW47N60CFD, 600V, 47A  

D1 HFA50PA60, 600V, 50A 

Sa STB4NK60Z, 600V, 4A 

L1** 
270µH 

(Nippon Chemi-Con: AW30201WLH) 

La1** 1.21µH 

La2** 45.6µH 

Ta1** 1.24µH (5 Turns) 

Ta2** 100µH (45 Turns) 

Ca 4.4nF 

Za 1N5374B × 2, 75V, 5W 

Da1, Da2 HFA30TA60C, 600V, 15A 

Da3, Da4 HFA16TA60C, 600V, 8A 

*   Maximum Output Power 

**  Inductance is measured by an impedance analyzer (Agilent 4294A) 
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A 5kW prototype chopper is employed in the experiment. The specifications are shown 
in Table 1. The main switch S1 and the main diode D1 is cooled on a water-cooling heat 
sink. The other circuit elements including the additional circuit are cooled with blower. 
The integrated magnetic device and the main inductor L1 is sufficiently cooled, because 
temperature indicator labels (Nichiyu Giken Kogyo Co., Ltd. Thermo Label A-90) 
attached on them indicated that their temperature is always kept below 50°C. 

According to (6.10), the large ratio for N is beneficial in suppressing ITa2 and the current 
of the auxiliary switch Sa. On the other hand, (6.9) indicates that excessively large N 
results in long period for Mode 2 and may constrain the minimum duration of the on-state 
of S1. In this prototype, we chose N=9. 

The inductors Ta1 (Ta2), La1 and La2 are implemented on a pair of ferrite E cores in 
the same way as Fig. 6.2. As discussed in Subsection 6.2.B, Ta1 has the number of turns 
expressed as N2+N3/2−N1/2, using the number of turns defined in Fig. 6.2. Thus, we set 
N2+N3/2−N1/2=5 and N4=45 to obtain N=9. While keeping the ratio, we can further adjust 
the inductance of La1 by increasing or decreasing N1 and N3 by the same turn number. As 
a result, we obtained N1=1, N2=4, and N3=3. 

The integrated magnetic device employed in the prototype is presented in Fig. 6.9. The 
circuit parameters of the equivalent circuit, shown in Table 6.1, are estimated from the 
measurement of the magnetic device according to the method presented in the next 
subsection. 

 

 
Fig. 6.9.  Photograph of the integrated magnetic device, which 

implements Ta1 (Ta2), La1, and La2 of the prototype. 

 

Table. 6.2. Measured Inductance of the Winding A and B. 

Symbol 
Winding 

A 
Winding 

B 
Inductance 

LM1 Measured Opened 2.45µH 

LM2 Measured Closed 1.60µH 

LM3 Opened Measured 146µH 

LM4 Closed Measured 95.4µH 
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A.    Inductance Estimation of the Integrated Magnetic Component  

The inductance of the inductors in the equivalent circuit is estimated based on 
inductance measurement of the winding A and B, when the other winding is opened and 
closed, respectively. We present the result in Table 6.2. On the other hand, the measured 
inductance can be expressed analytically using parameters of the equivalent circuit. 
Therefore, equating the expression to the result of measurement, we can estimate the 
parameters. 

Here, we discuss the estimation utilizing the symbols used in Section 6.3. 

The expression for LM1 and LM3 are easily obtained, because they are the sum of the 
self inductance that constitutes the measured winding. Thus, we have: 

111 aaM LTL += , (6.17) 

223 aaM LTL += . (6.18) 

As for LM2, we calculate the relation between the voltage V and the current ITa1 of the 
winding A. The voltage relation can be expressed as follows: 

 
Fig. 6.10.  Operating waveforms of the proposed boost chopper 

under the continuous conduction mode (Input:200V; Output:400V, 
4kW; Duty=50%). 
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VVVVNV TaLaLaTa =−=+ 1121 ,0 . (6.19) 

Solving (6.19) and (6.7), we obtain the following relation: 

V
dt

dI

LT

LT
L Ta

aa

aa
a =




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



+
+ 1

22

21
1 . (6.20) 

Thus, we obtain 

22

21
12

aa

aa
aM LT

LT
LL

+
+= . (6.21) 

Similarly, we calculate the voltage and current relation for LM4. Now, the voltage is set 
as follows: 

0, 1121 =−=+ TaLaLaTa VVVVNV . (6.22) 

Solving (6.22) and (6.7) yields the following relation: 

 
Fig. 6.11.  Operating waveforms of the proposed boost chopper 

under the discontinuous conduction mode (Input:200V; Output:400V, 
200W; Duty=26%). 
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V
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Comparing Table 6.2 with (6.17), (6.18), (6.21), and (6.23) resulted in the inductance 
La1, La2, Ta1, and Ta2 shown in Table 6.1. 

 

B.    Operating Waveforms  

Current and voltage waveforms are observed by operating the experimental chopper 
for one operation cycle. Before the one cycle operation, we charged the inductor L1 with 
predetermined current in advance, so that the waveforms reflect the operation under a 
specific condition. We adopt 200V as the input voltage, 400V as the output voltage. The 
output power is set at 4kW and 200W so that the prototype is operated under the 
continuous and discontinuous conduction modes. We calculated the duration ∆t2–∆t4 
according to the previous section for gating control of the auxiliary switch Sa. 

Figure 6.10 illustrates the voltage and current waveforms observed in the operation 
under the continuous conduction mode. The waveforms are found almost consistent with 
that expected in Subsection 6.2.C. 

In addition, the requirements for the ZCS turn-on and the ZVS turn-off are found to be 
achieved as expected from the theoretical discussions. As for the ZCS turn-on, ITa1 rises 
linearly during Mode 2 and S1 is turned on at the time when the current of D1 (ID1) falls 
down to zero. And as for the ZVS turn-off, Ca is entirely discharged before the end of 
Mode 5. 

The waveforms in Mode 4 and Mode 5 indicate the snubber energy regeneration. The 
current ITa2 increases during the discharge of Ca. This fact indicates that electric energy 
charged in Ca is transferred to magnetic energy in Ta2 and La2. After Sa is turned off at 
the beginning of Mode 5, ITa2 flows into the output terminal and gradually decreases to 
zero. Finally, energy of Ca, along with magnetic energy of Ta2 and La2, is regenerated 
as the output power. 

On the other hand, two discrepancies are found in Mode 6 between the theory and the 
experiment. One is that VCa rises slightly after once it dropped to zero. And the other is 
that the voltage across Sa (VSa) oscillates several times during the mode. Both of them 
seem to be caused by the parasitic capacitance of Da3 and Sa, which is ignored in the 
theoretical discussions. 

After ITa2 falls to zero at the end of Mode 5, the voltage VSa drops. Then, electric charge 
stored in the parasitic capacitance of Da3 and Sa are released according to the voltage 
drop. The released charge flows into Ca, thus raising VCa again. In general, the 
capacitance of Ca is designed much larger than the parasitic capacitance of the 
semiconductor device, because small capacitance compared to the parasitic capacitances 
does not contribute significantly to ZVS at the turn-off. Therefore, the effect of raising 
VCa again tends to be ignorable compared to the output voltage and hardly affects soft-
switching capability. 
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The recharge process of Ca also explains the oscillation found in VSa, because Ca is 
recharged through Ta2 and La2. There are a parasitic LC oscillator composed of Ta2, La2, 
and the parasitic capacitors. The recharge process excites the parasitic oscillator, resulting 
in the oscillation in VSa. This interpretation is supported by the fact that the frequency of 
the oscillation is in the order of the eigenfrequency of the oscillator. 

The results of the discontinuous conduction mode, presented in Fig. 6.11, are also 
found consistent with that described in Subsection 6.2.C. In this operating mode, ITa1 
remains zero because the inductor current no longer needs to shift the path to Ta1 and 
La1. In addition, the waveforms of the current ITa2 and the voltage VCa successfully 
showed the oscillation between Ta2, La2, and Ca in Mode 4 and 5, indicating energy 
regeneration of the snubber Ca. On the other hand, the above mentioned two discrepancies 
are also found in Mode 6, which are also reasonably explained by the parasitic capacitance 
in the additional circuit. 

To summarize, the circuit behavior as a whole is consistent with that expected from 
theoretical discussions, regardless to the continuous or discontinuous conduction mode. 

 
Fig. 6.12.  Turn-on waveforms of the main switch S1 operated 

under the continuous conduction mode. (Input: 200V; Output: 400V, 
4kW; Duty=50%) 

 

 
Fig. 6.13.  Turn-on waveforms of the main switch S1 operated 

under the continuous conduction mode. (Input: 200V; Output: 400V, 
4kW; Duty=50%) 
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Although parasitic oscillation occurs in Mode 6 due to residual charge in the parasitic 
capacitance of Da and Sa, the charge is generally insufficient to affect the voltage across 
Ca, thus scarcely hinders the soft-switching. 

 

C.    Switching Waveforms  

Figures 6.12–6.15 present the switching waveforms of the proposed chopper and the 
basic hard-switching chopper, observed during the one cycle operation. Figure 6.12 and 
6.13 show the voltage across S1 (VS1) and the current of S1 (IS1) of the turn on in the 
continuous and discontinuous conduction modes, respectively. And Fig. 6.14 and 6.15 
show those at the turn off. 

Comparing the waveforms between the proposed and the hard-switching chopper, we 
confirmed the soft-switching of the proposed chopper. As a result, IS1 is found to be 

 
Fig. 6.14.  Turn-off waveforms of the main switch S1 

operated under the continuous conduction mode 

 (Input: 200V; Output: 400V, 4kW; Duty=50%) 

 

 
Fig. 6.15.  Turn-off waveforms of the main switch S1 

operated under the discontinuous conduction mode 

(Input: 200V; Output: 400V, 200W; Duty=26%) 
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suppressed at the turn on of the proposed chopper even in the continuous conduction 
mode, which indicates the ZCS turn-on. Additionally, VS1 is also found to be suppressed 
at the turn off in the both conduction modes, which indicates the ZVS turn-off. 
Consequently, the ZCS turn-on and the turn-off ZVS is observed in the switching 
waveforms. 

 

D.    Conversion Efficiency  

Improvement of conversion efficiency is evaluated by comparing efficiency between 
the proposed chopper and the basic hard-switching chopper. Efficiency is measured 
during operating the experimental choppers continuously. Gate resistors of S1 are 
selected in both choppers so that they exhibit the similar amount of the current surge in 
IS1 at the turn on and the voltage surge in VS1 at the turn off. We adopted 200V as the 
input voltage and 400V as the output voltage, the same as in Subsection 6.4.B. Six 
measurement points are set between 200W-5kW in the output power. We employed 
CROMA 63204 (6 parallel-connected) operated under CR mode as the power load. 

Figure 6.16 illustrates the result. The proposed chopper showed improvement of 
efficiency when the output power exceeds 2kW. The maximum improvement is found to 
be 0.6%, when the output power is set at 5kW. 

On the other hand, the proposed chopper did not show improvement when the output 
power is lower than 2kW.  The possible reason is that efficiency of snubber energy 
regeneration is lower than efficiency of the main chopper, i.e. S1 and D1. The snubber 
energy stored in Ca is constant regardless to the output power. Therefore the efficiency 
of snubber regeneration affects more profoundly to the total efficiency as the output 
power becomes smaller. Meanwhile the switching loss becomes smaller according to the 
output power. Hence the reduction of switching loss may not cover worse efficiency of 
the regeneration process, especially when the output power is low.  

 
Fig. 6.16.  Measured power efficiency for the proposed chopper in 

comparison with the hard-switching chopper. (Input: 200V, Output: 
400V) 
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 When the output power is high, the snubber energy is comparatively ignorable. 
Therefore the reduction of switching loss consistently contributed to the improvement of 
total conversion efficiency. 

 

E.    Breakdown of Total Loss  

Figure 6.17 illustrates estimated breakdown of total loss, when the output power is set 
at 4kW. The estimation is based on the voltage and current waveforms measured in 
Subsection 6.4.B and 6.4.C. The estimation predicted the total loss observed 
experimentally within an error of 10%. 

The conduction loss of diodes is estimated by approximating the voltage drop by their 
typical values. And that of MOSFETs are estimated by supposing typical resistance at 
their on-state. Both the typical voltage drop and resistance are determined by considering 
the dependency on the junction temperature. The temperature is estimated on the 
breakdown of the loss so that the loss of each semiconductor device consistently results 
in the junction temperature. Switching loss is calculated from the switching waveforms 
presented in Fig. 6.12 and 6.14. Loss of magnetic devices is estimated by summing loss 
created by AC and DC component of the current in each winding. The loss by AC and 
DC component is estimated by supposing constant AC and DC resistance, respectively. 
We adopted the AC resistance at switching frequency as the constant AC resistance. 

The estimation result shows that the proposed chopper significantly reduced the 
switching loss in the main chopper and it is the main contributor of the reduction of the 
total loss. The reduction is greater than the loss of the additional circuit. Thus, it is 
consistent that the soft-switching effectively contributed to the improvement of the 
efficiency. 

 

 
Fig. 6.17.  Breakdown of total loss (Input: 200V; Output: 400V, 

4kW; Duty=50%) 
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6. 5.   Conclusions 

Boost choppers are often utilized in EVs, HVs, and FCVs. These choppers tend to be 
strongly required to improve efficiency because of limited cooling capability of the 
vehicles. However, the soft-switching techniques are generally difficult to be reasonably 
applied, because the load power and the output voltage varies widely according to 
traveling conditions, resulting in limitation of soft-switching capability and large cost-up 
due to implementing additional circuits and soft-switching control. 

This chapter proposed a novel soft-switching technique to overcome the difficulty in 
the unidirectional boost choppers of FCVs. The technique seems to be advantageous in 
the following four features: 

1. Soft-switching is achievable regardless to the output power and voltage. 

2. Soft-switching control can be implemented by arithmetic operations on the 
output voltage and the inductor current. 

3. The additional circuit contains only one switch, which needs smaller current 
rating than the main switch. 

4. Neither voltage nor current stress is added to the main switch by the soft-
switching operation. 

Experiments using the 5kW prototype were carried out to confirm circuit behavior. The 
observed behavior was consistent with that expected by theoretical discussion. The ZCS 
turn-on and the ZVS turn-off are also successfully observed in the switching waveforms. 

Additionally, improvement of efficiency is evaluated on the prototype. The proposed 
chopper showed improvement, when the output power is greater than 2 kW. Maximum 
improvement is 0.6% at 5 kW output. According to the breakdown estimation of the total 
loss, the improvement was mainly contributed by reducing switching loss of the main 
switch S1. This suggests that the proposed chopper successfully improved efficiency by 
soft-switching. 

This chapter focused on the circuit topology and the operational principles. However, 
a practical design method of the additional circuit seems also to be needed in order to 
apply the proposed circuit to practical applications. In future works, the author will 
investigate the inductance design method of the additional circuit, along with an 
optimizing design method of the integrated magnetic device with minimum copper and 
core volume. 
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C h a p t e r  7  

LAGRANGIAN-BASED DERIVATION OF A NOVEL SLIDING-
MODE CONTROL FOR SYNCHRONOUS BUCK CONVERTERS  

 

7. 1.   Introduction 

Synchronous buck converters have been utilized in a wide application area, such as 
communication, robotics, and consumer electronics. These converters are generally 
required to stabilize the output voltage against load change. A well-known specification 
for this stability is transient response to a step load change, which is a faster change 
beyond the possible response speed of the converter. However, in many practical 
applications, the load is designed to change within the response speed. In these 
applications, the dynamic load regulation against comparatively slow load changes, or 
the output impedance [1], may also be a useful specification. 

With respect to the output voltage stability, the PWM-based sliding-mode control have 
been attracting great interest because it can offer fast transient response in wide operating 
range [2]. However, as shown later, the dynamic load regulation can be further improved 
by a novel sliding-mode control method proposed in this chapter. 

We utilized Lagrangian modeling [3] to derive this control method because it can 
convert complicated energy conserving systems into simple dynamically equivalent 
systems [3][4]. In fact, this chapter converts the synchronous buck converter into two 
independent systems, which enables decoupling between the output voltage and the load 
current. Along with theoretical derivation of the proposed control, this chapter also 
presents simulation results that support improvement of the dynamic load regulation. 

 

 

7. 2.   Proposed Control Method 

A.    Lagrangian Modeling  

This section derives Lagrangian model of a synchronous buck converter system shown 
in Fig. 7.1(a). To model this system as an energy conserving system, we regard the load 
as an imaginary synchronous boost converter that emulates the load by extracting the load 
current, as shown in Fig. 7.1(b). (We neglect the current ripple of this converter.) We 
regard that switch S4 operates at duty cycle D2, which is unknown to the controller of the 
buck converter. For convenience, we assume that inductors L1 and L2 are the same. Let 
N and R be the number of their winding turns and the reluctance of their cores. We regard 
the switching-state indicators presented in [3] or Subsection 1.3 of this thesis as duty 

 † Reprinted, with permission, from K. Umetani, M. Yamamoto, and E. Hiraki, Lagrangian-based 
derivation of a novel sliding-mode control for synchronous buck converters, IEEJ Journal of Industry 
Applications, Nov. 2015. 
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cycles to discuss a state-averaged model. Then, Lagrangian model [3] Λ for this system 
is 

( ) EC EqqQ
C

RRqNqN ++−−−+=Λ 22
2

2
12211 2

1
2
1

2
1 φφφφ &&

 

( ){ } ( )CE qqqqDqDq −−+−+−+ 21222111 1 λλ . (7.1) 

where φ1 and φ2 are the fluxes in L1 and L2, q1 and q2 are the charge flowing through 
L1 and L2, Q is the initial charge of C1, qC is the charge flowing into C1, E is the voltage 
of the power source, D1 is the duty cycle of S1, λ1 and λ2 are the Lagrangian multipliers. 
A dot over a variable represents its time derivative. 

Now, we apply a coordinate transformation [5] to (7.1) to obtain Lagrangian of a 
dynamically equivalent system. First, we eliminate Lagrangian multiplier terms by 
substituting qE=D1q1−(1−D2)q2 and q1=qC+q2 into (7.1). Second, we introduce new 
variables φA, φC and qA defined as φA=(φ1+φ2)/2, φC=φ1−φ2 and qA=(q1+q2)/2. Eliminating 
φ1, φ2, q1 and q2 from (7.1) yields 
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(a) 

 

 
(b) 

Fig. 7.1.  Buck converter system analyzed in this chapter. (a) 
Synchronous buck converter with a load. (b) Analyzed equivalent 
system. 

S1

S2
E

D1

L1 C1

Load

qE

q1

qC

qE, q1, q2, qC: Electric charge
D1, D2: Duty cycles    E: Voltage

Boost converter emulating the load

S1

S2

E
D1

L1

C1

L2

S3

S4

D2

q1

qC

q2

qE



 

140 

where DA and DC are imaginary duty cycles defined as DA=D1+D2−1 and 
DC=(D1−D2+1)/2. Note that DA takes from −1 to 1; and DC takes from 0 to 1. Hence, (7.2) 
can be translated into an equivalent system of two independent converters shown in Fig. 
7.2, according to the method presented in [3] or Chapter 1. 

Figure 7.2(a) is a closed system of qC; therefore, it is unaffected by the load current 
incorporated in qA. Because the output voltage Vout of Fig. 7.1(a) is equal to the C2 voltage 
VC2 in Fig. 7.2(a), controlling VC2 in Fig. 7.2(a) eliminates the effect of the load current 
on Vout. 

In Fig. 7.2(a), qC is controlled through DC. In the actual circuit, however, we can only 
adjust D1 to obtain appropriate DC. Because of the relation D1=2DC+D2−1, D2 need to be 
inferred in order to calculate necessary D1 from the required value for DC.  

According to the voltage relation at the inductor L2, we have 

 ( )EDV
dt

di
L 2out

out
2 1−−=  (7.3) 

where iout is the load current, and t is the time. Substituting (7.3) into D1=2DC+D2−1 
and noting that L1 and L2 have the same inductance, we have  

.2 out1out
1 dt

dI

E

L

E

V
DD C +−=  (7.4) 

 
(a) 

 

 
(b) 

Fig. 7.2.  Equivalent system of Fig. 1(b). (a) Converter of the charge 
qC. (b) Converter of the charge qA. 
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B.    Proposed Control  

Based on the above discussion, we can formulate the proposed control of Fig. 7.1(a). 
The control consists of the following two steps: 1. Determine DC according to the PWM-
based sliding mode control of the imaginary converter, i.e. Fig. 7.2(a), and 2. Determine 
D1 from DC according to (7.4).  

Figure 7.3 illustrates an example of the control algorithm. Step 1 observes the C1 
voltage and current, which are the C2 voltage and current, to generate DC for control of 
Fig. 7.2(a). Then, Step 2 calculates D1 from DC according to (7.4). Gain operators can 
replace division operators, i.e. ÷E, if the input voltage is almost constant. 

The proposed control is an extension of the PWM-based sliding-mode control shown 
in Fig. 7.4 because STEP2 is the only difference. 

 

 
Fig. 7.3.  Simulation model of the proposed control. 

 

 
Fig. 7.4.  Simulation model of the PWM-based sliding-mode 

control. (Parameter values are the same as Fig. 7.3) 
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7. 3.   Simulation 

Simulation was carried out to confirm effectiveness of the proposed control shown in 
Fig. 7.3 in comparison with the PWM-based sliding-mode control shown in Fig. 7.4. The 
simulation parameters are presented in Fig. 7.3. The simulator is PSIM9.3 (Myway Plus 
Corp.).  

Figure 7.5 shows the transient response when the load resistance is switched between 
1Ω and 2Ω. The result shows that the proposed control shows almost the same response 
as the PWM-based sliding-mode control. Therefore, the proposed control showed no 
improvement in the transient response to a step load change. 

Figure 7.6 shows the output voltage fluctuations when the load is sinusoidal current 
sink with 5Apeak 10kHz. The output voltage fluctuation was effectively suppressed in the 

 
Fig. 7.5.  Output voltage under step load change. 

 

Fig. 7.6.  Output voltage under sinusoidal load current. 
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proposed control. Therefore, the proposed converter improved the dynamic load 
regulation against slow load current fluctuation. 

7. 4.   Conclusions 

Buck converters are generally required to stabilize the output voltage. To improve the 
stability, this chapter proposed a novel control method for synchronous buck converters. 
The proposed control can improve the dynamic load regulation against slow load current 
fluctuation. Simulation results revealed successful suppression of the output voltage 
fluctuation under sinusoidal load current, whereas no improvement was found in the 
transient response to a step load change. In future works, the author will evaluate the 
performance of the proposed control experimentally. 
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CONCLUSIONS 
 

Lagrangian dynamics is expected to promote analytical understandings of electric 
power conversion techniques because it has the following attractive features: 1. It can 
directly analyzes behavior of the electromagnetic fields rather than the voltage-current 
relations; 2. It can analyzes the electromagnetic non-linearity; 3. It can analyzes the 
systems that incorporates the electronics and the mechanics simultaneously. These 
features are probably essential to extend application of the power electronics to newly 
developing technical fields such as the integrated magnetic components, the induction 
heating, the wireless power transfer, the switching reluctance motor drive, the system 
integration and so on. However, we have few knowledge to apply Lagrangian dynamics 
to the power electronics, although Lagrangian dynamics has already been widely spread 
in the mechanical fields. 

This thesis addressed this issue by proposing a methodology to apply Lagrangian 
dynamics to the power electronics. Part I presented four novel basic analytical methods 
for the power electronics based on Lagrangian dynamics. These methods enables analyses 
that the conventional circuit theory is difficult to conduct, and are useful for application 
to the newly developing technical fields. The followings are the main conclusions of Part 
I. 

1. A Lagrangian modeling method of power conversion circuits was presented in 
Chapter 1. The method can also generates Lagrangian models of circuits that 
incorporates the complicated magnetic circuits. The proposed method offers easy 
procedure because the Lagrangian models are directly configurable from the 
physical structure of the electric and magnetic circuits. Behavior of the circuits can 
be systematically analyzed by applying the Lagrangian model to the well-known 
Euler-Lagrange equation. Furthermore, the state-space model of the circuit can also 
be obtained systematically under a simple predetermined procedure. 

2. A Lagrangian method to derive the equivalent circuits of integrated magnetic 
components was presented in Chapter 2. This method can be expected to derive a 
simpler circuit than the conventional methods, when applied to an integrated 
magnetic component with a small number of flux paths that can be magnetized 
independently. The Lagrangian method was verified theoretically and 
experimentally by a case study using the integrated winding coupled inductor. 

3. A Lagrangian method of the duality transformation was presented in Chapter 3. 
The conventional methods of the duality transformation suffer from complicated 
procedures when applied to non-planar circuits; and furthermore, they often suffer 
from different results, which cannot be derived by the other methods. On the other 
hand, the Lagrangian method offers a universal and systematic procedure that 
derives all possible duals. The Lagrangian method is easily applicable to non-planar 
circuits in the same manner as to planar circuits because it does not need the 
topological transformation. The Lagrangian method was verified by two examples. 
One of the examples is a typical non-planar circuit from which the conventional 
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methods are known to derive either one of two different duals. As a result, the 
Lagrangian method succeeded to derive both of the two duals deductively.  

4. A Lagrangian method to formulate switched reluctance motor models was 
presented in Chapter 4. The proposed method can model intense magnetic non-
linearity of the motors. Furthermore, this model can be connected to the propulsion 
circuits of the motor and the mechanical system of the load to form a Lagrangian 
model of the entire motor propulsion system. Therefore, the behavior of the entire 
system can be analyzed systematically using Euler-Lagrange equation. The 
formulation of the switched reluctance motor was verified by an example of 
operation analysis of a simple SRM driving system. 

This thesis also gave some examples of these Lagrangian methods applied to practical 
industrial applications. Part II presented three novel techniques for practical applications 
in which Lagrangian dynamics took an essential role. The followings are the main 
conclusions of Part II. 

1. A novel integrated magnetic component for EMC filters was developed and 
proposed in Chapter 5. The integrated magnetic components are expected to 
miniaturize EMC filters. However, conventional magnetic structures suffer from 
lowers tolerance to the magnetic saturation, which may reduce the miniaturization 
effect by the magnetic integration. Chapter 5 utilizes Lagrangian dynamics to 
analyze the proposed magnetic structure that improves the tolerance to the 
magnetic saturation. A theoretical analysis and experiments verified the operating 
principle of the proposed structure. Additionally, an analytical estimation revealed 
that the proposed structure successfully reduced the core volume by 41% compared 
with a conventional magnetic structure. 

2. A novel soft-switching boost chopper with an integrated magnetic component was 
developed and proposed in Chapter 6. The integrated magnetic component is 
utilized for miniaturizing a novel lossless LC snubber in the proposed chopper 
which achieves the zero-current switching turn-on and the zero-voltage switching 
turn-off. Chapter 6 utilizes Lagrangian dynamics to develop the integrated 
magnetic component. Experiments successfully verified the operating principles of 
the proposed chopper as well as efficiency improvement by the soft-switching. 

3. A novel control method for synchronous buck converters was developed and 
proposed in Chapter 7. Sliding-mode control for buck converters is beneficial in 
fast transient response to a step load change in wide operating range. The proposed 
control method further improved dynamic load regulation against load current 
fluctuations within the response speed of the converters. Simulation results 
revealed successful suppression of the output voltage fluctuations under sinusoidal 
load current. 
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