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PREFACE

Applications of power electronics are growing fast industry. Accordingly,
technological fields of power electronics is alsganding. Conventionally, power
electronics researches are mainly targeted on Ipasier converter circuits and basic
motors. The basic power converters are composdmh®it circuit elements, such as
transformers, inductors, capacitors, switches,raatifiers. The basic motors have linear
electric characteristics, which can be modeled &sidlinear lumped circuit elements.
Therefore, these basic techniques are commonlyyzethlusing the circuit theory.
However, recent researches include various techsithat are difficult to analyze using
the circuit theory.

Many of these recent techniques appear to contaire keywords that explains the
difficulty. Below this thesis gives three typicaywords.

The first keyword is electromagnetic field applioat

Some applications utilize the electromagnetic fieddlf for their industrial purposes.
For example, induction heating [1]-[3] utilizes theagnetic field not for obtaining
reactance but for inducing eddy current in the dld@be heated. Wireless power transfer
[4]-[6] also utilizes the electric or magnetic @elot for reactance but for energy transfer.
Induction heating and wireless power transfer gatyeneed analyses of the behavior of
the electromagnetic field to design effective warbils and transmitters/receivers.
However, the circuit theory can be hardly emplofggatalculation of the electromagnetic
field.

Integrated magnetic components [7]-[16] are anoteehnique that shares this
keyword. They utilize the magnetic field for implenting advanced electric functions.
They generally have multiple magnetic couplingdweidbmplicated relations between the
flux linkage and the magnetomotive force. Theylarewn to be useful for miniaturizing
magnetic components [7][8][11] or reducing the aagpss [9]. However, in many cases,
the electric circuits with integrated magnetic coamgnts are difficult to analyze by the
circuit theory because these circuits require datmn of the magnetic behavior as well
as the electric behavior.

The second keyword is non-linearity.

Some applications utilize devices with significafectromagnetic non-linearity. For
example, the switched reluctance motors [17]-[1@vs intense non-linearity because
driving the motor generally saturates the magnetie. This motor utilizes magnetic
saturation to achieve higher efficiency. Howeveagmetic saturation in the motor is
difficult to consider in the circuit theory becausagnetic saturation is dependent not on
the current but on the magnetic flux, which is nohcretely calculated in the circuit
theory. Certainly, the magnetic saturation can besitlered in the circuit theory as
decrease of inductance as a function of the cuyrifeéhere is one flux path as in the simple
inductor. However, this approach is not necessaplylicable to the switched reluctance
motors, which generally have more complicated ddpeaies of the torque output on the



magnetic flux of the multiple windings. Therefottge circuit theory can be hardly applied
directly to developing driving techniques of thatsWved reluctance motors.

The third keyword is system integration.

In recent applications, a number of power converégrd motors are often integrated
to form a system. The system often require cotdainiques that optimizes the behavior
of both the entire system and each subsystem omatitutes the system. In many cases,
the system includes mechanical subsystems, whids dmt belong to the power
electronics. For example, propulsion systems [ZQ][@f electrified vehicles have
multiple power converters and motors. A propulsgstem generally contains the battery,
the DC-DC converter, the inverter, and the motartlkermore, the system also contains
mechanical system that transfer the torque to theelg. Therefore, analysis of the entire
vehicle propulsion system is difficult by the ciitctheory because the behavior of the
system depends on both the mechanics and the gdeatronics.

As we have seen, the difficulties related to thredtkeywords appear to be originated
to the fact that the circuit theory does not diseanalyze the electromagnetism and the
mechanics. Hence, these difficulties may be altedidy an analytical technique that can
cover the electromagnetism and the mechanics sinedusly.

The purpose of this thesis is to propose novelydical methodology to address these
difficulties. The proposed methodology is based.agrangian dynamics [22][23].

Lagrangian dynamics is one of the most basic aialytools of the physics.
Lagrangian dynamics directly utilizes the principlkethe least action [24], which is the
basic rule applicable to any types of physical@ayst Therefore, Lagrangian dynamics
has an attractive feature that it can analyze Huthelectromagnetic systems and the
mechanical systems. Lagrangian dynamics can alsappked to non-linear magnetic
field as shown in Chapter 4 of this thesis. Furtime, Lagrangian dynamics can be
applied to systems that incorporates both the releetgnetism and the mechanics, such
as a motor driving system. Therefore, Lagrangianadyics may solve the above
mentioned difficulties of the power electronics.

Lagrangian dynamics has already been widely udlize mechanical systems. In
addition, some preceding works [25]-[29] have psmub the method to formulate
Lagrangian models for basic power conversion disatomposed of basic lumped circuit
elements, such as the inductor, the capacitortlf@dwitches. However, the preceding
method has hardly been applied to more complicaliectromagnetic systems including
complicated or non-linear magnetics and mecharasthermore, few examples are
known to show how to apply Lagrangian dynamicsraxfical industrial applications.

Therefore, this thesis first proposes the Lagrangi@ethodology for the power
electronics in Part |. Specifically, this thesieggnts a set of basic theoretical methods to
apply Lagrangian dynamics to power electronicsaedees. These methods are intended
to address difficulties related to the above mewmitbthree keywords. Part | consists of
Chapter 1-4. Chapter 1 presents a generalized hgigramodeling method applicable
to power converters with complicated magnetics.pg@#ra2 derives methods to analyze
integrated magnetic components. Therefore, Chdptard Chapter 2 are related to the
difficulties of the first keyword, i.e. the electnagnetic field application. Chapter 3
derives a method of the duality transformation [88ed on the correspondence relation
between the electricity and the magnetic flux. Elfi@ne, this chapter is also related to the
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first keyword. Chapter 4 derives a Lagrangian miogeiethod of switched reluctance
motor and its propulsion system, which is relatethe second and third keywords, i.e.
the non-linearity and the system integration.

Then, this thesis presents three applicationseof #yrangian methodology to practical
power electronics in Part Il. Part Il consists dfapter 5—7. Chapter 5 and Chapter 6
contain integrated magnetic components. Theretbefwo applications are related to
the first keyword. Chapter 7 proposes a controhiéque for a synchronous buck
converter. This technique is derived by investiggathe Lagrangian model incorporating
the converter and the load as one system. Heniseapbplication is related to the third
keyword.

The followings present digests of the chapters.

Chapter 1 provides the most basic method for Lageandynamics of the power
electronics. This chapter formulates a generalmethod to compose Lagrangian models
of static power converter circuits. Although somegeding works [25]-[29] have
discussed Lagrangian modeling of power converteuits composed of basic circuit
elements, the proposed method can further be appliemodeling of complicated
magnetic circuits. Therefore, the proposed methad lse used for analyses of the
integrated magnetic components. This chapter atsegepts an example that shows
systematic analysis of the circuit behavior of aveo converter with an integrated
magnetic component.

Chapter 2 proposes a novel method utilizing Lageandynamics to derive equivalent
circuits of integrated magnetic components forerasomprehension of the components.
Conventionally, two methods have been known toveéeequivalent circuits: The
inductance matrix method [31] and the duality mdtf82][33]. However, the inductance
matrix method generally suffers from complicated\ddion procedure; and the duality
method generally suffers from complicated resulioptivalent circuits. On the other
hand, the proposed method provides a straightfahaad systematic procedure that is
applicable to all integrated magnetic componenisthHérmore, the proposed method can
derive simpler equivalent circuits at least in sarases. In fact, Chapter 2 presents an
example in which the proposed method successfidlyveld the simplest equivalent
circuit compared with the conventional methods.

Chapter 3 proposes a novel method for the duatitysformation [30]. The duality
transformation is a process to transform a volsmace converter into a dynamically
equivalent current-source converter, and vice vefSanventionally, the duality
transformation is performed based on the topolddgieasformation, which replaces
series connections of the original circuits by paraonnections and parallel connections
by series connections. However, the topologicaldi@mation can be applied only to
planar circuits [30]. Therefore, the conventionathod of the duality transformation
cannot be directly applicable to non-planar cicuertainly, some methods [34]—[37]
are proposed for the duality transformation of péamar circuits. However, these
methods can suffer from the complicated procedaine; furthermore they often suffer
from different results, which cannot be derivedthg other methods. This difficulty is
addressed by the proposed method, which utilizegramian dynamics to avoid
topological transformation. Along with the theoftloe proposed method, Chapter 3 also
presents an example of the duality transformatioa basic non-linear circuit to show
that the proposed method is directly applicabledo-planar circuits.
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Chapter 4 presents a method to compose Lagrangbaelnof switched reluctance
motors. The proposed method can model the intersgnetic non-linearity of the
switched reluctance motors. Certainly, many prewgainalytical model [38]—-[42] can
also model this non-linearity. However, the Lagiangmodel composed using the
proposed method can be directly connected to trehamecal model of the load and the
Lagrangian model of the power converters, whiclissussed in Chapter 1, to form a
Lagrangian model of the entire motor drive systasiuding mechanical load. In fact,
Chapter 4 presents an example of operation anabyses simple switched reluctance
motor drive system to show that the Lagrangian rhofithe entire system can be easily
obtained by summing Lagrangian models of the ctuesits of the system.

Chapter 5 presents an application of the methoelsepted in Chapter 1 and Chapter
2. The integrated magnetic components are expeztathiaturize EMC filters. However,
this technique also has a risk that lowers tolexdnthe magnetic saturation, which may
reduce the miniaturization effect by the magnettegration. This chapter addresses this
problem by proposing a novel integrated magnetismanent that improves the tolerance
to the magnetic saturation. A theoretical analymisl experiments verified that the
proposed structure is equivalent to an EMC filtese@ries-connected differential-mode
and common-mode inductors. Additionally, an anabjtiestimation revealed that the
proposed structure successfully reduced the cdreneocompared with a conventional
integrated magnetic component.

Chapter 6 also presents an application of the ndsthpwesented in Chapter 1 and
Chapter 2. This chapter targets on the soft-switghechnique [43]-[49]. This chapter
proposes a novel soft-switching boost chopper aithintegrated magnetic component.
The integrated magnetic component is utilized foniaturizing a novel lossless LC
snubber in the proposed chopper which achievegdfecurrent switching turn-on and
the zero-voltage switching turn-off. This chaptéows how this integrated magnetic
component works in the lossless LC snubber, asagelhe merits and drawbacks of the
proposed soft-switching boot chopper compared vatious conventional boost chopper
topologies. This chapter also presents experimeptallts that verifies the operating
principles of the proposed boost chopper.

Chapter 7 presents an application of the methoslepted in Chapter 1. Similarly to
the method presented in Chapter 2, this chaptizagithe point transformation [50] of
the Lagrangian model. Sliding-mode control for baokverters [51] is beneficial in fast
transient response to a step load change in widgabpg range. However, buck
converters can further require better dynamic loaegulation against load current
fluctuations within the response speed of the cdev® This chapter addresses this issue
by proposing a novel control method for synchronbusk converters [52][53] using
Lagrangian dynamics. Along with the theoreticalidiion of the control method, this
chapter also presents simulation results that ssodéy verified improvement in the
dynamic load regulation against sinusoidal loadentrfluctuations.

Finally, conclusions are given to the thesis.
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PART I:

Lagrangian Analytical
Methodology for Power
Electonics



Chapter 1

GENERALIZED LAGRANGIAN CIRCUIT THEORY OF STATIC
POWER CONVERSION CIRCUIT

1.1. Introduction

This chapter derives a Lagrangian modeling applécad both electric and magnetic
circuits. Power electronics theories have been Imdiased on analysis of an electric
circuit because basic power converters are compafs&thple electric components such
as capacitors, inductors, transformers, switched, diodes. Certainly, inductors and
transformers have magnetic circuits [1]. Howevégirt magnetic circuits are simple
enough to regard them as black boxes and model ¢hestric functions by simple
voltage-current relations. As a result, we canya@abperation of basic power converters
entirely using the electric circuit theory.

However, recent growing requirement for miniatutima and efficiency improvement
attracts researchers’ attention to magnetic comusn&ith complicated magnetic
circuits. These components are generally refemexstintegrated magnetic components
[2]-[26].

Application of integrated magnetic components issaful remedy for reducing both
the volume and the energy loss of magnetic compgeneln integrated magnetic
component can integrate plural individual inductarsd transformers onto a single
magnetic core. In a well-designed component, eadhator or transformer shares its
magnetic path and winding with others, thus redyi¢ire total amount of core [3], [4],
[20] and copper [5] in the circuit. In addition,ethdead space between magnetic
components may also be reduced by the integration.

The cutback in core and copper contributes to reduwot only volume but also energy
loss. Because the iron loss and the copper loggeaerated in the core and the windings,
their cutback generally leads to reducing the gndogs. Owing to these benefits,
industrial applications of the integrated magnetimponents are energetically proposed
and studied in the number of cases [2]-[26].

On the other hand, integrated magnetic componemts been rarely employed in
practical uses. A probable reason may lie in tietfaat analytical comprehension of the
circuit behavior of the components is difficulttime conventional electric circuit theory
because their voltage —current relation is not Enapie to their complicated magnetic
circuit structure.

Certainly, some latest simulators can predict geediehaviors of the integrated
magnetic components, as shown in [2], [6]. Conliyadnalytical methods are hardly
employed for non-linear behaviors in general. Nbaksss, the analytical methods can
ensure circuit behaviors for any possible cond#jomhereas the numerical results are

TReprinted, with permission, from K. Umetani, A gealzed method of Lagrangian modeling of
power conversion circuit with integrated magnetienponents, IEEJ Transactions on Electrical and
Electronic Engineering, Nov 20:
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valid for specific operating conditions. Hence, lgfi@al methods still play an important
role in circuit analysis.

Power converters with integrated magnetic companeah be analyzed directly by
solving the electric circuits and the magneticuiindividually and then integrating the
results to obtain one solution. Examples of thisrapch are presented in [2]-[5], [7],
[14], [17], [19], [21]. However, this brute-forcenalysis tends to be complicated
compared to that only of electric circuits. Insteadltiple analytical methods that models
electric functions of magnetic circuits have beeoppsed in order to allow the electric
circuit theory to handle the integrated magnetimponents.

These methods can be classified into two majorgoates. One is the inductance
matrix [8], [27]; and the other is the gyrator-ceppar modeling [6], [28]. However,
neither of them necessarily provide a simple arstiesgatic procedure, particularly when
applied to highly integrated magnetic components.

The former theory expresses a magnetic circuitnipductance matrix [13] composed
of the self-inductance of all windings and the naliinductance [29] of all winding pairs.
If the theory is applied to a single flux path, Isias a basic transformer, the matrix can
be easily found. However, as for a more complicategnetic circuit, determining the
matrix is generally difficult because of its grehmension and poor correspondence
relation between the physical magnetic structucetha matrix elements. To summarize,
the complicated modeling procedure, as well as pomespondence relation, can hinder
straightforward analysis of the circuit behavior.

The latter method converts a magnetic circuit artelectric circuit with gyrators [30].
Unlike electric components in a real circuit, aagr is a non-reciprocal component
whose impedance matrix is asymmetric. Because th#ehdoes not belong to a real
electric circuit, its analysis is generally diffituln addition, the gyrator-capacitor
modeling is limited to an integrated magnetic conga whose winding interlinks with
a single magnetic path. This limitation hinders elowy leakage flux. Hence, if we
consider leakage flux, we need to convert in adedhe physical magnetic structure into
another that allow the modeling method. To sumneatize difficulty in analysis and the
limitation of modeling can hinder straightforwandadysis of the circuit behavior.

As we have seen, these two methods expand theielectuit theory to analyze
integrated magnetic components. However, this ambrgeems to result in complicated
handling of a magnetic circuit. Another promisirgpeoach may lie in reconstructing a
circuit theory that naturally incorporates bothctlie circuits and magnetic circuits.

The purpose of this chapter is to derive this nawreuit theory through simplification
of the electromagnetism. For the straightforwampification, great concern should be
paid on the features of the intended system. Thegiated magnetic components are
expected to be applied to power conversion circugs energy conserving systems. In
this respect, the Lagrangian dynamics seems to Ipeomnising candidate for the
simplification method.

In [31]-[36], the Lagrangian dynamics has beeniedpo power converters without
integrated magnetic components. However, their &rgjan is based rather on the
analogical relation between electric circuit andchamics. For example, an inductor is
regarded as mass, a capacitor as a spring, angecharposition. Because they do not
contain magnetism in the concrete manner, the abwmioned difficulty remains

11



unsolved. Indeed, the inductance matrix is utilize{B3], [34], which discuss handling
integrated magnetic components using Lagrangiaamics.

In contrast to these preceding Lagrangian theotlds, chapter proposes a novel
Lagrangian theory that is naturally applicablertegration of both electric circuits and
magnetic circuits. We will begin our discussionwéixpressing the electromagnetic field
in Lagrangian dynamics. Through simplification bételectromagnetism, we obtain the
novel circuit theory in the second section.

For convenience, we limit our discussion to lineaedia in this chapter because
analytical methods are usually applied to the lifeshavior of a circuit in practice. As a
result, we ignore the non-linear characteristiar@fgnetic material, such as magnetic
saturation, hysteresis, and the dependency of tHecBrve on frequency. Accordingly,
we also ignore non-linearity dependent on geometrg core, which is caused by the
non-linearity of the material and local flux diswikion inside the core [37].

In the third section, an example of a circuit asalys presented. The example shows
the systematic method to derive the state-spaceinodd converter with an integrated
magnetic component. From the state-space modelcameeasily obtain the circuit
behavior.

1.2. Lagrangian Modeling

A. Lagrangian Expression for Electromagnetismin Linear Media

Let us assume that the intended circuit, along thighmedia of electric and magnetic
field, remains at rest in a coordinate system. Aoidially we assume the linear media.
Then the field in the coordinate is described BipWwing Maxwell equations [38].

div(eE) = p, (1.1)
rot (8/) - OE). =, (1.2)
divB = 0. (1.3)

_ , (1.4)
rote = _a%t

whereE is electric field,B is flux density,s is permittivity, i is permeability,o is
electric chargg, is current density vector.

By introducing scalar potentigt and vector potentia defined as (1.5) and (1.6) and
substituting them foE and B, we can omit (1.3) and (1.4) because they areyslwa
satisfied.

B =rotA (1.5)
1.6
E =-grady - 94/, (1.6)
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The Maxwell equations in a vacuum are known todxéved by applying the following
Lagrangian densitlzqdo to the variational principle [39]:

, £ 1
Ld0=—p4[/+jU\+EOE2—ZBZ 1.7)
0

where&, o are the permittivity and the permeability of vaoyuespectively.

As (1.1) and (1.2) differ from the Maxwell equatomm a vacuum only in the
permittivity and the permeability, the Lagrangiaendity for (1.1) and (1.2) can be
expressed by:

. & 1
L, =- +j[A+=E*-—R?
d pY +) 5 2u (1.8)

The Lagrangian densitys corresponds to that proposed by Zheng and Warlgif38
both current and density of monopole is assuméxt twero.

We can confirm that (1.8) gives the Maxwell equatd a linear media. We consider
a system of electromagnetic field and integtat®ver a large regioN containing this
system. Then, the result of the integration givagrangiar_imp of this system. Hence,
we have

Lonp = —Jpzpdx +Jj [Adx +J§E2dX_JiBZdX' (1.9)

wheredx is the volume element.

Next, we take the variation bfnpwith respect tay, A, and A . The variableA refers
to the time derivative oh. Hereafter; we denote the time derivative of aalde by a dot
over the variable. We consider arbitrary infiniteal change®y, A, and A in Y, A,
and A , respectively, inside the region On the other hand, we assud@=0 and
A = A =0 at the surface of. We replacay, A, andA in (1.9) byy+dy, A+dA and
A+A, respectively. Then, we subtrdgtp from the resultant Lagrangidsinpgt dimp to
obtain the infinitesimal chang&mp in the Lagrangian:

Loy = [ ORI+ [ ] BAGK+ [ 6E (BEX~ [ > (2B, (1.10)
\% \% \% /J

\

where & = —graddy — A and B =rotdA . In the above equation, we neglect the
second order ofiy, dA, and A .
The third right-hand term can be developed asvalo

jeEmdxz—jeE@raowwx—jaEmdx
\% \Y \%
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jeEé¢d9+jd|v ) Ayl — jeE [BAdX

jd.v )ouix — j.sE [BAdX,

(1.11)
whereQ is the surface of the regidhand d2 is its area element.
Similarly, the fourth right-hand term in (1.10) che developed as follows:
—j [ABdx = j—didQ Irot( jmdx = Irot( jmdx (1.12)
H H
Substituting (1.11) and (1.12) into (1.10) yields
Ay = [{= o+ div(eE )} Sypelx - jsE mdx+j{1 —rot( j} [BAdX, (1.13)
7,
\% \%

Hence, we obtain functional derivativés,,,,/ oy, d. .,/ A, d_[mp/dé\ as follows:

d—(mp__ - d‘lmp—_ h:'— E
T p+div(eE), AT rm(ﬂ)- (1.14)

The functional derivatives of a Lagrangian muss$aEuler-Lagrange’s equation [39].
Hence, we have

i d‘[mp ) d‘[mp o (1.15)
dtl A A
)/

Substituting (1.14) into (1.15) and (1.16) yield2) and (1.1).

B. From Electromagnetism to Circuit Theory

Now, we consider an electric circuit contained inv@umetric regionV. Then,
integrating Lagrangian densikyoverV gives Lagrangiah of the whole circuit:

L=Ldv. (1.17)
\%

Then, we step in simplification of the above expi@s of L and translate it into a
circuit theory. In the whole process we introduee following three approximations:
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Fig. 1.1. Electric and magnetic constraint at node of electnrrent
and magnetic flux path

(1) There is no field £=0, B=0) outside the circuit component. The same holds for
conductive wire.

(2) There is neither charge nor currept@, j=0) outside the circuit component and
conductive wire.

(3) There is no interference of electric and magneetd fbetween components.
Specifically,A produced by a component is ignorable inside thersttSimilarly,
(¢ produced by a component is also ignorable indmdedthers which are not
electrically connected by a conductive wire.

The approximations (1) and (2) leadLig# O only inside the circuit components and
conductive wire. Therefore, we can divide the dgircegionV into regions of each circuit
componenVi and the whole conductive wiké, and rewrite in the form:

L :Zfi +0, (1.18)

Wherei is the index of the circuit components;andéw is Lagrangian of a circuit
component and the whole conductive wire, respdgtidefined as follows:

=LAV f, = fLdv. (1.19)
Vi vV,

i w

The conductive wire not only constitutes a parthef LagrangiarL, but also gives
constraints among parameters that characteri&ncek = 0 both inside the wire and at
the boundary of the wire, (1.1) leadste O there. Accordingly, as shown in Fig. 1.1(a),
the sum of the electric charge that flows into denof the wire equals zero. If we define
cumulated chargg as time integrated electric current that flowsoasra cross-section
surfaceSfrom the initial timelo to the timd, i.e. by (1.20), the constraint grat the node
Is expressed by (1.21).

o = “J st (1.20)

t S
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deqk - O' (121)
k

wheredS is the area element 8f andd is an integer that takes 1 if the directiordsf
is toward the node anel if it is opposite direction.

Likewise, the node of magnetic paths also givesrastraint. Consider the magnetic
node shown in Fig. 1.1(b). If we define the magnétix ¢ by (1.22), we obtain the
constraint expressed as in (1.23) because (1.83 leaneither creation nor annihilation
of the flux.

@ :isms_ (1.22)

Y dg =0 (1.23)

Now, we suppose that the circuit Lagrangiars the function ofpandg, as shown
later. Then, the Lagrangian multiplier method caremployed to model the electric and
magnetic circuit networks because (1.21) and (1a28)holonomic constraints gmand
g. In the method, the modified Lagrangiah written in the following equation, is
substituted for the original Lagrangian

L':Zgi +£W+z/1nfn(q,¢)_ (1.24)

wheren is the index of an electric node and a magnetidend is the Lagrange
multiplier, andf(q,¢ is the left-hand side of (1.21) or (1.23).

A power converter is ordinarily equipped with seomductor switches or diodes. By
means of the switches and diodes, the wire cororecfi the circuit is toggled from one
to another periodically. Therefore, a general poaarverter has some electric nodes
whose constraint conditio@&,¢) are dependent on the conduction states of thelseg.

Besides the semiconductor switches, an analysipogier converter commonly
requires power dissipation by a load and parassistance. However, our Lagrangian
L' itself is insufficient for including lossy devicesnce it is derived from electromagnetic
field of lossless environment, i.e. the linear nae@ne of the simple methods to introduce
lossy devices is to employ Rayleigh’'s dissipatiamction [41], [42] along with
LagrangianL'. Rayleigh’'s dissipation functio® is defined by (1.25). Then, the
movement of the system, namely the behavior ottteuit is known to be determined
by Euler-Lagrange equation (1.26) [41], [42].

D =%ZRSCLZ. (1.25)

d (aL'j_ oL’ _ _aD

alax) o T (1.20)
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Fig. 1.2. Schematic illustrations of energy storage companent
used in power converter

whereRs is resistance of a resistgrandx is any independent variable contained in
eitherL’ or D. As shown later, the variableis any one of fluxeg cumulated electric
chargegsy, or Lagrangian multipliers that are independent in the system.

Equations (1.24)—(1.26) are the basic structurghefcircuit theory on Lagrangian
dynamics. In order to perform an analysis of a sgatem, we should determibe The
remaining question is in determining the componkagrangian{i and the wire
Lagrangiartw. In the next subsection, we discuss their pralctigpressions.

C. Component and Winding Lagrangian

A converter circuit with integrated magnetic coments is generally composed of six
kinds of components: namely, capacitors, voltagercas, magnetic cores (including
coreless magnetic path), conductive wires (inclgdivindings), switches (including
diode), and loads. As mentioned above, the switehesthe loads are implemented in
the constraint terms and the dissipation fundilorespectively. Thus, the remaining four
components have their own Lagrangian expressioromgrihem, the Lagrangian of a
capacitorfc and that of voltage sourée have already been identified for LC circuits in
preceding works [43]. They are defined as follows:

(. =-q?/2C. (1.27)
/. =EQq. (1.28)

where(' is the electric charge stored in the capacitis the capacitancé is the
voltage, and is the cumulated electric charge that flows ouhefcomponent. Note that
g is not identical to the cumulated chay&he valugy' is actually defined by (1.29), if
we introduce the initial charge of the capactor

q=Q-d. (1.29)

Equations (1.27) and (1.28) can also be derivenh f(b.19). As foréc, consider a
simple capacitor as shown in Fig. 1.2(a). We nedlee magnetic field and vector
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Fig. 1.3. Schematic illustration of a stream tubelectric current

potentialA induced by the current in the electrode or disgiaent current in the dielectric

body. Then, the Lagrangian density in the electrigdeduced to the first term of the
right-hand side of (1.8). In addition, that of thielectric body is reduced to the third term.
Therefore{c is obtained as follows:

={-alpo+ap)rayl+ SV,

Ve

, 1. 2__q° (1.30)
=—qAY+=CAY? = -,
AR+ CRY ="¢

The Lagrangian of voltage source is obtained bynmiggC is infinitely great under
condition thalQ/C = E;

__9°__9.Q
(o=———=- E 1.31
eS0T 0 C —q=Eq (1.31)

The rightmost equality in (1.31) is derived using tfact that the Lagrangian is
invariant under adding a constant.

Next, we step in determining the Lagrangian of gmedic core/m. Here we define the
magnetic core is a volumetric region where magriticexists. Hence, a magnetic core
includes air gaps and coreless magnetic paths,asildakage flux paths.

We derivefm again using (1.19). We divide the component rediomto magnetic
branches, which are segments of magnetic pathdedi\by magnetic nodes, as shown in
Fig. 1.2(b). Consequently{m is obtained as (1.32) by summing the volumetric
integrations of.q over each branch.

—Z j ;D’P (1.32)

18



wherej is the index of the magnetic branch&g; @, andP; are the volumetric region,
the flux and the permeance of a brapatespectively.

Finally, we derive the Lagrangian of the whole aactdre wiref/w. Here the conductive
wire includes not only the wire connecting the agircomponents, but also the windings
wound on magnetic paths. In the conductive wireegard»=0, E=0, andB =0, referring
to the above-mentioned approximations. Thus, tlggdragian densitlq is reduced there
to the second term of the right-hand side of (1T8)e Lagrangiarfw is also obtained
using (1.19). In order to straightforward calcwatiwe divide the component regivn
into stream tubes of electric current.

Electric current including displacement current stdntes stream tubes in a circuit
because the divergence of this current’s veptaquals zero. The fact is derived by
performing the divergence on (1.2):

divj’ :div(j +¥j =0, (1.33)

Because the electric and displacement currentriirea to the circuit, all the stream
tubes compose circular paths inside the reyias illustrated in Fig. 1.3.

Now, we regard the whole paths of the electricdisdlacement current as a set of tiny

stream tubesU'. If we denote the region of the electric currendW’ by 6U, the whole
conductive wire is a set olJ.

We denote the electric and displacement curresitiéna stream tub&U'« by dj'«.
Furthermore, we introduce a consté@rt as the indicator of the relation betwe¥r and
¢, Where g is the flux that passes through the windWg (number of turna\n).
Specifically, Gkn=0, if 60U’k does not constitutéh; Gkn=1, else if the current flow of
positivedj'k and the direction of positive satisfy the right hand grip rule; and otherwise
Gkni=—1. We again neglect the vector potenfiainduced by the displacement current,
similarly to the discussion of the capacitor Lagyian. We also negle@ inside the
component in which the displacement current takasep according to the assumption
(3).

Then, the volumetric integration bf overoUk yields:

JA [ﬂdv:JA Eﬂ’dv:d’anlenNn%_ (1.34)

The left equality is satisfied becaysg' in the conductive wire, whek=0 according
to the approximation (1), an&=0 in the displacement current region.

By summing (1.34) over all stream tub#tdk in the circuit, we finally obtaifw as
follows:

fe=Y [AGav :zon[zeknwn%]
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Fig. 1.4. A magnetic circuit of a basic transformer with lagk
flux

=ZNn¢A(ZGkndL] =2 N.@g,, (1.35)

wheregn is cumulative charge that passes the wingfihgThe sign ofy. is defined so
that the current flow of positiwg, and the direction of positive satisfy the right hand

grip rule. When deriving the rightmost equality, used thaj=j' in the winding.

D. Circuit Lagrangian

In the discussion made in the previous subsectiom,Lagrangian of the circuit
components and the conductive wire is all detertchiSmmarizing the result, i.e. (1.27),

(1.28), (1.32) and (1.35), we obtain the followiegpression for Lagrangiad of the
whole circuit:

L' = ZNWCI. Zzp Zkl( ~a.) +Zqum+Z/lnfn(q¢) (1.36)

wherei, |, k, m, nis the index of a winding, a magnetic branch, pac#or, a voltage
source and a node, respectively. Note thas total flux interlinking with the winding,
while ¢ is a total flux that passes the brapch

Each term of Lagrangidd corresponds to a circuit component or a node exftet

or magnetic circuit network. Hence, we can confduiof a circuit by directly translating
physical structures of the electric and magneticuds.

The obtained Lagrangian is different from the corial Lagrangian [31]—[36] in
three points:

(1) Flux gis introduced as an independent variable.
(2) Constraint terms for magnetic path are introduced

(3) Lagrangian expression that corresponds to magnoetigponents is divided into
two terms: the windings and the core.

20



% Magnetic core

Voltage:l; E
Source

Fig. 1.5. Schematic diagram of the trans-linked three phasstb
converter

These features are implemented as natural expaasitye conventional Lagrangian,
which is proposed for converters based on LC dird¢nifact, our Lagrangiatuy for an
inductor with a single magnetic path and a singledimg (inductance\) is reduced to
the same Lagrangian as the conventional theory;

. (PZ 1 2.2 1 <2
(,=Neg—-—==PN°qQ° " ==A\Qq". 1.37
1= N@-o 5 =S PNTGT =S AG (1.37)

Our Lagrangian is configurable directly from theusture of magnetic circuit because
the constituting elements, i.e. the windings areddbre, are modeled individually. This
feature allows systematic modeling of integratedymegic core.

Leakage flux can be also implemented in our modelfrthe permeance of the leakage
flux path is given. As an example, we derive Lagran of the basic transformer
illustrated in Fig. 1.4. Translating each windirmg& each magnetic path into Lagrangian
and summing the results, we obtain the followingleld::

2

o & @
2P, 2P, 2P, '

0,=N(g +a)a+Nlg +a)g, - (1.38)

1.3. Example: analysis of trans-linked three phase boost

converter

In this section, an example of the circuit analysgg the proposed Lagrangian is
presented. The sample circuit is trans-linked tipfeesse boost converter [13], which has
an integrated magnetic component with three wirglifidne purpose of this example is
to show the usefulness of Lagrangian dynamics alyaing the circuit behavior. Here,
we derive a state-space model of the trans-linkezktphase boost converter
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Figure 1.5 illustrates the schematic diagram of tla@s-linked three phase boost
converter. The magnetic core has four legs. Exaeetleg, each leg has its own winding
of the same number of turns. We assume the legthétivinding, along with the top and
bottom beams connecting the legs, is not gappedhaadsufficiently high permeance
compared to the leg without the winding. We dertloéepermeance of the leg without the
winding byP.

One terminal of each winding is connected to theefion of a diode and a switch.
Because the wire connection of this node is toghglethe switch, its electrical constraint
is not static but dependent on the state of theckwT his type of the node is commonly
utilized in a power converter. As for the junctiohD1 and S1, its constraint term in the
circuit Lagrangiarl’ is expressed as follows by introducing the indicat such that:
= 1, if the switch S1 is in on-state, and eise 0.

A Al{(l_ S.I.)ql - QAl} +A Bl(s.l.ql - qu) ) (1.39)

wherela1 andis1 are the Lagrangian multipliers.

Expression (1.39) corresponds to the constraindition of ga1=0 andgi=gg:, if s1=1,
andqi=ga1 andge1=0, if 5=0. Therefore, (1.39) successfully represents tinetfon of
the switch.

As a result, the circuit Lagrangidhand the dissipation functidn for the trans-linked
three phase boost converter can be configuredtljifeom Fig. 1.5:

L'=NY a2 (QZSS) +EOE+ZAA.{(1 s)a - qA.}+Z>\B.{$q ~ O}

3 3
+)‘o(zq _qu +A4(qui - Chj +)‘5(q4 +0s _qe)

i=1 i=1

+A{fqm —0e -q5+q6j+ka(icp. -maj, (1.40)

i=1 i=1

D= % R . (1.41)

Equation (1.40) is reducible because it containerse ignorable variables [44]. An
ignorable variable is a variabkewhose time derivative constitute neither Lagrandia
nor the dissipation functioD. We can eliminate the variable frdthby substituting the
formuladL'/dx=0 into the expression &f. Hence, we can substitule=A4=As andAsi=
0 into (1.40) as a result of the formuwda'/0x=0 with respect tax=g4, Qai, Or Osi.
Furthermore, we will eliminatgg, gai, andgsi using the ignorable variabl@s, Aai, and
Asi. Finally, we obtain the reduced expressioh'dds follows:

L'=NY 4 —%—%%Zq +A{ch —%]%(Z(l—s)q +05—q6j- (1.42)

i=1
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When we develop (1.40), we omit the 10th right-hterth because the term reduces
to the same constraint as the sixth right-hand t#r(t.42).

Applying (1.42) to Euler-Lagrange equation (1.2@)lgs the circuit behavior:

N@ = E+(1-s)\,, (1.43)

i(l-s)qi +05-0 =0, (1.44)

“’a:‘P"a:i‘f’u (1.45)
__(Q_qs) — D

As === =R, (1.46)

NG = A, (1.47)

Eliminating Aa, As, andgs from the above equations, and introducing the wutpltage
V = (Q-0gs)/C, we obtain the following system of equations.

. Vv
=y 4s)y (1.48)

System (1.48) can be expressed by the state-spadel,nif we introduce the state
variableu= (Vo @ @)'

-1JCR 3B/PCN 3B/PCN 3B/PCN 0

du | -B,/N 0 0 0 E/N

- = u-+

dt |-B,/N 0 0 0 E/N| (1.49)
-B,/N 0 0 0 E/N

whereBi = 1-s andb = (B1+B2+DB3)/3. In the state-space averaging method, we
take time average dai andb. Thus,Bi andB are now real numbers that satisty i
<1 and & B <1. The value 1Bi is interpreted as duty of the switch &1d the value
1-B is interpreted as the averaged duty of the swit&fe S2 and S3.

As we have seen above, the whole system of theectmvis expressed by the
movement of the output voltage, namgty and the fluxes. Our Lagrangidhregards
the cumulated electric chargeand the fluxgas the independent variables. Because the
electric current is dependent variables, obseralh@f the current is not necessarily
sufficient to determine all of the independent flindeed, the current of this example is
expressed only by the sum of the flux, as show{.i60).
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3
G =0,=C="D S . (1.50)

Therefore, observation of the voltage and the atrieunable to determine the state
of the system. The perfect observation of the systquires the additional observation
of any two fluxes ofa, @, andg.

To summarize, as this example shows, Lagrangifamf a converter is directly
configurable from the physical structures of theceic and magnetic circuits; and the
circuit behavior is systematically obtained by gppd L' and D to Euler-Lagrange
equation.

1.4. Conclusions

The integrated magnetic component is expected tprawe power conversion
efficiency and downsize the total volume of magnetimponents. Although a number
of preceding works reported its usefulness, itstgral applications are still limited. One
probable reason may lie in difficulty of analytinderstanding of complicated magnetic
circuit.

In order to address the problem, we presented a&lrmkcuit theory that directly
handles integration of electric and magnetic ctecuAs shown in the analysis example,
the Lagrangian model is configurable directly frime physical structure of the electric
and magnetic circuit. Furthermore, the state-spacdel is systematically obtained by
predetermined procedure. This result demonstratasthis theory can be a promising
tool for applying integrated magnetic componentgraxtical uses.
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Chapter 2

LAGRANGIAN METHOD FOR DERIVING EQUIALENT
CIRCUITS OF INTEGRATED MAGNETIC COMPONENTS

2.1. Introduction

This chapter proposes Lagrangian method for degienjuivalent circuit of integrated
magnetic components. Integrated magnetic comporaetspromising techniques to
miniaturize magnetic components such as transfarianed inductors. In a well-designed
component, the core can be miniaturized as repamtgl, [2], [3] and the total amount
of copper can be reduced as reported in [4]. Ovartgese benefits, a number of magnetic
structures for integrated magnetic components baea studied and reported [1]-[25].

However, the integrated magnetic components oféae tomplex magnetic circuits,
particularly if leakage flux paths are consider&d.a result, their electric functions can
be difficult to comprehend, compared to a basiaatdr or transformer with a single
magnetic path. In a direct analysis of the powearveoters with integrated magnetic
componentd1], [2], [4], [5], [7], [14], [17], [19], [20] both the electric and magnetic
circuits are handled simultaneously. Accordinglycls analysis tends to be complex
compared to that only of electric circuits.

This approach calculates all the flux in the magneitcuit, and thus it is useful for
precise design of the magnetic core dimension. €@y, the complex analysis
procedure may hinder intuitive comprehension of tbnverall circuit behavior.
Consequently, the industrial applications of thtegnated magnetic components may be
promoted by developing methods that can easilyyaeatircuit behaviors.

One promising strategy is to express the eleatmctions of an integrated magnetic
component as a functionally equivalent electriccuir composed of inductors and
transformers [3], [6], [11], [13], [20], [21], [23Hereafter, we refer to this circuit as the
equivalent circuit.

To the best of the author’s knowledge, three mettawd available to derive equivalent
circuits. These methods generally derive equivat@rduits that differ from others.
Selecting a simpler equivalent circuit may therefamontribute to effortless circuit
analysis

The inductance matrix method [13] is one such nukthbis first identifies the leakage
inductance of all windings, and the mutual induct&f6] of all winding pairs. Each
leakage inductance is then directly transformed @t inductor, and each of the mutual
inductances into a transformer. Hence, the intedrahagnetic component with n
windings is generally expressed by an equivalemruii with n inductors anah(n-1)/2
transformers.

'© 2005 IEEE. Reprinted, with permission, from K. &tami, J. Imaoka, M. Yamamoto, S. Arimura,
and T. Hirano, Evaluation of the Lagrangian metfimdderiving equivalent circuits of integrated
magnetic components: a case study using the inezbveinding coupled inductor, IEEE Transactions
on Industry Applications, Jan. 20
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The duality method has also been used [27] [28]adwantage of this method is its
straightforward derivation process. The methodt firansforms the network of the
magnetic circuit model [29] of an integrated magne&omponent. Specifically, the
series-connections of the original network aredfammed into parallel connections, and
vice versa. Each reluctance is then replaced bydurctor, and all except one of the
magnetomotive forces are replaced by an ideal fwmemer. The remaining
magnetomotive force is eliminated. Consequentlghafintegrated magnetic components
containn windings andm reluctance, the resultant equivalent circuit deglisrom the
duality method will have—1 transformers anich inductors.

Besides the above-mentioned methods, we can utifigeangian dynamics to derive
equivalent circuits as discussed in this chapterebffter, we refer to this method as the
Lagrangian method. This method transforms an iategrmagnetic component into an
equivalent circuit composed of as many basic tansérs and inductors as the flux paths
of the original component that can be magnetizeeépendently. This method can thus
be expected to yield a simple equivalent circtithe integrated magnetic component has
a small number of independent flux paths.

The purposes of this chapter are 1) to derive anddlate the method, and 2) to verify
the method using a case study. As for the formepgae, Section 2.2 first presents an
example of the Lagrangian method; then, it formadathe method. The Lagrangian
method provides two techniques to derive equivaténtits. Section 2.2 discusses the
two techniques in Subsection 2.1.A and Subsecti®iB2respectively.

As for the latter purpose, Sections 2.3-2.5 prasardase study using the integrated
winding coupled inductor [4], [6], [21]. This integed winding coupled inductor has
three windings. Its magnetic circuit model, as shamwthis chapter, has six reluctance,
three magnetomotive forces, and five independartdaths, including leakage flux paths.
Consequently, among the three methods, the Lagramgethod is expected to yield the
equivalent circuit with fewest magnetic components.

Section 2.3 compares the equivalent circuits utieghree methods to show that the
Lagrangian method yields an equivalent circuitetdifig from those by the conventional
methods, i.e. the inductance matrix method anddtraity method. This section also
shows that the equivalent circuit from the Lagrangnethod has fewest components, as
expected. Section 2.4 then shows theoretically that equivalent circuit by the
Lagrangian method is consistent with the magnetiuit model, as are those by the
conventional methods. Section 2.5 experimentallyfioms that the equivalent circuits
discussed in Section 2.4 are also consistent wipler@nental behavior of the integrated
winding coupled inductor. Finally, Section 2.6 mets the conclusions.

2.2. Lagrangian Method

This section presents the Lagrangian method toshaten the integrated magnetic
component into an equivalent circuit.

Generally, two systems show the same behaviangeif Lagrangian lead to the same
result when applied to Euler-Lagrange equation. d&eote that these Lagrangian are
equivalent each other. Therefore, if an equivalegrangian for an integrated magnetic
component belongs to an electric circuit of basandformers and inductors, the circuit
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shows the same electric functions as the comporenta result, the circuit is the
equivalent circuit. To summarize, the Lagrangianthoé is based on finding an
equivalent Lagrangian that belongs to an electrauii.

The Lagrangian method gives two different techegjueach of which leads to a
different equivalent circuit. Each of them are dssed separately in Subsections 2.1 and
2.2, respectively. These subsections first presantexample using the integrated
magnetic component employed in the trans-linkedvedser. The diagram of this
component is shown in Fig. 1.5 in Chapter 1. Thha, subsections give generalized
formulation of the method applicable to an arbitrisitegrated magnetics. The variables
used in the equations in this section are the satleat used in Section 1.3

A. Techniquel

We presents derivation of the equivalent circuithef integrated magnetic component
shown in Fig. 1.5 according to the technique 1.0&fgin our discussion from determining
the Lagrangian of the integrated magnetic comporiexitacting the magnetism related
terms in the equation (1.42), we obtain the Lagamdg. of the integrated magnetic
component.

3 (02 3
0 =N gq -2—},+Aa(2¢z-%j. (2.1)
i=1 i=1

Because the Lagrangian multiplide is inherent characteristic of the integrated
magnetic circuit, we have to eliminate it to traelthe Lagrangian into the circuit of
magnetic components composed of single magnetisp@ne technique is to utilize the
fact that the Lagrangian multiplier is an ignorabéeiable [30]. The ignorable variable
can be eliminated by substitutimd.'/04.=0 into (2.1). Eliminatingy: by substitution
yields the following equivalent Lagrangian:

2

0= qu¢a + N(Qz - Q1)¢2 + N(Qa - ql)% - (zaap . (22)

The Lagrangian expressed by (2.2) correspondsetaiticuit illustrated in Fig. 2.1.
Consequently, it is the equivalent circuit.

Generally, the Lagrangian of a magnetic daréas a quadratic form of the flgxand
the magnetic constraint terms have linear formspoTherefore, a Lagrangian of a
magnetic component (regardless to integrated aretes) /L can be expressed in the
following form (2.3) by eliminating all the magnetconstraint terms according to the
method to eliminate ignorable variables. We denthte number of independent
cumulative electric charge and fluxesrbgndk, respectively.

. =q'No-9"Ag, (2.3)

whereA is ak x k symmetrical matrixN is an x k matrix, g is an-dimensional vector
of the independent curreny, is ak-dimensional vector of the independent fluxes.
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Fig. 2.1. Equivalent circuit derived by Technique 1. The o
integrated magnetic component is that employedh@ ttans-linked
three phase boost converter.

A symmetrical matrix can be transformed into a dreg) matrix using an appropriate
orthogonal matrix. Therefore, we transform the sytrival matrixA into a diagonal
matrix B by an orthogonal matri®. If we introduce the vectog’' = Pe , (2.3) is

transformed into another form:
¢ =q"NP ¢’ —¢'"Bo’, (2.4)

The Lagrangian expressed by (2.4) corresponds toraait that consists ok
independent single magnetic paths anddependent current paths. The integerk —
rank®) indicates the number of ideal transformers, beepfluxes vanish in the second
right-hand term (2.4).

The matrixNP! indicates the number of turns of the windingshiméquivalent circuit.
The @,b)-th entry of the matrix denotes the number of suohthe winding ira-th current
path wound on thbe-th flux path.

B. Technique?2

In Technique 2, the Lagrangian multiplids in (2.1) is eliminated using a cyclic
coordinate. Consider the modified Lagrangéandefined as (2.5). This Lagrangian is
obtained by substituting the product of the numbketurns and current of a virtual
winding for the multiplieta.

3 ¢2 3
0 =N ¢, —?;+Na%[2¢—%j, (2.5)
i= i=1

whereNa is the number of turns of the virtual winding agpds its cumulative electric
charge. We take the varialiie independent of any other variables in Lagrangiathe
dissipation function of a circuit containif.. Then,ga is a cyclic coordinate because
only its time derivative is contained lin.
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Fig. 2.2. Equivalent circuit derived by Technique 2. The o
integrated magnetic component is that employechénttans-linked
three phase boost converter.

A Lagrangian with a cyclic coordinate is known treduced by the following method

[30]. If we substituteé’. for L' andga for x in Euler-Lagrange equation (1.26) and perform
time integration, we obtain:

95— ¢ (2.6)

whereC is a integration constant.
Then, we introduce another Lagrangtdo defined as

=1 -Cq,. (2.7)
We substitute (2.6) into (2.7). The resultant Lagian{'’L is known to be equivalent

to the original LagrangiafiL. Eliminating @ by this substitution yields:

2

61=MM%-%-%+CFN%@+N%%-f;- (2.8)

If we assum€&€=0, the right hand side of (2.8) equals to thahefequation (2.2). Thus,
('L is an equivalent Lagrangian f under condition o€ = 0; and the same holds true
for £'L. Fig. 2.2 illustrates the circuit that corresponaishe Lagrangiad'.. The circuit
functions as an equivalent circuit for the integdatnagnetic component, when the initial
values are set so th@t0. Specifically, the initial valuegio, @o, go, @o for the flux g,

@, @, @ are required to satisfy the following relation.

3

DB~ P =0. (2.9)

i=1

In this derivation method, a Lagrangian multiplfer the magnetic constraint is
replaced by the magnetomotive force by an addilipim@troduced virtual current path.
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Fig. 2.3. Interleaved converter with the integrated winding
coupled inductor.

0O

>
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Fig. 2.4. Magnetic circuit model of the integrated winding
coupled inductor.

When applying the method to an integrated mageetigponent, we introduce additional
independent current paths, as much as the cortstrainthe equivalent circuit. These
additional current paths yield the additional inelegent variableg in the system.
Nevertheless, the derived equivalent system presettve original degree of freedom
because additional constraint conditions, as mamgdaled variables, are introduced on
the initial values.

Fig. 2.2 is the same equivalent circuit presentdd 3].

2. 3. Comparison of Equivalent Circuits by Different M ethods
The interleaved converter with the integrated wigdcoupled inductor [4] [21] is

illustrated in Fig. 2.3. The magnetic core haseahegs, each of which has a winding.
Input current flows into winding C, and the currenthen split into windings 1 and 2.

34



e L] 9QIS1 DI
Input side ’
Q0> el L/
= R 2k
N (Ng+Ny/2) $2,D2
R, R.+R,/2 < Nl >
N, 9>
R

L3

L1-L4: Inductors, T1: Transformers

(2)

(b)

Fig. 2.5. Equivalent circuit by the Lagrangian method. (aebx
translation from Lagrangian. (b) Simplified circuwith fewer
inductors. Values in brackets are the number afstuvalues without
brackets are the self-inductance for the inductoarsthe mutual
inductance for the transformers.

In this chapter, we ignore non-linearity due to metgc saturation or core loss. Similar
to the conventional methods, the Lagrangian me#tsal does not allow non-linearity so
far because it assumes linear media of the eleayostic field.

The magnetic circuit model [29] of the integratecdgmetic component can be
expressed as in Fig. 2.4. We denote the electrirecuof windings 1 and 2 asandiz,
respectively. The outer legs and the center le@ andings with the number of turns
No andNc, and the reluctancé® andRc, each of which are made by core and gaps. We
assume that both outer legs have the same relecRanand the number of turrso,
according to the design concept of the magnetiectire. Leakage flux paths of the
windings are implemented as the reluctaRceRs.

Lagrangian Method

Based on Fig. 2, we derive an equivalent circutibading to the Lagrangian method
presented in Subsection 2.2.A. The method is baseldagrangian expressions for an
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integrated magnetic component, which are direatiyfigurable from their electric and
magnetic network. We first translated Fig. 2.4 ibgrangian. We then applied point
transformation [31] to the result. Based on thig wbtained another Lagrangian
belonging to an equivalent circuit. Finally, theua@lent circuit was obtained by
translating the resultant Lagrangian into a physizauit.

As discussed in Chapter 1, the current flowing dlgfoa winding is regarded as the
time derivative of the cumulative charge the Lagrangian expression, which is the time
integration of the currentfrom the initial timeto to the timet:

g, = [idt . (2.10)
to

We denote the cumulative charge ifpandi2 asg: andgp, respectively. Translation of
Fig. 2.4 yields the Lagrangidn

. . . . 1
L= _NOQ1(¢1 + ¢L1)+ Nc(ch + Q2)(¢2 + ﬂz)_ Noqz(@, + ¢L3)_ERL1¢L12

_1
2

1
2

1

RL3¢L32 5

1 1
2Ro(ﬂf—ERC%Z—ERO%“/\(QWZW%), (2.11)

R|_2¢L22 -

whereA is a Lagrangian multiplier, and the dot over dalale is its time derivative.

The term with\ is eliminated by substitutings=—¢1— ¢ into (2.11). Additionally, we
replaceg@ by introducingga= @+ ¢2/2. The purpose of introducing is to express the
magnetic energy terms, i.e. the 4th—9th right-hi@nohs of (2.11), in the diagonal form
of the fluxes without using the Lagrangian mulgpliConsequently, we obtain:

L= (No% - Noq1)§0A - RawAz +(Nc +%J(ql + %)@ _(% +%)@2

1

- E RL2¢L22 ) (2-12)

. 1 . 1 . .
- Noq1¢L1 - E RL1¢L12 - Noq2¢L3 - E RL3¢L32 + Nc (ql +0, )¢L2

Equation (2.12) corresponds to a circuit of transfrs and inductors. Translating
(2.12) yields the equivalent circuit shown in R2gh(a). Along with the circuit diagram,
we also present the self and mutual inductanckeotonstituting elements.

The Lagrangian method preserves the number of erdnt fluxes. Note thag is
dependent om andg because the constraipt @+¢@=0 is represented by the last right-
hand term of (2.11). Hence, (2.11) contains fivdependent fluxes, name@:, @2, @s,

@, @. Consequently, the resultant equivalent circuitgnposed of five magnetic
components, each of which consists of a singlegaddent flux path.

Fortunately, in this case the equivalent circuib ¢se simplified further, because
inductors L1 and L2 are connected in series. Byamdpg them by an inductor whose
inductance is their sum, we obtain Fig. 2.5(b),clhs composed of only four magnetic
components. The result is similar to the equivat@muit proposed in [4]. Nonetheless,
our result is derived automatically under the ptexeined procedure.
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L _
Winding 1 —"MM—=r 2,
L. M, M,
5 [ ]
Winding C —MM—_2/ W~
L_' AMJZ MZC

Winding 2 —MMN—_2AY 2~

Fig. 2.6. Replacing each winding of the integrated winding
coupled inductor by an inductor representing ttakage inductance
and transformers representing the mutual inductance

B. Inductance Matrix Method

In the inductance matrix method, the leakage antiahinductance are calculated for
each winding. The leakage inductance is transformta an inductor with the same
inductance, and the mutual inductance is transfdrime a transformer with the same
mutual inductance. Finally, the equivalent cirggibbtained by replacing each winding
in the original component by a series-connectiothefinductor and the transformers that
represent the leakage and mutual inductance ofitigings.

Now, we derive the equivalent circuit accordingtie inductance matrix method. To
calculate the leakage and mutual inductance, vgé $olve the magnetic circuit model
presented in Fig. 2.4. In the magnetic circuit, fila& follows Kirchhoff's current law,
and the magnetomotive force follows Kirchhoff's tage law. In calculation of the
inductance, the method does not utilize the faat tiwe current of winding C is equal to
the sum of windings 1 and 2. Therefore, we denmecurrent of the winding C as.
Hence, we have:

R.@, = —Nol;,
R.#,= Nc'c'
Rs@s = —Noly,

. 2.13
Rc@ - Roqq - Nc'c + No'1’ ( )

Re# — R = Ncic + Ngiy,
a+e+y =0

Solving the above equations with respect to theelfiwe obtain:

_ N, _ N, _ N,
=T Q=S e B =5

¢ll RLll ¢l2 RLZC ¢l3 RL32

g Ne | _(RARNo, . RN

R,+2R. © %(%+2&) Ro(R, +2R.)
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Input side
L1

N,N, Ry,
R,+2R.
L1-L3: Inductors, T1-T3: Transformers

Fig. 2.7. Equivalent circuit by the inductance matrix method
Values in brackets are the number of turns. Vaidsout brackets are
the self-inductance for the inductors or the mutodlictance for the
transformers.

0= eie ey ()
R+2R. © R,+2R. ~ *"
__ N RNy (Ry*+RIN, .
AT TRAR T R(RF2R)" R(Ry+2R)” (@14

We denote the total flux that interlinks with winds 1, C, and 2 agr1, @rc, and@rz,
respectively. Using the above equatign, ¢rc, and@r2 can be expressed as:

ﬂ-lz— Nc ic_{ R0+Rc +L}Noil+¢i2’
Ro + 2R R.(R,+2R.) R, Ro(R, +2R.)
_ 2 1 : No [ ..
o~ S R )
__ Ne . RN, . | R*R 1y
“om TR 2R T R(Ry 2R {RO(RO+2RC)+RL3}N°'2' @15)

Next, we derive the inductance matrix. Electricdiions of a magnetic component can
be expressed as an inductance matrix. As for a et@gromponent with three windings,
the general definition of the matrix is expressed a
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dg, di,

Vi od dt Ny My My, E
V, N¢ ?t'c =My A My d_tc ) (2.16)
Vs N Y4, M, My A, | di,

°dt dt

whereVi, Ve, andV: are the induced voltage of windings 1, C, ande8pectively1,
Ac, and/\z are the self-inductance; amdic, Moc, andMi2 are the mutual-inductance.
Substituting (6) into (7), the elements of the mxedre determined as follows:

Ro*+R, 1

e
R.(R, +2R.) R,

/\c=( 2 +1ch2,

R, +2R. R,

,\2_{ Ro +Re +1}N02’
Ro(Ro +2R.) R,

NCNO

Ro+2R.

RN,
Ro(R, +2R.)’

My =My =

12

(2.17)

We seek a circuit that represents the same indeetamatrix, by replacing each
winding by a series connection of an inductor amltransformers, as shown in Fig. 2.6.
We assume that each transformer represents thestiagoupling of a winding pair, and
its mutual inductance is equal to the matrix eletmbat corresponds to the coupling.
Furthermore, it is assumed that the transformeve liae same number of turns as the
original winding.

Note that the self-inductance of the original wirglequals the sum of self-inductance
of the inductor and transformers. In other wordi& $elf-inductance of the inductor
corresponds to the leakage inductance [32] of tiggnal winding. If the self-inductance
of the inductors that replace windings 1, C, an@r@ denoted a&i, Lc, and Lo,
respectively, we obtain:

N N, _ N,°
L=A;-M =& -M;, & =—02,
N¢ No Ry,
N N. N/
Le =Ac —Myc NC_Mzc NC =—c,
o o R
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L5
N/
L1 (L3 R,
NC2 % N %
RL2 R() T1 || V' [NC :N()]
Input side g :
L L2§ . . \—o S1, D1
T2
/ L4 ||§4/[NC':N0]
2
N/ e g Lo S2, D2
Re R, N 2
(&
RL3

L1-L6: Inductors, T1, T2: Ideal transformers

Fig. 2.8. Equivalent circuit by the duality method. Values i
brackets are the ratios of the number of turnsu®alwithout brackets
are the self-inductance for the inductors.

e
R

N
LzzAz_Mzc_O_MlzN_O: (2.18)
o

Finally, we obtained the circuit illustrated in F&)7. Obviously, this is the equivalent
circuit of the integrated winding coupled inductdie equivalent circuit has three
inductors, because the method yields as many intkias the windings. It also has three
transformers, which are as many as the windingpair

C. Duality Method

The detailed process of this method is presentg¥in[28]. We followed this process
to derive the equivalent circuit for Fig. 2.4.

The duality method does not require calculatiothefinductance matrix or translation
of the magnetic circuit into Lagrangian expressiastead, it requires the following two
steps.

The first step is to transform the magnetic ciroitwork. In this transformation, each
series-connection of the network is replaced bgralfel-connection, and vice versa.

The second step is to replace each element of éigaetic circuit model by an electric
component. In this step, each reluctance is regladgean inductor, and all except one
magnetomotive forces are replaced by an ideal fmemer. The remaining
magnetomotive force is eliminated to extract a paiterminals. The primary windings
of the ideal transformers and the pair of termirasrespond to the windings of the
original integrated magnetic component.

Consequently, the equivalent circuit for Fig. Z4btained as Fig. 2.8. The equivalent
circuit contains six inductors, which is as manytresreluctance in Fig. 2.4. It contains
two transformers, which equals the magnetomotiveeféess one.
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D. Comparison between the Equivalent Circuits

As seen above, the three methods yield their owivatgnt circuits, all of which differ.
Compared to Fig. 2.7 and Fig. 2.8, Fig. 2.5(b) aor#t fewer magnetic components. In
this case, the Lagrangian method thus yields singgjeivalent circuit. Hence, in some
cases the Lagrangian method can be a helpful mdéthatiscussing the overall electric
functions of an integrated magnetic component. é&@mple, the Lagrangian method
may possibly be useful in some cases when we ireveotzel magnetic structure.

The main drawback of the Lagrangian method is thatvoltage induced in the
windings of the integrated magnetic component da¢sppear in the equivalent circuit,
because generally a winding is not directly repllalog transformers and inductors. On
the other hand, the equivalent circuits producedhgyinductance matrix and duality
methods directly present the induced voltage of amydings. The reason is that a
winding is replaced by a series of connected irmsand transformers in the inductance
matrix method, and by the primary winding of analdeansformer or a pair of terminals
in the duality method. Therefore, if it is neceggardiscuss the induced voltage to design
the insulation of the windings, the inductance mair duality methods seem preferable.

2. 4. Analytical Equivalence of the Equivalent Circuitswith the
Magnetic Circuit Model

This section confirms that the equivalent circuiini the Lagrangian method has the
same electric functions as the original magneticudi, similar to the equivalent circuits
by the conventional inductance matrix and dualigtimods. For this purpose, we show
that Fig. 2.5(b) is functionally equivalent to thieginal magnetic circuit, as well as Fig.
2.7. In order to discuss the functional equivalewee employed the magnetic energy
expressed as a function of current.

The electrical function of an integrated magnetimponent can be fully determined
if the magnetic energk(is,iz,...) is given as a function of the electric currdiere, we
present a brief explanation of the reason.

We consider an arbitrary magnetic component witltiple current paths, and denote
the voltage induced through the current ga#s V. Because input energy equals the
increase in magnetic energy, we have:

. OE di;
Vil =) ———+, 2.19
Zj: Vo dt (2:49)

whereij is the current of the current pgth

Because the magnetic energy is a quadratic fortineo€urrentgE/dij is a linear form
of the current. By partially differentiating (2.1@)th respect to the current, we obtain:
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OE 0 lrd
EE
|
V. — — —= 2.20
2| olaigi,  ai,” dt (2.20)

Equation (2.20) indicates that the energy expresifi,iz,...) is sufficient to
determine the electrical input-output relationhs thagnetic component. Hence, we only
need to show that Fig. 2.5(b) and Fig. 2.7 belorthp¢ same energy expression as that of
the magnetic circuit model, in order to confirm fireperness of the equivalent circuits.

First, we derive the energy expression for Fig. Zde magnetic energygm of the
whole magnetic circuit model is:

1,1 a1, &l
Ev —ERoQ +§Rc€”z +§Ro% +Z§Ru¢li : (2.21)
i=1

The energy expression of Fig. 2.4 is obtained hyessing the above equation as a
function ofi1 andiz. With a view to this purpose, the fluxes—@s are expressed as
functions of i1 andiz in advance. Substitutirig=ia+i2 into (2.14) yields:

q=- 1%( i )_1&@ -i,)
2 R, +2R. 2R,
NO+2NC( +|)
Ro+2R ™
@ = —Em(iﬁizﬁiﬁ(il—iz). (2.22)
2 R, +2R. 2R,

Substituting (2.14) and (2.22) into (2.21) leads to

Ey __R)(N 2% j( +iz)2+1%(i1_i2)2

Ro+2R 4
N, +2N, e ING 2 INS e NG
_RC{F%JFZI%)( +i,) +§EI1 2RL2( +i,) + 3 2. (2.23)

This is then compared with the energy expressiofigf 2.5(b) and Fig. 2.7. The
energy expressioLag for Fig. 2.5(b) is:
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On the other hand, the energy expres&iasix for Fig. 2.7 is:

E

Matrix

2
= SR i f o (N Nl + NGi
2 R, 2R, +2R,

2 2
+i L (Nci1+Nci2+Noi2)z+iNo i12"'1No i22
2R, +2R. 2 R, 2R,

1 N2 ..
+t ReNo (ll_lz)z-
2 Ry(Ro +2R.)
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Table. 2.1. Specifications of the Prototype Converter.

PARAMETER Value

Input voltage V1 20-180 V
Output voltage 200V

(The voltage of C2)
Duty Ratio 0.1-0.9
Switching Frequency 50kHz
Semiconductor Devices MG50J1ZS40

(S1,82,D1,D2) (IGBT+Diode)
Decoupling Capacitors 3300uF

(C1,C2)
Winding Turn Number

(N, No)
Reluctance R
Reluctance R,
Reluctance R,
Reluctance R,
Reluctance R, ,

(Electrolytic Capacitor)
13 Turns

14.4 A/uWb
0.192 A/uWb
8.83 A/uUWb
169 A/uWb
9.06 A/uWb

Fig. 2.9. Photograph of the integrated winding coupled induc

employed for the prototype converter.
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3.93A
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©

Fig. 2.10. Experimental and simulated waveforms of the curren
of the winding 1 i) and the voltage across Sis{). (a) Experiment.
(b) Simulation based on the Lagrangian methodS(ejulation based
on the inductance matrix method.

Equations (2.23)—(2.25) can be developed to olEamELag=Ewmarrix. Consequently,
both Fig. 2.5(b) and Fig. 2.7 are shown to haveséime electric functions as the magnetic
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= Simulation (Inductance Matrix Method)
e Experimental Result . Simylation (Lagrangian Method)
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/a8

0 0.2 0.4 0.6 0.8 1
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Fig. 2.11. Experimental and simulated ripple current in therent
of the winding 1 i)

circuit model.

2.5. Consistency with Experimental Behavior

This section confirms consistency of the equivaténtuits with experimental behavior
of the integrated magnetic component. Current wawves of the converter shown in Fig.
2.3 were simulated utilizing the equivalent cirghown in Fig. 2.5(b) and Fig. 2.7. The
results were then compared with the experimentalefoams of a prototype converter
with the integrated magnetic component. We empl&€A4AT K.460PR1 (Keisoku Giken
Co., Ltd.) as the simulator.

The specifications of the prototype are given iml€a2.1, and a photograph of the
magnetic component in Fig. 2.9. To simplify the eform, the converter was operated
under the continuous conduction mode. HeRegs designed to be far smaller than the
design concept presented in [4]. We equipped nagahe outer legs. The reluctance of
the magnetic circuit is estimated from resultsnolfuictance measurement of the magnetic
component. Details of the estimation are preseintdite appendix.

First, we compared the experimental and simulatadeform of the current, when
the duty ratio is set at 0.3. The result is showrFig. 2.10. Figure 2.10(a) is the
experimental waveform, and Fig. 2.10(b) and Fi04c) are the simulated waveforms
of the equivalent circuits by the Lagrangian method the inductance matrix method,
respectively. The two simulated waveforms are idahtindicating equivalency between
the two equivalent circuits, as expected from thevipus section. In addition, the
simulation predicted the experimental waveform weicept for surge current during the
switching of S1 and S2.

Next, we compared the simulated current rippla ofith the experimental result over
several duty ratios. The result is shown in Fifj12As expected from the previous section,
the simulation of the two equivalent circuits résdlin the same current ripple. In
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addition, the simulation successfully predictedatefency of the ripple current on duty
ratio. Hence, the result also supported consistericthe equivalent circuit with the
experiment. Certainly, the experiment showed thatipple current was slightly smaller
than predicted when the duty ratio was set aflthd.reason for this is not clear. However,
the surge current during switching of S1 and S2 hewe caused measurement deviation
of the ripple current.

Consequently, we concluded that the experimentsalpported the properness of the
equivalent circuits.

2.6. Conclusions

This chapter proposed a Lagrangian method to dehgeequivalent circuit of an
integrated magnetic component. This method is e@rpdao derive a simpler circuit than
the conventional inductance matrix and duality rod#) when applied to an integrated
magnetic component with few flux paths that cannfegnetized independently. An
example using the integrated winding coupled inolueferified that the Lagrangian
method actually derives simplest equivalent ciradithe integrated winding coupled
inductor compared to the conventional methods.

In addition, this chapter investigated equivalemtuwts of the integrated winding
coupled inductor in order to verify the propernedsthe equivalent circuit by the
Lagrangian method. The equivalent circuits wereivedr using the Lagrangian,
inductance matrix, and duality methods, respegtivEhen, this chapter investigated the
consistency of the equivalent circuit by the Lagian method with the magnetic circuit
model, and the experimental behavior of the intiegravinding coupled inductor. The
results showed the equivalent circuit was functigrequivalent to the magnetic circuit
model, and predicted the experimental behavioredkas the equivalent circuit produced
by the inductance matrix method.

Consequently, these results support that the Lggranmethod provides proper
equivalent circuits, and in some cases is usefuléoiving simple equivalent circuits.

2. 7. Appendix

The reluctance of the prototype of the integrateddimg coupled inductor was
estimated based on measurement of the self-indeetainall windings, and the mutual
inductance of all winding pairs. The self-inductang the inductance of a winding when
all the other windings are opened. The result efrtfeasurements is presented in Table
2.2.

We can analytically express the inductance as i€ of the reluctance. By equating
the expression to the measured inductance, thetagice can be determined.

The expression of the self and mutual inductaneealeady obtained in (2.17) by the
inductance matrix method. However, this does ndicate that the inductance matrix
method is more useful than the Lagrangian metheckilse we can also derive the same
result by the latter. In order to prove this, weshemploy the Lagrangian method to derive
the expression.
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We consider that the windings in Fig. 2.4 are disaxted each from the other. Then,
LagrangiarL' of Fig. 2.4 can be described introducgagwhich is the cumulative charge
through the winding C:

' . . . 1
L' = _NOql(@. + ¢L1)+ Ncqc (¢2 + ¢L2)_ Noqz(% + ¢L3)_ ERL1¢L12

1 1 1 1 1
_E R|_2(0|_22 _E RLaﬂaz _E Roﬂz _E Rc¢22 _E RO%Z + /]((01 Tt %) (2-26)

We simplify (2.26) by eliminating and introducingpa=@+¢@/2. Then, we have:
L :_Noq{% _%+¢f_1j+ Ncqc(@ +¢[2) oqz( ﬁ+¢£3)

% Ruﬂlz _% RL2¢£22 _% RL3¢£3 RO¢A ( RC R)j (2.27)

First, we determine the mutual inductarMec between the windings 1 and C. By
substitutingg2=0, we can obtain the equivalent circuit of the mestge component, when
the winding 2 is opened:

L' = _NoqL(wA _% +¢l1) + Ncqc(@ +(4_2)

_% Ruﬂlz _% RL2¢£22 _% RL3¢£3 RO¢A (& &]@2 (2.28)

Now, we consider Lagrangiadmemp Of an arbitrary circuit with the magnetic componen
represented by (2.28). In other wortsyp contains the above Lagrangibh Because
Liemp dOes not contaiges exceptl', Euler-Lagrange equation (1.26)Llaénp With respect
to g3 gives@s=0. Therefore, we can eliminages from (2.28), obtaining:

' . 1
L'=-Noa,, - Ro(”A2 NoGdt, ~ L1¢L1 +NcGcq, - L2¢L2
N . . R.R) 2
+H ¢ +N St e 2.29
Mg (3 4)@ e
The above Lagrangian can be translated into Fig2(d). Therefore, the mutual

inductanceMic is:

NoNe

My :ﬁ' (2.30)
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Table. 2.2. Measurement Result of Self- and Mutual Inductance

PARAMETER Value
Self-inductance of the winding 1 (A)) 462 uH
Self-inductance of the winding C (A,) 12.7 uH
Self-inductance of the winding 2 (A,) 461.5 uH
Mutual-inductance between the windings 1 and C (/) 5.85 uH
Mutual-inductance between the windings 1 and 2 (M,,) 437 uH
Mutual-inductance between the windings 2 and C (M, ) 5.85 uH
N’
o _pL3, Ru TI
* N ON (¢
4, — LI L2 R, +2R,
N, Ny’ L1-L3: Inductors
2R, R, T1  : Transformers
(a)
N 02 N, 02
R 2R,
q2 _> fYYY\L} ‘ ITI2I ’_| |T| |3,— N
; = ; 2R, +4R,
q] _>_NW\_fYYY\_mY\—
NU L4,L5: Inductors
R, T2,T3: Transformers

(b)

Fig. 2.12. Translation from Lagrangian expression into circui
diagram. (a) Equation (19). (b) Equation (25).

Next, the self-inductancA: of winding 1 is obtained by further opening wingli@.
Substitutinggc=0 into (2.29) yields:

) . 1 .
L:_Noq1¢[1_§R_1§q_12_Noq1¢A Rﬂ’A +—C|1@ (& Roj (2.31)

We eliminated the term witlp2 in (2.31), because Euler-Lagrange equation with
respect tap.2 now yieldsg.2= 0.

Equation (2.31) corresponds to series-connectedctods whose inductances are
No?/RL1, No%2Ro, andNo?(2Ro+4Rc), respectively. Therefore, we have:

2 2 2

=R, 2R, ToR, vaR,

(2.32)
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Similarly, the self-inductancAc of winding C is obtained by substitutimg=0 into
(2.29). Theng1=0 andgpa=0 can be substituted, according to the similasoaalescribed
above. As a result, we have:

L'=NcGq, - RL2¢?_2 +NGe® - (RC Roj (2.33)

Equation (2.33) corresponds to series connectedciots whose inductances are
Nc?/Ri2 and Nc?/(Ro+2Rc). Hence, we have:

2 2
A, =N 2N

R, R+2R;

(2.34)

Then, we determine the mutual inductaie between windings 1 and 2. Now, only
winding C is opened. Thus, substitgte=0 into (2.27) to obtain:

1 l . .
L'= oq1¢L1 L1¢7L1 OQZ¢L3 L3¢L3 ( otz ~ Nle)(”A - RO(”AZ

R.R
(Ch"'Noqz) (2 4j (2.35)

Note that we eliminated the term wifie, similarly as in (2.31). Equation (2.35) can
be translated into Fig. 12(b). Therefore, the miunductanceMiz is:

__ RN
My, —m- (2.36)

According to similar discussion to obtain (2.30)daf2.32), we obtain the self-
inductance\z of winding 2 and the mutual inductandec between windings 2 and C:

NoZ Ny N,

MR, T oR, T oR, + AR, (230
NONC
Moe :m. (2.38)

Finally, the reluctance can determined by equakaige 2.2 with (2.30), (2.32), (2.34),
(2.36)—(2.38), obtaining the values of reluctartoen in Table 2.1.
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Chapter &

LAGRANGIAN METHOD FOR DERIVING ELECTRICALLY DUAL
POWER CONVERTERS APPLICABLE TO NON-PLANAR CIRCUIT
TOPOLOGIES

3. 1. Introduction

The duality principle [1] is widely recognized arseoof the most basic features of
power converters. Power converters can be primariassified as voltage-source
converters, which convert electrical energy fromodtage source, and current-source
converters, which convert energy from a currentrc@uln general, voltage-source
converters have dynamically equivalent current-sewounterparts and vice versa. This
correspondence relationship is called as the gyadihciple.

The duality principle is often utilized in powereetronics research. One of its most
common uses is in the derivation of novel circ{fs{4]. In other words, novel circuits
may be discovered by deriving dual converters ftbheir already known counterparts. In
other cases, the principle can be utilized for yanay circuit behavior [5]. For this
purpose, the circuit behavior of the dual are firsdlyzed instead of focusing on the target
circuit, and then the behavior of the target ciraiinferred from the result.

These methods of utilizing the duality principlguée duality transformation, namely,
the derivation of the duals. If the original cinsuhave a simple topology, their duals can
be guessed in many cases. However, complicateditsirgenerally do not allow an
intuitive approach. Hence, several analytical meéshaf duality transformation have been
studied and proposed.

The basic method of duality transformation is basedhe interchange between the
voltage and the current of every component in thgral circuit [1]. The interchange
can be performed by means of topological transftona through which series
connections of the original circuit are replaced garallel connections and parallel
connections by series connections.

However, topological transformation is applicalbihdydo planar circuits [1], which do
not contain any pair of wires crossing each othiénaut connection. Meanwhile, many
non-planar circuits are known to have their ownlglusthough the duals are not related
to the original circuits perfectly by topologicensformation. Thus, the basic method of
the duality transformation is not directly appli@lio deriving duals for non-planar
circuits.

To address the problem, some techniques [6]-[®fpply topological transformation
partially to avoid non-planarity have been propost¢alvever, they seem to raise another
problem in that a dual derived by a technique canecessarily be derived by another

TReprinted, with permission, from K. Umetani, Lagy@m method for deriving electrically dual
power converters applicable to non-planar circofiologies, IEEJ Transactions on Electrical and
Electronic Engineering, Jul. 2016.
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Fig. 3.1. Three phased voltage source inverter and its duals

technique, as presented below. Accordingly, thdityuansformation of non-planar
circuits still seems to require intuitive insigit selecting an appropriate technique in
order to derive a desired dual. Therefore, theiegipbn of the duality principle can
probably be promoted by proposing a more univarsgthod of duality transformation
that derives all possible duals systematically.

The following discussion of the aforementioned peab uses specific examples of
non-planar circuits. Figure 3.1(a) illustrates pid¢gl three-phase voltage-source inverter.
Because this circuit is widely utilized in the irstity, its duality has been actively
researched [6]-[11]. We apply the previously repdrhethods to this circuit to show that
none of them can derive all duals.

In one method [6][7], the original circuit is disanbled into a set of planar circuits
by adding ideal transformers. Then, the resultidgngr circuits are individually
converted by topological transformation, and fipathey are assembled into a dual.
Consequently, the derived dual contains the aduitioransformers introduced in the
disassembly process. According to the method, waothe dual illustrated in Fig. 3.1(b)
from the original inverter shown in Fig. 3.1(a).eTmethod is beneficial as a systematic
procedure of transformation. Nonetheless, thestilisa dual that cannot be derived by
the method. In fact, the circuit illustrated in F3gl(c) is also known to be a dual [10][11].
However, the circuit cannot be derived by the mettecause it contains no transformer.

Contrarily, two methods have been proposed thaveléiig. 3.1(c). One utilizes the
fact that every instantaneous current path of tiggnal inverter forms a planar circuit
[8]. The method derives the dual by applying topgatal transformation to the
instantaneous current patterns of every operatiodemnand then, it seeks a circuit that
provides the transformed current patterns as ieratjpn mode. The other method
replaces each leg of the original inverter withoitage-controllable voltage source and
then applies a topological transformation [9]. Tehasethods are successfully applied to
the three-phase inverter. However, their univeapalicability remains unclear, because
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it is not ensured that they always yield planamwoeks for any non-planar circuits.
Furthermore, they are also unable to derive alllgjubecause they add no ideal
transformer, and consequently, they do not led€igo3.1(b).

The abovementioned difficulty is closely relatedth® method of avoiding non-
planarity in order to apply the topological transf@tion. Therefore, the problem may be
addressed by inventing another method of dualapgformation that does not utilize
topological transformation. The aim of this chap$dp propose a candidate by discussing
another approach to duality transformation.

Instead of topological transformation, the proposesthod is based on Lagrangian
dynamics. According to Lagrangian dynamics, eveoyvgr converter has its own
Lagrangian [12]-[14] expression. The dynamics piesi systematic methods to
transform a Lagrangian into another dynamicallyiemjent Lagrangian. The proposed
method first expresses the original circuit as bagran. Then, the Lagrangian is
transformed using Lagrangian dynamics into anctlqeivalent Lagrangian that belongs
to the dual. Finally, the transformed Lagrangiartremslated into a physical circuit
topology to obtain the dual.

The next section theoretically discusses formutatibthe proposed method. Section
3.3 explores two examples of duality transformatidhese examples derive already-
known duals to verify the proposed method. In patéir, one example systematically
derives both Fig. 3.1(b) and Fig. 3.1(c) from Rgl(a), suggesting that the proposed
method is more universal for deriving various dwdlaon-planar circuits.

3. 2. Duality Transfor mation by L agrangian Dynamics

A. Lagrangian Modeling

Many previous papers have discussed Lagrangianlmgder power converters. The
typical modeling method [12][13] regards energyinductors as kinetic energy and
energy in capacitors as potential energy. Thuspte#god models a circuit of inductors
and capacitors by the Lagrangian

56



I R
L_ZZ/\iQi Zj:zcj d; +Zk:Eka, (3.1)

t

whereli, j, andk are the indexes of the inductors, capacitors, \aithge sources,
respectively/\; is the inductance of the inductglndgq is the electric charge that flows
through it;C; is the capacitance of the capacytoandq; is the charge stored in Ex is
the voltage of the voltage sourceandgx is the charge that flows from it. The dot above
a variable indicates its time derivative. Hencegrgeq is the physical charge stored in a
capacitor in the second right-hand term of (3.4} & is also the time integrated current
[14] as defined by (3.2) in the first and thirdhighand terms.

q= I;Idt, (3.2)

wheret is the timeto is the initial time, and is the current that flows through the
component under consideration.

This modeling is limited to power converters congzbsonly of inductors and
capacitors. Thus, it cannot handle converters wahsformers or magnetic circuits. To
address this problem, a novel Lagrangian formutati@s proposed recently [14]. The
method models the windings and the magnetic pagbarately. The first right-hand term
of (3.1) is split into the Lagrangian of the wing(the first right-hand term of (3.5)) and
that of the magnetic paths (the second right-hand of (3.5)).

In addition, the definition of charggis unified to (3.2). This enables the electrical
networks to be implemented as a set of holonomitsttaints, each defined at a node
representing that the sum of the charge flowing thie node should remain zero, as
shown in Fig. 3.2(a).

A switch on the current path is modeled by regay@dimode connected to the current
path as a holonomic constraint that can be switetedrding to the state variable of the
switch. For example, the constraint of the nodenshim Fig. 3.2(a) is expressed @s-
dop + g3= 0, whered is a function of the switching state that takles 1 in the on-state
andd = 0 in the off-state. Therefore, the constrairihatelectrical nodecan be generally
expressed as

f.(gs) = zrl(s)ql+zrz(s)q2+--- =0, (3.3)

wherefi(q;s) is a linear function of the chargg, op, ... ; sis the state variable of
switches; andr1, z», ... are functions of or constant integers that take any one of +1, O,
or —1.

Similarly, the magnetic networks are implementeg aet of holonomic constraints
representing that the total flux flowing into a matic node should remain zero, as shown
in Fig. 3.2(b). For example, the constraint atribede shown in Fig. 3.2(b) is expressed
as@ - @+ @= 0. Thus, the constraint at the magnetic nad=an be generally be
expressed in the following form:

9.0 =nu(s)a+n.,(s)g +-+- =0, (3.4)
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wheregu(@ is a linear function of the flug, @, ...; andnui, Nw, ... are constant
integers that take any one of +1, 0, or —1.

Consequently, the general expression of the Lagaarttas the form
N 1 2 1 2
L= N - - - —10. —qa.
ENGR Y opa Yo (@ -a)
+2Equ +Z/1Er fr(qs)-l_z/‘Mugu(w), (35)
k r u

where n and m are the indexes of windings and branches of magrmiths,
respectivelyNn is the number of turns of the windinggn is the charge that flows through
it, and ¢ is the flux that links with itPm is the permeance of the brarmotof a magnetic
path, andgn is its flux; Q is the initial charge of the capacifjolandg; is now the charge
that flows from its positive nodelg: is the Lagrangian multiplier for the electricaldeo
r; andAwu is the Lagrangian multiplier for the magnetic nod&he number of turni is
defined as the positive or negative number whoselate value equals the physical
number of turns of a winding. The positive valueNaineans that the winding is wound
so that the positive value of its flugand the positive value of its currefjisatisfies
Ampere’s right-hand screw rule. Otherwibkis negative.

The Lagrangian model presented in (3.5) still does contain energy dissipating
components. Therefore, it cannot express the olpdtand resistors in the circuit. To
model these components, we introduce Reighleysmhsion function [15D as

1 1 .
D= ZE I:aquwz + ;E Rmem2 y (36)

wherew is the index of the branches of current paRis; is the energy dissipation
coefficient at the branchv, andqw is the charge that flows through it; aRgm is the
energy dissipation coefficient at the brameh

Then, the circuit behavior of the model is obtaiaedording to the Euler-Lagrange
equation [14] defined as

s(a) o, o
dt\ox /) ox ox '

wherex is any one of the independent variables contammédr D. With regard to the
modeling of the power conversion circuit discussethis paperx is any one of charge,
flux, or a Lagrangian multiplier.

The first right-hand term of (3.6) indicates thesgy dissipation caused by a change
of the electric charge, namely the current. Indeeglcan regarée as the resistance. On
the other hand, the second right-hand term indsadigesipation by the change of the flux.
Although these terms represent different typessdiplation, a resistor with resistarige
can also be modeled usiRg, for the reason discussed below.
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Consider an imaginary magnetic device illustrated=ig. 3.3(a). The device has a
winding with the number of turnSiwr wound on a closed magnetic core with infinite
permeanc®wr and finite dissipation coefficiefvr. The initial value of the fluxgr is
set to zero. Then, the Lagrangiaws and the dissipation functiddwr of the device are
obtained as

2
— . G _ .
LMR = NMRQMR%R - ZPR = NMRqMR%R’ (3-8)
MR

2
D, :RMR%, (3.9)

wherequr is the electric charge that flows through the wigd We can derive the
approximation in (3.8) by neglectingir?/2Pur. The flux gur is a finite value, because
the voltage across the winding, i.8l,,, ¢, , is finite and the initial value afur is zero.
Therefore,gur?/2Pur is infinitely small and we can approximate therters zero.

We further consider a circuit with Lagrangibrand the dissipation functidda. We
assume that the circuit contains the magnetic @ewfcFig. 3.3(a). We also consider
LagrangiarL'a and the dissipation functidd A in which the contribution of the magnetic
device is omitted fronba andDa. Hencela=L'a+ Lvr andDa= D'a+ Dmr.

Because the fluxar is not contained ih'a andD’a, we obtain the following equation
as a result of applyinga andDa to the Euler—Lagrange equation with respeafi@

NirOvr = RMR%R- (3.10)

The result shows that the voltage across the wgsdiof the magnetic device is
proportional to the current of the winding. Conseafly, the magnetic device of Fig.
3.3(a) is equivalent to a resistor with resistaNe’/Rur.

As discussed above, resistors can be implementetebtric dissipation expressed by
the first right-hand term of (3.6) or by magnetissipation expressed by the second right-
hand term. In this paper, we allow both expressions
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Equations (3.5) and (3.6) model only a voltage-sewonverter, because they do not
contain a Lagrangian expression for a current soudowever, the dual of a voltage-
source converter generally contains a current sourdence, we should extend the
Lagrangian expression to model circuits with cut®wurces by adding the Lagrangian
of a current source to (3.5). The Lagrangian afirient source is obtained as follows.

It is known that the Lagrangian of a voltage souraa be obtained by regarding a
voltage source as a capacitor with infinite capaé'®. Similarly, the Lagrangian of a
current source can be obtained by regarding a musairce as an inductor with infinite
inductance.

We consider another imaginary magnetic devicetiiied in Fig. 3.3(b). The device
has a winding with the number of turNs and a magnetic path with infinite permeance
Ps. Now, we assume that the initial valge of the flux in the magnetic core is not zero.
If we denote the time-dependent variation of the #s¢, the total flux is, therefore, the
sum of go and g We further denote the initial current of the wimglasl. According to
Ampere’s law, we obtaigg = NslPs. Hence,@ is infinitely large. Then, the Lagrangian
Ls of the device is obtained by calculating the fastl second terms of the right-hand
side of (3.5):

P
Ls = qus(%o +¢§)_ (%OZP%) . (3.11)
s

Becausegy is infinitely large, we can approximate the abegeiation by neglecting
the second-order afg, obtaining (3.12). Note that the Lagrangian isamant by adding
a constant or time derivative of an arbitrary fuoc16].

%so

LSZNQS%_F%:NSQS%_NSI%. (3.12)
S

If we apply (3.12) to (3.7) with respect {8, we obtaingg = | = const. Hence, the

LagrangianLs certainly expresses the current source. Note Neatoes not affect the
behavior of the current source, and therefore, aveassign any arbitrary valueNg.

Consequently, circuits with current sources haeeltdgrangian form of (3.13), which
is obtained by merging (3.12) with (3.5).

l_qi)2+
E.q
J 2c. ; KOk

LI ESWSACE YW WA} (3.13)

. ¢m2 (Q
L =§ N A&, -; p

wherei is the index of the current sourc®,is an arbitrary number assigned to the
current source, |; is its current, and is its imaginary flux. We included the first right
hand term of (3.12) in the first right-hand termtloé above equation.
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B. Duality Transformation of the Lagrangian Model

The conventional method of duality transformatien based on the interchange
between the current and the voltage of every compioim the circuit. However, duality
transformation interchanges not only the currert tre voltage, but also the electric
charge and the flux linkage, as noted by S. D. |Ianek[1]. Hence, it seems to be also
natural to base duality transformation on intergeabetween the charge and the flux.

There is a useful merit of changing the basis ®itlterchange between charge and
flux from the interchange between current and g@tal he interchange between current
and voltage requires a change of the circuit nétwopology, because Kirchhoff's law
imposes different constraints on current and veltagnd the interchange without
changing the network generally breaks the law.tRhr reason, this approach entails a
topological transformation.

On the other hand, charge and flux have the santeddiconstraints. In particular, the
sum of the charge that flows into a node of antatecircuit is required to be zero, and
the same stands for the sum of the flux into a raddemagnetic circuit. As a result, the
flux and the charge can be interchanged only byndigg an electric network as a
magnetic network and a magnetic network as an redectetwork in principle.
Accordingly, this approach does not need a topoligransformation. Indeed, the mere
interchange of networks results in magnetic cigwiith switches, which cannot be
realized by a physical circuit. This requires amotiransformation that moves the
switches from magnetic circuits onto electric citsu

Now, we consider the interchange between the chamdehe flux in the Lagrangian
dynamics in order to formulate the duality tranefation. The charge and the flux are
both independent variables in the Lagrangian arssightion functions. Therefore,
renaming the flux as the charge and vice versacssfto perform the interchange, and
the result yields a Lagrangian representing a dyceip equivalent system.

For convenience, we assume that the initial chargde capacitors is zero. If we
rename the charge and the flux in the general farfrisagrangian and the dissipation
function shown in (3.13) and (3.6), we obtain

ey
L= ; quanqn ; 2Pm Z 2CJ +; Ekﬂ(
-2 NG+ YA f@s)+ 3 Aw,.(a), (3.14)
w1 -5 1 L 2
D= ZE REwww +ZE RM mqm . (315)

The second, third, fourth, fifth, and seventh righhd terms of (3.14) have the same
form as (3.13). Additionally, (3.15) has alreadg ttame form as (3.6). Furthermore,
among the element§gs) that constitute the sixth right-hand term of @,lthose that
are independent afcan be regarded as the seventh right-hand te@118). Therefore,
we can translate (3.14) and (3.15) into a physigalit, if we successfully convert the
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first right-hand term and the switch-dependent elet® of the sixth right-hand term of
(3.14) into the form of (3.13). Below, we discubs tethod for such a conversion.

We add the first right-hand term of (3.14) to tlensof the subset of elements in the
sixth right-hand term of (3.14) and denote iLtasWe assume thak includes at least all
the switch-dependent elements of the sixth rigimahterm. Then, we can exprdssin a
matrix form, using the fact th&{gs) is a linear form ofp

L =2 N+ 2 A fo (@) =0™NG +0. 020 (3.16)

wherer’ is the index of constraints that are includechmgubset is the vector of the
flux variables defined a' = (@, @, ...), N is a matrix composed of the numbers of turns,
q is the charge variables defined @s(au, Gz, ...), Ae is the vector of Lagrangian
multipliers defined a&e'=(Ae1, Je2, ...), andZ is a matrix whose elements are functions
of the state variablgor constant integers that take any one of +1r 6,10

We replace each Lagrangian multiplie by the time-derivative of an additionally
introduced imaginary charggy multiplied by an additionally introduced imaginary
number of turndNar. Nir is a constant value and we can assign any arpitnéeger to
Ni. We assume that the initial value@f is zero for convenience. Because the initial
values of fluxes are given so that the initial wahf f(¢gs) equals zero, the result of
replacement is equivalent to the original, as shawthe appendix. This technique is
based on a well-known method [17] for eliminatingcyclic coordinate from the
Lagrangian. Then, we obtain

L =9'Ng +]Zg, (3.17)

wheref; is the vector defined ds'=(Ni1011, Nx2gaz, ...).

Because the Lagrangian is invariant by adding ime tderivative of an arbitrary
function, we can develop (3.17) as

L. =¢"Ng +%(f}2(p)—(i)TZTfﬂ =¢"(Ng-21,). (3.18)

We further introduce additional imaginary numbertwhsN',, additional imaginary
chargegy 4, and additional Lagrangian multipliet&. Again, we can assign any arbitrary
constant integers tbl'y and we assume that the initial valuegf equals zero. We
introduce the constraint thii=Nq — Z'f1, wheref' s is a vector defined ds "= (N'1q a1,
N'12q' 42, ...). Then, we can express the Lagrandiaty the equivalent expression

L =¢"f, +17(f; -Ng+ 271,

= S lo)-o"t; +27 (5 -Ng + 277,
=—¢"f, +27(f; -Ng+271,), (3.19)
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whereN'e is a vector defined @8e'=(A'e1, A'e2, ...).
For convenience, we rewrite (3.19) in the summattoom. Then, we have

I—F = _Z N;laq:la% + Z/ll'ia[N:mq:m - Z naﬁqﬁ + Z Zr'a N/Ir'qﬁr'J y (320)
a a B r'

where ¢ is the index of the flux variables in (3.14) (i.the charge variables in the
original Lagrangian (3.13))7is the index of the charge variables in (3.14. (ithe flux
variables in the original Lagrangian (3.13))gis the element dfl, andz« is the element
of Z.

First, we consider a fortunate case in whicmaflare any one of A, 0, or-A, where
A'is an arbitrary positive integer. Then, (3.20)ultessin the same form as the first and
sixth right-hand terms of (3.13) because we caiN'setandN4r to —A or A. For example,
if we set allN'2z andNar to A, we have

I-F = _z N:iaq;a% + z/‘I'Ea q;a - ZZaﬁq/} + z Zr'aqar'j
a a 3 r'

z NAana% + z/]Ea[qﬁa zzaﬂqﬂ + zzr’anr’j ) (321)
B r

wherelas= nagA, andA"eq are Lagrangian multipliers defined 4%qo= A'edA.

Note that{ss andzs take any one of +1, 0, or —1. Therefore, (3.2H)dates that the
first and sixth right-hand terms of (3.14) are sssfully transformed into the form of
(3.13).

The above discussion is based on a specific casgeter, even in the other cases, we
can transfornir into the form of (3.13).

Second, we consider a case in whichnall are any one of A, 0, or -A except one
elemeninggs. In this case, we further introduce an additionedginary chargg'x and an
additional Lagrangian multiplied« Then, we have

L = _z chha% + Z/‘Ea[q/m szgq/j + Z qu,"vJ
B r'

aza'

BB

[’} ] n na’ §
+ AEa’(q/Ia ZZaﬁq/J + Z Zr 'a’ q/lr J Ea’ Aﬁ qﬁ'

= _Z qum%r + Z/‘Ea(q/la Zzaﬁqﬁ + z Zr'aq/ir'J
B r’

aza'

+ Alga'(q:la zzaﬁq/] + z Zr ‘a' q/lr J + /11( (na'ﬁ'q/] - Aq/'() (322)

BB
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We replace the Lagrangian multiplidi by the time-derivative of an additional
imaginary fluxg. The result of replacement is equivalent to thgial, as shown in the
appendix. (We regard the fluxas the charge, andgi as¢ in the appendix.) As a result,
we obtain

= _Z N/laq/la¢a + ZAEa(qAa Zzaﬁqﬁ + Z Zr’aq/lr’]
B r

aza'

+/]I'£a{q:1a Zzaﬁqﬁ +eraq/lr _qkj-'-q”/(( aﬁqﬂ' Aq/()

BB

aza'

= _Z N/laq/la¢a + Z/]Ea(q/la Zzaﬁqﬁ + Z Zr’aq/lr’j
B r

+/]I,E,a’(q:m Zzaﬁqﬁ +eraq/lr _q/(]

Bp

+%{@ (ng'/,vq;;' - Aq/'()}_ na’ﬁ'qﬁ@ + Aq”(@

= _Z N/laq/la¢a + Z/]Ea(q/la Zzaﬁqﬁ + Z Zr’aq/lr’j
B r

aza'

+/1£a{q;a >4, ﬁqﬁ+Zz O —qkj N,;4,% + Ad %, . (3.23)

BB

Equation (3.23) has the same form as the firstsaxith right-hand terms of (3.13).
Even if there is more than one element not follaptine relation that requiress to be
any one of A, 0, or A, we can transformr into the form of (3.13) in a similar manner
to (3.22) and (3.23). Therefore, we can genera#igsformLr into the form of (3.13).
Consequently, (3.14) and (3.15) can be generalyeded into the form of (3.13) and
(3.6) according to the abovementioned procedure.

It is worth noting that (3.14) and (3.15) can benarted into multiple equivalent
expressions in the form of (3.13) and (3.6) becaurse resultant expression can yield
other equivalent expressions in the form of (3.43J (3.6). This indicates that we can
obtain multiple duals by translating these equinbleagrangian expressions into circuit
topologies.

For example, we can replace the Lagrangian mudtigbr an arbitrary electric node
with the time-derivative of an additionally introckd imaginary charge multiplied by an
additionally introduced imaginary number of turdsis replacement yields another
equivalent Lagrangian in the form of (3.13) as shdelow.

Let Lmutbe a Lagrangian multiplier term of an electricatl@oAccording to (3.3),mut
have the following general form:
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I'mult = /](Z:L(S)ql + Zz(s)qZ +- ) ) (324)

whereA is a Lagrangian multiplier.

Introducing an additionally imaginary flugand an additionally imaginary number of
turnsN, we can obtain another equivalent expressioh.fQk

L = Ndzi(s)ch + Zz(S)QZ"')
= -Nz,(s)a,0~ Nz, (), - +%{N21(S)ql¢+ Nz,(s)a,¢--}

= —NZl(S)q1¢— NZZ(S)Q2¢"'- (3.25)

The terms independent sefin the right-most side of (3.25) already have fibren of
the first right-hand term in (3.13). However, evkthere are terms dependent §rwe
can convert_muy into the form of (3.13). For example, Ist(s)g e be the only term

dependent on s. Further introducing an additiohatg@egw and an additional Lagrangian
multiplier Aw, we obtain an equivalent expression

Lo = ~NzG¢ — NZG,¢ = = Na ¢~ Nz, G a¢- -+ A0, - 2 (g ). (3.26)

Even if there is more than one term dependens, ame can transfornbimut into the
form of (3.13) in a similar manner to (3.26). Camsently, we can generally obtain
another equivalent Lagrangian in the form of (3.18) replacing the Lagrangian
multiplier term of an electrical node.

In addition, we can obtain another simpler equinleagrangian in the form of (3.13),
if a resultant Lagrangian expression is reducibte.example, if théth elemeniy of the
flux vector ¢ in (3.19) is not contained anywhere in the restltzagrangian and the
resultant dissipation function except the termgiogting fromLr, we obtain thal' ' 4
= const. as a result of the Euler—Lagrange equatiothe resultant Lagrangian and
dissipation function with respect t@ This indicates thaf s = 0 because the initial value
of g';i is zero. Hence, we can eliminafa andg by substitutingy’ s = 0 into the resultant
Lagrangian.

In addition, we can eliminate the Lagrangian miikipterms for magnetic nodes in
the resultant Lagrangian. The terms are origintily switch-independent constraints
amongf(@s) in (3.14). Additionally, they represent the matimeetwork of a magnetic
circuit. Therefore, direct translation of the reant Lagrangian yields a dual with
integrated magnetic components. In this case, weaduce the Lagrangian into another
that corresponds to a dual without integrated mégreemponents by utilizing the
technique proposed in the previous work [14].

C. Composing a Dual Circuit Topology

The previous subsection obtained the Lagrangiandéssipation functions of a dual
by interchanging the charge and the flux. As weehaeen, these Lagrangian and
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Current:E/N ResistancelN2/R

(b)

Fig. 3.4. Analytical models of voltage-source buck choppet a
its dual. (a) Voltage source buck chopper. (b) inipper.

dissipation functions can be obtained in the fofn§3al3) and (3.6). In this subsection,
we discuss the method to compose the physicalitimpology of the dual from these
resultant Lagrangian and dissipation functions.

As discussed in the previous work [14], each terin(313) and (3.6) has a
correspondence relation with a component of a jgaysircuit topology. Therefore, we
can configure the topology utilizing this relatibifs The following are the steps to
configure the topology:

1. Configure electric and magnetic networks from crasts at the nodes. These
constraints are represented by the sixth and devigtit-hand terms of (3.13).
Place switches on the electric network so thatrtatssork is consistent with the
constraints.

2. Place windings on the electric network so that timgrlink with the magnetic
network as represented by the first right-hand tefi(3.13).

3. Place permeance on the magnetic network as repeesby the second right-
hand term of (3.13).

4. Place infinitely large permeance with infinitelyde initial flux on the magnetic
network as represented by the fifth right-hand tef§3.13). Find structures
shown in Fig. 3.3(b), and replace them with cursenirces.

5. Place capacitors and voltage sources on the elewtivork as represented by
the third and fourth right-hand terms of (3.13spectively.
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6. Place resistors on the electric network as repteddsy the first right-hand term
of (3.6).

7. Place magnetic dissipation on the magnetic netvawkrepresented by the
second right-hand term of (3.6). Find the strugwkown in Fig. 3.3(a), and
replace them with resistors.

(If there is a magnetic path without any permeancaagnetic dissipation, we consider
the path to have infinitely large permeance.)

3. 3. Examplesof Duality Transformation

A. Buck Chopper

Figure 4.4(a) illustrates a voltage-source buckppleo. Because its circuit topology is
planar, we easily obtain the dual chopper illustlain Fig. 4.4(b) according to the
conventional method [1]. The purpose of this sutigeds to confirm that the same dual
results from the proposed method.

First, we translate Fig. 4.4(a) into Lagrangianand the dissipation functio®
according to the method of Lagrangian modeling .[14]

2

2

L=Ng. @ _?_P_ZLC-‘_ Ege +/]l(qE _qu)
+A2{Q2 _(1_d)qL} +/]3(QL —Qc _QR)u (3-27)
D :% Ri.2, (3.28)

whered is the variable that indicates the on-state ardfthsate of switch S1. If S1is
in the on-state, theth= 1. If S1 is in the off-state, theh= 0. We assume that the initial
value of all charge is zero.

The charge), appears only in the sixth right-hand term of (3.Because (3.7) with
respect tap results in2= 0, the term withl> does not affect the circuit behavior. Hence,
we eliminate the term in the following discussion.

Now, we rename the charge as the flux and thedktithe charge in (3.27) and (3.28),
obtaining the Lagrangiad and the dissipation functidd' as

2 2
L'= N(AqL-%-%+E%+A1(%-dq)+ﬁg(q-%-%)- (3.29)

D' = % Ro . (3.30)

Next, we introduce additional electric chargesandgz and replace the Lagrangian
multipliers A1 and Az with — N, and — N, in the same manner as (3.17) and (3.18).
(Because the number of turns that appears in tgeabgian (3.27) is onli, we can set
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Nz, Naz, ... andN’iz, N'az, ... toN or —N.) We denote the sum of the first, fifth, and sixth
right-hand terms of (3.29) &snp. Then, we have
Lup = N@g 0, ~ Ny (2 —dgg ) - Ny (@ -2 - @)
= N¢qu_N¢Cq3_N%q3+NQ(qL _d0a+Q3)- (3.31)
Then, we introduce additional charge varialdés g'c, d'r, andq'L and additional
Lagrangian multipliersl’e, A'c, A'r, andA'L. We develop (3.31) in the similar manner as
(3.19)—(3.21), obtaining
Loy = N0 + AL (0 —0,) = Nzt +A¢ (0 — )
~N@gr + Ar(dk — @)+ N gl + AL (al - q, +dg, - )
=~ NG *+ e (0 — )+ N + A2 (0 — ;)
+ N + (0 — @)~ N ¢t + Ao -0, +dg — ). (3.32)
The Lagrangian multiplierd’e, A'c, andA'r represent obvious relations thg¢ = g1

andqg'c= g'r= gs. Therefore, we eliminatd'g, A'c, andA'r by substituting the relations
into (3.32):

Limp = — NCug + NGz + NGy — NgL@g + AL (o -, +dg - ). (3.33)

Replacing the first, fifth, and sixth terms of (8)dy (3.33), we have

q 2 %2
L'=-Nq@ +Eq -Z—LP+ Nds = + Nl

-Ng ¢ +A (g —q, +dgq -q,). (3.34)

Note that@ appears only in the seventh right-hand terni'ofHence, the Euler—
Lagrange equation (3.7) bf andD' with respect tap yieldsNd L = const. This indicates
that g'L = 0 because the initial value of. is zero. Finally, we can simplifi’ by
substitutingg'c = 0 into (3.34), obtaining

2 2

L'=-Nog + B~ 0+ Nae — %+ Npg = 1, - da + ). (3.35)

Equations (3.35) and (3.30) represent the physicalit illustrated in Fig. 3.4(b). The
result shows that the proposed method also deFips3.4(b) as the dual corresponding
to Fig. 3.4(a).
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B. ThreePhaselnverter

This subsection derives the duals shown in Figh3.dnd Fig. 3.1(c) from the original
circuit shown in Fig. 3.1(a). We translate Fig.(8)linto the Lagrangiah and dissipation
function D, obtaining (3.36) and (3.37). We define the cir@arameters, charge, and

fluxes as illustrated in Fig. 3.5(a).

2 2 2

L= Nog + N, + Nogs + Eq - 91 -2 -2

+/11{QE _dl(ql _Q3)_d2(% _ql)_ds(% _Q2)}
+A2{QE - (1_d1)(0r1 _q3) _(1_ dz)(qz - q1)_ (1_d3)(Q3 - Q2)} ' (3.36)

D= R0 +4°+ ), (3.37)

whereds, d2, andds are the variables that indicate the on-state &rstate of switches
S1, S2, and S3, respectively. If the switches muithe on-state, the variable equals 1.
the switches are in the off-state, the variableaéximero.

The constraint represented by the term wliths the same as that with. Hence, we
can eliminate the term withe. Then, we rename the charge as the flux and utxeafl the

charge in (3.36) and (3.37), obtaining

2 2 2
L' =N@gq, + N@za, + Nepg, + Eq _%_%_gip
#Adge =(d =) (0, ), ~ (0, ~d s}, (3.39

D’ :%R(&fﬂlf +¢f). (3.39)

Next, we introduce additional charge and replace the Lagrangian multipliér by
—Nj,. (Because the number of turns that appears ihdageangian (3.38) is onli, we

can selNji, Naz, ... andN'a1, N'a2, ... toN or —N.) Again, we assume that the initial value
of gi is zero. We denote the sum of the first, secdmdy,tand eighth right-hand terms of
(3.38) ad.imp. Then, we developmg in the same manner as (3.17) and (3.18):

Limpz = Nﬂch + N@Qz + N@Qs
- Nq/1{¢E _(dl - d2)¢1 - (dz _ds)% - (ds - dl)q?:}
= Nq/I¢E - NQ{(dl - dz)ch - Q1} - N@{(dz - d3)q/1 - QZ}
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- N@{(ds - dl)q/l - Q3} . (3.40)

de—+ A
Voltage:] S1 l S2 531)
E dl\2 d, d,

2 2y 8y

Inductor L1-3
Number of turnsN
Flux of magnetic pathg_5
Permeance of magnetic path:
Resistor R1-3
ResistanceR

(a) Voltage source inverter

)
* d, (.:b > 4 5 dy+d,
a
Qp dg+d,
Current:
E/N
\? didy
Capacitor C1-3 Transformer T1-3
CapacitanceP Number of turnsN,y
Resistor R1-3 Flux of
ResistanceN?/R magnetic pathg,,

Permeance of
magnetic path: 0

(b) Dual inverter A

4

Current:
E/N

Capacitor C1-3
CapacitanceP

Resistor R1-3
ResistancelN?/R

(c) Dual inverter B

Fig. 3.5. Analytical model of the three-phase voltage source
inverter and its duals.
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Then, we introduce additional charggs ga, gs, andgc and additional Lagrangian

multipliers Ag, Aa, A, andAc. Developing (3.40) in a similar manner as (3.198)21), we
obtain

Linge = NGt + A (0 = 0,)~ NG, @2 ~ N2 ~ N3
+ {0, - (d, - d,)a, +a} + Ag{as —(d, —ds)a, + )
+Ac{ae —(ds —dy)a, + a5}
= ~Ndege + A (0 — 0, )+ NG + Ndo s, + Nty
+{a,—(d, - d,)a, +a}+ Afas - (d, - d)a, +a,}
+2c{ae - (dy - d,)a, + s} (3.41)

The Lagrangian multiplieAe represents an obvious relation tlgat= g1. Thus, we
substitute the relation into (3.41) to elimindte In addition, with a view to helping the
translation of (3.41) into a physical circuit, wed&ionally introduce the charggj, qv,
andqw:

Q = (dl _dz )q/l ) (3-42)
a =(d, ~d,)a, (3.43)
Ay =(d;—d,)a,. (3.44)

At the same time, we introduce additional Lagrangiaultipliers Ay, Av, and Aw to
introduce additional constraints (3.42)—(3.44) i(8at1). Then, we can rewrite (3.41) as

Limpz =~ N0, & + NOL@ + NAs 2 + NAc &
+ a0 -0, + )+ s (0 — 0y + )
+ (0 — A +a5)+ A {a, - (d, - d,)a}
+Ada, =(d, ~dy)a,}+ Aulay —(ds =)o} (3.45)
Replacing the first, second, third, and eighth ®eoh(3.38) by (3.45), we obtain

0&2 q 2 0[32
L'=-NGy@ +Eq + N+ Nogg + NG = = = 0
+AB(qB —qQ +q2)+AC(qC —Ou +Q3)+/1A(QA_OU +q1)

+/‘U{OU _(dl _dz)qa} +/‘v{q\/ _(dz _dB)q/l}-'-/l\N{q\N _(d3 _dl)q/l}- (3.46)
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Note that we always have the relatmn+ gv+ qw= 0 from the definition and that the
value ofd: — do, d2 — d3, andds — d1 is one of 1, 0, or —1. Consequently, we can tegdgsl

the Lagrangian (3.46) and the dissipation func{®39) into the dual circuit illustrated
in Fig. 3.5(c).

In order to derive another dual, we adopt the camdtqu + gv+ qw= 0 instead ofw
= (ds — dy)gs implemented by the term withy in (3.46). This does not affect the system,
because we can derige/= (d3 — d1)ga from the newly introduced constraopt + qv + qw

= 0 and the constraints already implemented byte¢has withAy andAv. By rewriting
the constraint term, we obtain (3.47), which isieglent to (3.46):

2 2 2
L'=~Ngy& + L+ Na1 + Nop + Ngegg = =22 =0
(0 -, +0)+ A0 — oy + 0) + Ao —a, + o)
+A{a, =(d,-d)a,}+A{a, - (d, - ds)a}
+ A, +a, +ay). (3.47)
Now, we introduce an additional flugy and an additional number of turi.

According to the similar process as in (3.24) a&@%), we can replace the Lagrangian
multiplier Aw with N, @, to obtain an equivalent Lagrangian:

0&2 q 2 %2
L'=-Ngy@ +Eq + N+ Nogg + NG = = =0
+/]A(QA_OU +q1)+AB(qB Y +q2)+Ac(QC —Qy +Q3)

+/]U{0U _(dl_dz)q/a}+/l\/{q\/ _(dz _dS)qA}+ Nw@v(qJ +q, +q\N)

q° g G
— . E . . . _ _ Y2 _
Ne, +Eq + Ng,g + Nogs + Noegg = - =25 ==

+ (00—, + )+ A(0s —a, + )+ Ac(ae —ay + )
+/1U{0U _(dl_dz)q/]}"'/lv{q\/ _(dz _ds)ch}_ NW%(% +q, +qN) (3.48)

Translating (3.48) and (3.39) into a physical dirgields the dual illustrated in Fig.
3.5(b).

This result shows that the proposed method dehweés of the duals presented in Fig.
3.1(b) and Fig. 3.1(c).
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3.4. Conclusions

The duality principle is one of the basic featutteet many power converters exhibit,
and has been widely utilized in power electronesearch. When utilizing the principle,
we generally need to perform duality transformatiehich derives the dual circuit from
an original circuit. Although methods of dualitatsformation have been proposed in
previous studies, they sometimes lead to diffedardls when applied to non-planar
circuits. Moreover, the dual derived by one mettsoaiot necessarily derived by another.
This seems to hinder systematic derivation of treslof non-planar circuits, because we
have to choose an appropriate method to obtaide¢beed dual.

As a probable candidate of a universal and sysiemmathod that derives all possible
duals, this paper proposes a novel method for yualnsformation. The proposed
method employs Lagrangian dynamics as the basiereal the conventional methods
are based on topological transformation. Becausgtbposed method does not need a
topological transformation, it is applicable to nalanar circuits in the same manner as
to planar circuits. Thus, it probably avoids thewmentioned problem, which seems to
be related to the difficulty in applying topologideansformations to non-planar circuits.

In order to verify the proposed method, we preseriteo examples of duality
transformation: One is the buck chopper, and theerots the three-phase inverter.
Particularly, the latter is a representative naampl circuit, from which the conventional
methods lead to either one of two different dudlse proposed method succeeded to
derive both of the two duals deductively. Thesengxas suggest that the proposed
method is a prospective candidate for a univensdlsystematic method of the duality
transformation.

3.5. Appendix: Equivalency of Additional Charge Introduced to
Replace a Lagrangian Multiplier

This section shows that the two Lagrangian expoassi; andL> shown in (3.49) and
(3.50) are equivalent, if the initial values of Xes are given so that the holonomic
constrainff(¢gs) equals zero. The constraf(s) is given as a function of fluxes.

L, =L+Af(gs), (3.49)
L,=L+N,d,f(¢s), (3.50)

wherelL is the Lagrangian contained in both expressidns,a Lagrangian multiplier,
N4 is the turn number of an additionally introducedthding, andg is additionally
introduced charge\, is a constant value and we can assign any anpiedue to it, and
g is assumed to be contained in neitheror the dissipation function.

We substitute (3.50) into the Euler-Lagrange eaqua(B.7) with respect tg, and
perform time integration. Then, we obtain
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—2=N,f(gs)=C (3.51)
whereC is an integration constant.
Then, we introduce another Lagranglandefined as

L,=L,-Cq,. (3.52)

Now, we substitute (3.51) into (3.52) and denote tbsult asL's. According to
Lagrangian dynamics [171'3 is a known equivalent th,. Expressing the substitution
by introducing an additional constraint, we obthinas

Ly =L, -Cq, +A(N, f(g:s)-C)
=L+A(N, f(¢s)-C)+q,(N, fgs)-C), (3.53)

whereA' is an additional Lagrangian multiplier.

Because the Lagrangian multiplier term ensitgégs) —C = 0, we can eliminate the
term qﬂ(NA f (¢; S)—C). Then, we have

L, =L+A'(N, f(gs)-C). (3.54)

According to (3.51)f(@s) is constant. Henc€ equals the initial value éfgs), which
is given as zero. Substitutii®)= 0 into (3.54) yields

L, =L+AN, f(gs). (3.55)

Renamingl’'N, asA in the above equation, we obtdin Consequently, is equivalent
to L'3 and therefore tho.

74



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

S. D. Freeland, “Techniques for the practical aggtion of duality to power
circuits,” IEEE Trans. Power Electron., vol. 7, 29 pp. 374-384, April 1992.

P. J. Wolfs, “A current-sourced DC-DC converterded via the duality principle
from the half-bridge converter,” IEEE Trans. Inde&ron., vol.40, no.1, pp. 139-
144, February 1993.

C. K. Tse, Y. M. Lai, R. J. Xie, and M. H. L. ChoWApplication of duality
principle to synthesis of single-stage power-facmmrection voltage regulators,”
Int. J. Theor. Appl., vol.31, pp. 555-570, Nov./D2603.

Z. H. Bai and Z. C. Zhang, “Conformation of multiéd current source converter
topologies using the duality principle,” IEEE TraR®wer Electron., vol.23, no.5,
pp. 2260-2267, Sept. 2008.

M. Milonovic, I. Godec, and F. Mihalic, “An applitan of the duality principle
to resonant link converters,” in Proc. Power ElectrSpecialist Conf. (PESC),
1996, vol.2, pp. 1294-1299.

B. A. Bloch, “On method for the construction of wetks dual to non-planar
networks,” in Proc. Phys. Soc., 1946, vol. 58, ®p/-694.

P. J. Wolfs, G. F. Ledwich, and K. C. Kwong, “Thegpécation of the duality
principle to nonplanar circuits”, IEEE Trans. Povigectron., vol. 8, no. 2, pp.
104-111, April 1993.

J. W. Kolar, H. Ertl, and F. C. Zach, “Analysistb& duality of three phase PWM
converters with DC voltage link and DC current linin Proc. Ind. Appl. Soc.
Annu. Meeting, 1989, vol. 1, pp. 724-737.

M. Bierhoff, F. W. Fuchs, and S. Pischke, “Thear@tioutput current spectra of
three phase current source converters,” in ProcofeuConf. Power Electron.
Appl. (EPE), 2005, pp. P1-P9.

V. G. Agelidis and G. Joos, “On applying graph ttyetoward a unified analysis
of three-phase PWM inverter topologies,” in Pro4thi2IEEE Power Electron.
Specialist Conf. (PESC1993), 1993, pp. 408-415.

P. A. Dahono, T. Kataoka, and Y. Sato, “Dual relaships between voltage-
source and current-source three-phase invertergsaapplications,” in Proc. Intl.
Conf. Power Electron. Drive Syst. (PEDS), 1997, 20lpp. 559-565.

D. A. Wells, “Applications of Lagrange’s equation® electrical and
electromechanical systems,” in Schaum’s OutlineTléory and Problems of
Lagrangian Dynamics, New York: McGraw-Hill, 1976.p02-315.

J. M. A. Scherpen, D. Jeltsema, and J. B. Klaas&m@agrangian modeling of
switching electrical networks,” Syst. Control Letol. 48, pp. 365-374, April
2003.

75



[14] K. Umetani, “A generalized method for Lagrangian deling of power
conversion circuit with integrated magnetic compueg IEEJ Trans. Elect.
Electron. Eng., vol. 7, no. S1, pp. S146-S152, RO\L2.

[15] L. D. Landau and E. M. Lifshitz, “Damped oscillat&J in Mechanics, Oxford,
U. K.: Butterworth- Heinemann, 1976, pp.74-77.

[16] L. D. Landau and E. M. Lifshitz, “The equationswdtion” in Mechanics, Oxford,
U. K.: Butterworth- Heinemann, 1976, pp.2-4.

[17] C. Lanczos, “Kinosthenic or ignorable variables @nmelir elimination,” in The

Variational Principles of Mechanics, 4th ed., Newrk: Dover, 1970, pp.125-
130.

76



Chapter 4

FLUX-BASED LAGRANGIAN FORMULATION FOR MODELING
NONLINEARITY OF CONCENTRATED-WINDING SWITCHED
RELUCTANCE MOTORS

4.1. Introduction

Switched reluctance motors (SRMs) attract reseasthatention to their robust
mechanical construction and cost effectivenes2]ljonetheless, practical applications
of SRMs are still requiring control techniques tban solve the two difficulties: 1. large
torque ripple, 2. large current ripple in the powepply to the motor drivers.

These difficulties are related with intense magnebn-linearity of SRMs [1]-[3].
Therefore, SRM control should preferably consitterrion-linearity. In addition, solving
these difficulties often suffers from slow curreaesponse at the aligned position due to
large inductance. Therefore, SRM control shouldguedly consider the flux waveforms
to minimize the flux change rate, because it igtéoh by the voltage applicable to the
phase winding. At the same time, SRM control mafeyably consider behaviors of both
the motor and its driver simultaneously, becausectirrent ripple in the power supply,
as well as the flux response, is dependent onthetmotor and the driver. Consequently,
progress in SRM control seems to be promoted bgreatytical flux-based non-linear
SRM model that can be directly combined with citenodels of motor drivers

As designing tools of SRM control, a number of gtiehl formulation for modelling
SRMs have been proposed [4]-[15]. However, fevheht meet the above requirements
perfectly.

The purpose of this chapter is to propose a cataliiat meets the requirements. This
chapter employed Lagrangian dynamics as a modettiathod because it can model
kinetics and magnetics simultaneously. Furthermohapter 1 proposed Lagrangian
formulation for electric circuits, enabling Lagraag SRM models to be connected to
motor driver models. Compared to the prior Lagrandgormulation reported in [13], the
proposed formulation provides flux-based models amzbrporates magnetic non-
linearity.

This chapter is composed of the following 4 sedid@ection 4.2 discusses Lagrangian
expression of a system in which both kinetics amecteomagnetics take place
simultaneously. Particularly, we discuss the cdseon-linear electromagnetic media.
Section 4.3 derives the Lagrangian formulation RVS. First, we derive a generalized
formulation of SRMs. Then, we discuss more simgtifformulation, which the author
believe to give more practical model of SRMs. Settd.4 presents an operation analysis
of a simple SRM driving system to show propernessthe derived Lagrangian
formulations. This section also shows that the psep Lagrangian formulations

TReproduced by permission of the Institution of Eegiring & Technology, from K. Umetani, M.
Yamamoto, and E. Hiraki, Simple flux-based Lagrangformulation to model nonlinearity of
concentrated-winding switched reluctance motorsQ2% 2015.
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provides flux-based non-linear models that can healyaed in combination with
Lagrangian models of motor driving circuits.
4.2. Lagrangian Density of Kinetics and Electromagnetism

A. Lagrangian Density of Electromagnetic Fieldsin Non-Linear Media

This subsection derives an expression for Lagrandensity of electromagnetic field
in non-linear media. We start our discussion fromxiell’s equations:

divB(t,x)=0, (4.1)
rotE(t, x) + "Bgt' X)_ . 4.2)
divD(t,x) = p(t,x), (4.3)
rotH(t,x) - "’Dgt’ X) _itx), (4.4)

wheret is the timex is the position vecto) andB are the electric and magnetic flux
density vectors, respectivelf and H are the electric and magnetic field vectors,
respectivelyp is the electric charge; apds the electric current vector.

We introduce the scalar potentialt,x) and the vector potentiél(t,x) such that

B(t,x) = rotA(t,x) : (4.5)
E(t,x)= —w —grady(t,x) = - A(t,x) - gradi(t, x), (4.6)

where a dot over a variable is its time derivative.

Equations (4.5) and (4.6) automatically satisfyL4nd (4.2). Therefore, we only need
to find a Lagrangian representing (4.3) and (4s4d éunction ofy, A, and A .

For convenience, we assume tBaandH implicitly depend o andA only through
E andB, respectively. In other wordB, is a function of tr, andE; andH is a function
of t,r, andB. This indicates that we ignore the relativistifeefs caused by moving media
and regard the velocity of the media is sufficigstinall compared to the light speed.

Particularly, in the linear media, in whidh andH are proportional t@ andH,
respectively, the Lagrangian denslty i1 of the electromagnetic field is proposed in
Chapter 1 as

1

o) @)

L, [ AA)=—pw+] A +%£(t,x)E E

whereg(t,x) and(t,x) are the permittivity and permeability, respedive
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Now, we extend the Lagrangian density to includeressions for the electromagnetic
field in the non-linear media, in whidb andH are non-linear functions & andB,
respectively. As a possible candidate, we consitelagrangian density nf defined as

E B
Ly_w ==PY +j A+ [DOE - [H [&B. (4.8)
0 0

In linear media, we have=¢E andH=B/u. Therefore, (4.8) is a natural extension of
Lair. In order to confirm properness of this Lagrangae examine whether it yields
(4.3) and (4.4).

We consider a system of electromagnetic field atebrateLq nr over a large regiox
containing this system. Then, the result of thegmtion gives Lagrangia. of this
system. Hence, we have

L. A A)=-[ pyetx+ [ mdx+jdeDmE—jdeH (@B, (4.9)

wheredx is the volume element.

Next, we take the variation &f with respect tap, A, and A . We consider arbitrary
infinitesimal change®y anddA in ¢ andA inside the regioV. Therefore, we assume
oY=0 anddA = A =0 at the surface of. We replacey A, andA in (4.9) by g#+dy,
A+0A and A +JA, respectively. Then, we subtract from the resultant Lagrangian
Lat+dla. Noting thatD andH depend implicitly ony andA throughE andB, we obtain
the infinitesimal changélLa in LagrangiariLa as

A, = -[ poydx+ [ j BAdx + [ D [BEdx - [ H (BB, (4.10)
v v v v

where &E = —graddiy — A and B = rot A .
The third right-hand term can be developed as\ialo

[ D#Edx = ~[ D [graddiycx - [ D (BAdx
= [ oyDdQ + [ div D Jyelx ~ [ D [PAdx (4.11)

= jdiv Dawx—ijSAdx,
\% \%

whereQ is the surface of the regidhand 2 is its area element.
Similarly, the fourth right-hand term in (4.10) cbe developed as follows:
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_J'H Dde=IH di\dQ—J'rotH [HAAX
Y Q v

(4.12)
= —J' rotH [HAdX
\%
Substituting (4.11) and (4.12) into (4.10) yields
A, = [ (- p+divD)oydx - [ D (BAdx
Y Y (4.13)

+[(j - rotH) BAdx,

\
Hence, we obtain functional derivativék, / oy, d,/ A, A,/ A as follows:

a : a a, _.
& =-p+divD, ——*=-D, ——2=j-rotH. :
o P 7 ) (4.14)

The functional derivatives of a Lagrangian musts$atEuler-Lagrange’s equation.
Hence, we have

d(d,) 4

—|Sa|-"a= _
dt[&j A (#.13)
a, _

%= (4.16)

Substituting (4.14) into (4.15) and (4.16) yields3) and (4.4). Consequently, the
Lagrangian densita nf is confirmed to be a proper Lagrangian of the ted&cagnetic
field in non-linear media.

B. Lagrangian Density I ncorporating Kinetics and Electromagnetism

Although the Lagrangian densitydant provides proper equations of the
electromagnetism, it is not sufficient to deriveagrangian formulation for modeling a
SRM. The reason is that the motor converts thereleagnetic energy into the kinetic
energy, or vice versa. Hence, the Lagrangian mafceemotor must comprise the kinetics
as well as the electromagnetism, whereas defined in (4.8) does not comprise the
kinetics.

In order to incorporate both the kinetics and tlecteomagnetism, we introduce a
Lagrangian densitld defined as

Lylro b, A A)= Z% mg2o(x 1)~ U, (o(x—1,) + Ly o, (4.17)
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wheres is an identifier of point massesk is the mass of a point mass «(t) is the
position vector of the point massdis the Dirac’s delta function in 3 dimensions, and
Us(x) is the kinetic potential for the point mass

Because now we discuss the motion of point mas#ésowwithout electric charge,
we give definitions tgo(t,x) andj(t,x) in Ld_nf incorporated irLd as a distribution and a
flow of charged point masses, e.g. electrons:

(4.18)

plt.x)= Z a.0(x =)

(4.19)

j(t.x)= ;qsr‘sd(x -r),

wheregs is the charge of the point masdAs for a point mass without electric charge,
we regardys=0.

The first and second right-hand terms of (4.17)ndb contain the scalar and vector
potentials, i.e. or A. In addition, the above definitions are also ffemm ¢ or A.
Therefore, the newly introduced Lagrangian densisp yields the proper equations of
the electromagnetic field, i.e. (4.3) and (4.4)aagsult of taking variation with respect

toy, A, andA .
Accordingly, we only need to confirm thiad yields a proper equation of motion of a
point mass. For this purpose, we take variatioh wespect td’ andrs.

Again, we consider a system in which the kinetiod the electromagnetics take place
and integrate_qs over a spatial regioV that covers the system. Then, the result of
integration is Lagrangialy of the system. Hence, we have

Lb(rs’rsiwiA’A):IdeX' (4.20)

Now, we consider arbitrary infinitesimal chang&sanddrs in f, andrs. We replace
. andrs in (4.20) byr +d& andrs+ors, respectively. Then, we subtrdat from the

resultant Lagrangian to obtain infinitesimal chadbein the Lagrangian. As a result, we
have

&y = {0, olc=r.) @ T+ [{(mer, + ) & Jox-r,Jox

\% \%

{Dr J(X - rS) ms}Tst + (rTLrS + qSA(t’ rS)) ms’

S

(4.21)

<e—,

1l gy

where T,(t, x)E%er'SZ—US—qu+qu'SDA. The operator O, is the three

dimensional nabla  with respect to position vectors;, namely,
0., =T (a/ary,a/arsy,a/arsz) in 3D Cartesian coordinate, if we expressas a vector
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T(rsx,rsy,rsz) in the coordinate. In the rightmost equality, weed the fact thats is

confined inside the regiovi of the system.
The first term of the rightmost side can be devetbas follows:

J'{D A(x - r)Dﬁ}de——.[ 0,0(x —r,) T, Jdx

- jm do(x—r JT.&.) dx+J. O, [T & )A(x -, ) (4.22)

= jm fo(x -r )T} dx+jDTm§r ~r,)dx,

where the operatdr, is the three dimensional nabla with respect tatjpmsvectorx;
namely, 0, =(0/0x,0/9y,0/0z) in 3D Cartesian coordinate, if we exprasss a vector
(x,y,2) in the coordinate.

If we apply the Gauss’ divergence theorem to tret ferm of the rightmost side, we

can find that the term vanishes because the vejuesented by braces in the term equals
to zero anywhere on the surface of the redioAs a result, we obtain

({0, ot -r) @ Jrax = [ (O,T, @ )olx 1. ) = 0, T,(t.r..r.) &,

v v (4.23)
= {_ DrSUS(rs) - qursw(t’ rs) + qs(rs |:|:|:|r$ )A(t’ rs)+ qsrs X{DrS X A(t’ rs)}}ms'

According to (4.21) and (4.23), we obtain functibaerivatives:

g_b = _DrSUs(rs) - qursw(t’ rs) + qs(fs |:D:'rs )A(t’ rs) + qsrs ><{DrS X A(t’ rs)}' (424)

a .

5 =M+ aALT) (4.25)
Consequently, Euler-Lagrange’s equation with resfzet;, andrs yields

Sme+a Al ) +0,0.()+ a0 o)

(4.26)

~q,(r,m, )Alr,)-ar x{0, xAtr,)}
=mi, +qA(tr,)+0,U,(r.) + a0, ¢r,) - ar <{0, xAlr )} =o.

The rightmost equality in (4.26) can be simplifisingE andB according to (4.5) and
(4.6):

rr]Si;S = _DI’SUS(rS) + qS{E(t’ rS) + r'S X B(t’ rS)}' (427)
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Stator

Rotor pole

Stator pole

Winding

U, V, W: phases of the motor

Fig. 4.1. Example of a concentrated-winding switched relucea
motor.

Equation (4.27) is a proper equation of motion gfcant mass under influence of
Lorenz force.

Consequently, the Lagrangian dendityis confirmed to provide the kinetics as well
as the electromagnetism in non-linear media, inbligathat we can compose a
Lagrangian expression for a SRM based.an

4. 3. Lagrangian Formulation of a Switched Reluctance Motor

This section derives the Lagrangian formulationnfmdeling a concentrated-winding
SRM. The motor is assumed to have multiple rotde pairs; and each rotor pole pair
has as many stator poles as the phases, likevasadtor shown in Fig. 4.1. Hence, each
phase consist of series-connected as many windsgjse rotor pole pairs.

The Lagrangian modéln of the SRM can be obtained by integrating the Aagran
densityLd over a spatial regio¥m that covers the motor; namely,

Ly = Ly (4.28)

Vin

For convenience, we assume that effect of the iipetentialUs(x), e.g. the gravity,
is sufficiently small and that the motor is elecatly neutral at any part of the motor.
Hence, we can substitutés(x)=0 and o(t,x)=0. In addition, we can also ignox)
because of (4.3) angt,x)=0. As a result, we obtain:

L = IZ%er'SZJ(x —r,Jax+ [ ] [Adx - jdeH (@B
e " e (4.29)
=Z%msrj + [ j IAdx - [ x| H @B,
s Vi, V,, 0
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The first term of the rightmost side of (4.29) regents the total kinetic energy of the
system. As for a normal motor with a rotating rotorly the rotor is a moving part. Hence,
the term equals to the kinetic energy of the ratbtaining

1 . 1, 4
—_mfS ==1.6", )
LM =50 (4.30)

wherelr is the moment of inertia of the rotor a@ds the mechanical angle.

The second term of the rightmost side is the volimtegration of the scalar product
of the current density vectpand the vector potentiAl. Because the windings on a stator
and a rotor is the only parts that carry the curriwe term can be obtained by integrating
the scalar product over the windings. Accordin@tapter 1, the result can be expressed
as follows:

[iRdx=3 Naa, (4.31)

Vm

wherei is the index of the phash; is the number of turns of a winding belonging to
the phase, andg is the sum of the flux interlinking with the wimdjs of the phase The
variableqi is the cumulative charge of the phasefined as

q = j'dt [is, (4.32)
t S

0

whereto is the initial time Sis the cross-section of the wire of a winding Ingling to
the phase, anddS is the area element.

The third term of the rightmost side representstoli@ magnetic energy stored in the
motor. Because the mechanical anglend the fluxesa, ¢, ...suffice to determine the
magnetic state of the motor, the third term camety@essed as a function only &and
a e, ...

Now, we seek for the function. We imagine thatrbter position is fixed. We denote

the energy inflow per second to the motdhrough the phaseasP.. If the voltageVi is
applied to the phasethenPi can be expressed as

P=VI, :Nid_%&:ﬁd_%,
dat N dt

(4.33)

whereli is the current through the windimg@ndFi=Nili is the magneto-motive force
of the winding. The magneto-motive forEeis generally the function of the mechanical
anglefand the fluxes, @, ... .

We consider making an infinitesimal chardgein @ by applying the voltag®i during
small period&. Then, the energyki added to make the changdeg is
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[Motor Driver ] [Switched Reluctance Motoﬂ
@

Winding
(U,V,W indicate the phases)

Moment of inertia

Im

o ¢
Kinetic /'

Su Sw Sy S Sw Sw dissipation
of the load 7/

Fig. 4.2. Example of a switched reluctance motor drivingeys
I .
& =Pa= EE& =Fog. (4.34)

Next, we consider making infinitesimal changgs, og, ... in @, @, ... during small
period&. The total energgkE added to make the changes is

fzizdii :ZEJW- (4.35)

Because we assume that the rotor position is fitkedenergyE equals to the increase
in the magnetic energy stored in the motor. Hetlee magnetic energy in the rotor can

be expressed as the total energy added throughitidéngs to generate the fluxes ¢,
... . If we denote the magnetic state of the motax esctorp= (@, ¢, ...)!, we obtain

j deH (6B :TF [dle, (4.36)
V,, 0 0

wheredp=(d@, d¢gz, ...)t and is a function oPand @, ¢, ... defined a§=(F1, F2,
L)t
Note thatFi cannot be replaced by another expression for thgneto-motive force
N;¢ becauséi is defined under the imaginary condition thatrb®r position is fixed.
The right-hand side of (4.36) is integrated undhés imaginary condition. On the other
hand, N,q; is the real magneto-motive force. Therefore, r@pgFi by NG will result
in improper integration in (4.36).
As discussed above, all three terms in the righttrale of (4.29) has been simplified.
As a result, we obtain a simplified expressiontfa motor Lagrangiabm:
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1. ., ?
LmZEIr92+ZNiqi(q—IFE1(p. (4.37)
i 0

Equation (4.37) employs the magneto-motive foroexjaress the electric properties of
the motor. However, the inductance may actuallynimre widely utilized than the

magneto-motive force. If the inductance is morevemient, we can rewrite the motor
LagrangianLm based on the inductance.

LetM be the inductance matrix of the windings in theenoAccording to a definition
of the inductance matrix, we have

N I
d l@ _ d 1
dt Nz@ M a |2
: (4.38)
N9 N IE
dt dt
whereN is a diagonal matrix whose diagonal elememiis
N, 0 O
N=0 N, O (4.39)
0O O

Generally, each element of the inductance matrixs M function of the mechanical

angled and the fluxesa, @, ... . Integrating (4.38) with respect to time, wean the
magneto-motive force vectérexpressed using the inductance matrix:

¢
F =M™ N’dg. (4.40)
0

Substituting (4.40) into (4.37), we obtain the nmdtagrangiarn.m expressed using the
inductance matrix.

ofo
Lm=%|r6?2+ZNiqigq—J'UM‘1N2d(p]mi(p. (4.41)
i o\ o

If we can neglect the mutual inductances betweeniindings, we can approximate
the inductance matrix as a diagonal matrix whossegahal elements are the self-
inductance)\s, /\z, ... . In this case we can simplify the equatiod 13-

1 o ) gt a N<2 (442)
L. —EI,B +ZNiqi¢g—Z_([d¢{£Tid(g.
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If we can further neglect magnetic saturation efsblf-inductance, we can regard the
self-inductancé\i as a constant and further simplify the motor Lagran:

1 . N 2
L ==186°+S Nagg-> ——¢@°. 4.43
n=5l Z 4G9 Zijz/\iw (4.43)

4.4. Analytical Verification of Lagrangian Formulation

This section theoretically confirms that the mot@grangianLm can yield proper
equations of motor driving. We consider a simpldondriving system as shown in Fig.
4.2. In this system, a 3-phase concentrated win8RY! is driven by a battery (i.e. a
constant voltage source) and a basic inverter uadasic load. We analyze this system
usingLm to verify that the result is the same as the Wmetiwn equations.

In the first step, we compose Lagrangiags of this whole system as a sum of
Lagrangian of the inverter, the motor, and kin&iax:

= 4.44
Lsys_Linv+Lm+L|0ad’ ( )

whereLinv andLicad are Lagrangian of the inverter and the kinetid|agaspectively.

LagrandiarLinv can be configured from Lagrangian modeling oféhextronic circuit
as discussed in Chapter 1. According to Chapteelgbtain

Lin, = EQe +A(O|E -quij . (4.45)

whereE is the voltage of the power sourcg,is the charge supplied from the power
source,/ is the Lagrangian multiplier, andlis the dissipation coefficient of the load.
Parametes is the switching-state indicator. 1SS are in the on-stats=1; if Si, Ss
are in the on-stats=-1; and if Si, Ssi or Si, Sii are in the on-state=0.

LagrangiarLicad can be configured according to kinetics of a riggaly. According to
[16], we have

Lload = % I mg2 . (446)

wherelm is the moment of inertia of the kinetic load.

Besides, we introduce the dissipation funciiag [17] of the driving system in order
to express kinetic energy dissipation at the kanletd. According to [17], we can express
Dsys as

Dy = %392. (4.47)
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First, we adopt the general expression (4.3Dma#\s a result, Lagrangiays of the
whole system can be expressed as follows:

1 . 1, . . h
Ly :§|m62 +Eq: +/1(qE —quij+§|r92 +ZNiqu_IF@(P- (4.48)
i I 0

Now, we apply (4.47) and (4.48) to Euler-Lagrangeagion (1.26). Euler-Lagrange
equations with respect tp, A, gi, @, and@yield the following equations:

E+4=0, (4.49)

Oe —Zi)sqi =0 (4.50)

Ng=-1s, (4.51)

NG —F (6.4, 6.-)=0, (4.52)
. dl¢ )

(|m+|r)9+ﬁ¢£F@¢=-Zﬁ, (4.53)

where a bar with subscripp‘indicates that the partial derivative is takenle/keeping
all @ constant. We eliminate the Lagrangian multiplient (4.49) and (4.51), and rewrite
(4.49)—(4.53). Then, we have

O =Zi‘,sqi , (4.54)
N =SE, (4.55)
NG =F (6,46, ), (4.56)
r:(|m+|r)é+59:—%Akap. (4.57)

Equation (4.55) gives dynamics of the flux in tHe\& Furthermore, (4.56) and (4.57)
give the phase curretdf and the torque as non-linear functions of the flux. Therefore,

the proposed Lagrangian SRM formulation providésyabased model that can express
non-linearity of SRMs.

Equations (4.54)—(4.56) are apparently proper. Eoguoa(4.54) indicates the
conservation of the electric charge at the invelerause the charge from the power
supply equals to the charge flowing through higlesswitches &-w and Su-w of the
motor driver. Equation (4.55) indicates Faradagis.|Equation (4.56) indicates that the
phase current equals to the magnetomotive féilce @, @, ...).
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Equation (4.57) gives a torque; and is also apjmtgibecause its right-most side
equals to the partial derivative of magnetic corgn&V" with respect t@@while keeping
the phase current constant. In fadt,can be expressed as

F °
W = [¢(6,F,F,, ) OF =9 F - [F(6,0,¢3,) o (4.58)
0 0

If we assume infinitesimal chang® in the mechanical angl@under constant phase
current, we can obtain the chand@/ in W™ as follows:

W :a_q) i
6 (oJ7)

59[IF—(

TF(e,qq,@,---) Ei(p]é'ﬁ, (4.59)

cur cur 0

where bars with subscriptur’ indicate that the partial derivative is taken ighi
keeping all the phase current constant. Develo@sP), we obtain

v =29 somF-| 2 TF(B@@ ..) g |06

06|, agl,y T
0 | [fﬂ

- —|E

Zi: aWJ.; (Q’Q’@, )m(l)j ae CUI’59

; . 20 (4.60)

_0¢ @

=_r F-|—| |F ->F

09w,59 (0%! 6.9.0, )mkaJe 2 l aecu,59

49
06

where bars with subscripg‘indicate that the partial derivative is taken lghieeping
all the flux@ constant.

Finally, we obtain the following relation:

]EF(Q,Q,@,--) mkaae,

A
060

a ¢
=—1 |Fde. 4.61
cur ag(ﬂ'([ ? ( ° )

Equation (4.61) indicates that (4.57) is a propgration of torque.

Consequently, the generalized motor Lagrangianngive (4.37) is found to yield
proper equations of motor driving.

Next, we adopt the simplified formulation (4.43)Las Substituting (4.43), (4.45), and
(4.46) into (4.44), Lagrangidnys of the whole system can be obtained as
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2
L :%Iméz +Eqe +A(qg —quij% .6+ Nag -Z;'—,i\czf - (4.62)

Now, we apply (4.47) and (4.62) to Euler-Lagrangeation (1.26). Euler-Lagrange
equations with respect tg, A, gi, @, and8yield the following equations after eliminating
the Lagrangian multiplier:

O =iqui , (4.63)

Ng=sE, (4.64)

NG =Ng, (4.65)
_ S h_ o 0 Ni2 5

r=(1,+1,)0+70= izaew(Z/\iQ]' (4.66)

Equation (4.64) gives dynamics of the flux in tieMs Furthermore, (4.65) and (4.66)
give the phase curreidf and the torque as non-linear functions of the flux. Therefore,

the simplified Lagrangian SRM formulation given @k37) also provides a flux-based
model. Substituting (4.65) into (4.66), we obtdir tvell-known expression for torque:

Niz 2= Ni2¢{2 o(1)_ Nizwza/\i_ 10N, . >
¢[2/\i¢?]_ 2 2 06\ A 3 2.7 ag_Zzﬁqi . (4.67)

0
T:_Z@

In the second equality in the above equation, aabaid 8 is eliminated becausk is
assumed to be a function only &f

Consequently, the simplified motor Lagrangian giten(4.43) is also found to yield
proper equations of motor driving.

4.5. Conclusions

Practical applications of switched reluctance no(&RMs) require control techniques
that can solve large torque ripple and large caumg@ple in power supply. In order to
promote development of these techniques, this ehaptoposed a Lagrangian
formulation for flux-based non-linear SRM model&isiformulation can be analysed in
combination with Lagrangian circuit models of motdrivers. Properness of the
formulation is supported by an example of operatioalysis of a simple SRM driving
system.
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Chapter 45

MAGNETIC STRUCTURE INTEGRATING DIFFERENTIAL-MODE
AND COMMON-MODE INDUCTORS WITH IMPROVED
TOLERANCE TO DC SATURATION

5.1. Introduction

Recently, high power density is intensely requirkmt switching converters.
Accordingly, their circuit components are also rieggh to be miniaturized. Particularly,
magnetic devices for EMC filters, such as differnnode (DM) inductors and
common-mode (CM) inductors, often occupy a sigaificvolume. Therefore, a number
of techniques [1]-[11] have been proposed to mimizé DM and CM inductors.

A promising approach is to integrate a DM inducod a CM inductor into a single
device. As well-known examples [1]—[3], highly igtated structures are proposed based
on planar magnetic cores. These structures arditi@he further integrating capacitors
by inserting a dielectric layer between a pair ¢dnpr windings. However, these
structures can suffer from excessive copper loskigh power applications because
planar core generally requires long wire lengthtfer windings. The same benefit and
problem also tend to occur in the structures ircWiconductive foils are used as windings
[4] because the foils tend to have large DC restggaompared to thick wires. Therefore,
high power applications often prefer integratioohi@iques based on bulk core with
windings of thick wire.

This type of techniques has also been reporteshum@er of studies. These techniques
can be classified into two major categories. Otledsstructural integration [5]-[8], which
integrates DM and CM inductors on separate magneties partly sharing the windings.
Techniques of this category are beneficial in ratlyithe dead space because the cores
can be closely placed by sharing the windings. dtieer category is the magnetic
integration [9]-[11], which integrates DM and CMlirctors on a single magnetic core.
Techniques of this category allow sharing not ahé/windings but also the core between
the DM and CM inductors. Compared to the structurgégration, the magnetic
integration can offer further miniaturization besauhe total core volume may also be
reduced by sharing magnetic paths.

On the other hand, the magnetic integration haswalthck that the CM inductance, as
well as the DM inductance, can saturate becausB@#ux induced by the DM current
can cause magnetic saturation in the shared magregti. This may require expanding
the cross-section of magnetic paths to design sacgdolerance to the magnetic
saturation not only of the DM inductance but alsthe CM inductance. As a result, the
miniaturizing effect of the magnetic integrationyrze hindered.

TReprinted, with permission, from K. Umetani, T. 3eand K. Shirakawa, A Magnetic Structure
Integrating Differential-Mode and Common-Mode Inthrs with Improved Tolerance to DC
Saturation, IEEJ Journal of Industry Applicatiokigy 2015.
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(b)

Fig. 5.1. Magnetic structures integrating DM and CM industor
(a) Proposed structure. (b) Conventional structure.

An effective strategy to alleviate the problemastippress the DC flux. This strategy
generally requires increasing the equivalent nunobéarnsNowm that link with the flux
induced by the DM current. Below, we show the reaso

As an analogy to the basic inductor with a singégnetic path, we can defilhdwm as
the ratio [12] of the total flux linkage to the fluvhen only DM current is applied. Hence,
we obtain (5.1), if we assume constant DM inductdag.

N =LDMIDM
DM —

Bom

Loy |
O@,, :%, (5.1)
DM

wheregow is the flux induced by the DM curreliv.

Accordingly, we can express the DC flgc induced by the DC compondmt in Ipm
as follows:

Loy
Bo =3 (5.2)
DM

Becausd.pom and the maximum value fosc are generally specified as requirement,
increasing\bw is indispensable to suppressipg:.

However, as shown in this chaptlnm is restricted to only half of the total number of
turns on the conventional magnetic structure emgaoin the prior works [9]-[11].
Therefore, the conventional structure often suifem large DC flux induction. Due to
the problem, the conventional structure may noéroéfffective miniaturization of DM
and CM inductors.

The purpose of this chapter is to address the gnoltly proposing a novel magnetic
structure. In the proposed structure, more windimgs can be assigneditibm than the
conventional structure in order to suppress theflD induction. As a result, further
reduction in the core volume can be expected, @matic saturation is a determining
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Fig. 5.2. Magnetic circuit model of the proposed structure.

factor in the cross-sectional area of the magrgtbs, as is often the cases when large
Lowm or largeloc is specified.

This chapter investigates the proposed structutteaifiollowing four sections. Section
5.2 analyzes the operating principles of the pregostructure theoretically. Then,
Section 5.3 verifies the operating principles ekpentally. Section 5.3 also verifies that
the proposed structure can miniaturize the dis@&end CM inductors by the magnetic
integration. Section 5.4 analytically comparesdbee volume between the proposed and
conventional structures to verify the core reductdfect of suppressing the DC flux. In
this comparison, the core dimensions are estimatddr the same wire length and under
the same specifications in which magnetic satunadiominantly determines the cross-
sectional area of magnetic paths. Finally, Sedi&mpresents the conclusions.

5.2. Proposed Magnetic Structure
A. Operating Principles

Figure 5.1(a) illustrates the proposed magneticctitre. The structure has a core with
three legs. The center leg has a gap and two wgsdiith the same number of turns. The
windings on the center leg are both wound so thatddrrent induce the same direction
of flux. Each of the outer legs has a winding catee in series with one of the windings
on the center leg. The windings on the outer leyetihe same number of turns and are
wound so that DM current induce the flux in theesdég in the direction that reinforces
the flux in the center leg.

On the other hand, the conventional magnetic stractmployed in the prior works
[9]-[11] is magnetically equivalent to Fig. 5.1(ltf) differs from the proposed structure
in the windings on the center leg.

Electrical functions of the proposed structure arpivalent to series-connected
discrete DM and CM inductors, as well as the cotigeal structure. Below, we show
the reason utilizing the Lagrangian modeling.

As discussed in Part I, the Lagrangian modelingrsffa systematic method to
transform an integrated magnetic component into egaivalent circuit of basic
transformers and inductors, each of which consikts single closed magnetic path. In
this method, we first translate the physical maigrsttucture into Lagrangian, which can
be directly configured from their electric and matjo networks. Then, we apply a point
transformation [13] to the Lagrangian, obtainingtwer Lagrangian that belongs to a
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Fig. 5.3. Equivalent circuit of the proposed structure.

circuit of basic transformers and inductors. Fialve again translate the resultant
Lagrangian to obtain the equivalent circuit.

Now, we apply this method to the proposed structlitee magnetic circuit of the
proposed structure can be expressed as FigNb.2ndNo are the numbers of turns of
the center leg windings and the outer leg windingspectively.Rc and Ro are the
reluctance of the center leg and the outer legspedively. The two outer legs are
designed to have the same reluctaReeaccording to the designing concept of the
proposed structure. We denote the electric chamageflows through the winding A and
B asqi1 andqe, respectively. Then, translating Fig. 5.2 yields following Lagrangiaih.:

: . . . 1 1 1
L = Noidt + Noth#3 ~Neti2 = NoGs = Rodt’ = Rt = Rt

+Ag+e+4), (5.3)

whereA is a Lagrangian multipliekp, ¢, andg are the fluxes of the left outer leg, the
center leg, and the right outer leg, respectivalyglot over a variable indicates its time
derivative.

The Lagrangian multiplier can be eliminated by swbisng ¢zs=—@—¢2 into (5.3).
Then, we have

L = NG — Noqz(([l + q?) ~ NG ~ N0,
I 7
SR SR ~SRla+af. (5.4)

Next, we apply a point transformation to the restitte purpose of this transformation
is to convert the magnetic energy terms in (5.4),the fifth, sixth, and seventh terms,
into a diagonal form of the fluxes. Then, the remil Lagrangian corresponds to a circuit
of magnetic components each made of a single closgphetic path. Introducing a flux
¢n defined asgp=@+@/2 to eliminatep, we obtain
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L= No(da _q2)¢A _(Nc +%j(q1+%)¢5 - R)¢A2 _(F% +%)% (5-5)

Lagrangian obtained in (5.5) can be translatedanderies connection of discrete DM
and CM inductors as illustrated in Fig. 5.3. Thexfiz constitutes a DM inductor that has
two windings with the number of turidé:+No/2, whereaga constitutes a CM inductor
that has two windings with the number of tuds Note thatNc=0 corresponds to the
conventional structure. BecauBle=0 in Fig. 5.3 gives the equivalent circuit for the
conventional structure, the number of turns ordpsivalent DM inductor equals to only
half of the total number of turns on the converdiostructure. Thus, the proposed
structure increases the number of turns on the Ddigtor by Ac by adding two
windings with the number of turidé. On the other hand, it keeps the number of tums o
the CM inductor unchanged.

B. Meritsand Drawbacks

Now, we examine whether the proposed structurevallts equivalent DM inductor to
have greater number of turns than the conventigtralcture. For this purpose, we
compare the number of turns on the equivalent DdMietor between the proposed and
conventional structures under the same total wingth and the same core dimensions.

First, we investigate the wire length per turn loa tenter and outer legs. As we have
seen in the previous subsection, the flux throbghcenter lege corresponds to the flux
of the DM inductor. On the other hand, the reladign=ga— /2 and @g=—gn— /2
indicate that the fluxes through the outer legstlaeesum of the flux of the CM inductor
and half the flux of the DM inductor. Hence, thess-sectional are® of the outer leg
should be designed at least greater than halfriss<sectional are&c of the center leg.
Accordingly, we have

A <2A.. (5.6)

If we assume the same cross-sectional shape amewrgmter and outer legs, we obtain
the following relation between the perimekeiof the center leg and the perimeligiof
the outer leg using the fact that the perimeteregportional to the square root of the
cross-sectional area:

<42,
Ol <2, (5.7)

Equation (5.7) shows that one turn on the centpideshorter than two turns on the
outer legs. On the other hand, one turn on theecéay is equivalent in the DM inductor
in Fig. 5.3 to two turns on the outer leg. Therefdhe proposed structure can equip its
DM inductor with the same number of turns usingridrowire than the conventional
structure. In other words, the proposed structareegjuip the DM inductor with a greater
number of turns under the same total wire length.
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Table.5.1. Requirement specifications and evaluation resitltise

prototypes.
_ Proposed Discrete
Requirement
Structure Inductors

DM Inductancé 60uH 61uH 60uH
DM Saturation Currefitt 22.5A 26.4A 22.8A
CM Inductancé 44QuH 476uH 447H
CM Saturation Curreft 22.5A 31.1A —
DC Resistance 16.5mM 16.1nm0Q 16.4nQ0

a) Inductance is specified when the DM currerit@A is applied.
b) DM current when the DM or CM inductance decesa® 75% of its initial value.

' } Magnetic Core

Bobbin
L= //_j
Magnetic == .
Wire — > Windings
./
Outer leg Outer leg

Center leg Magnetic Core

Fig. 5.4. Physical structure of the prototype of the propose
structure.

This indicates that the proposed structure carcifey suppress the DC flux induced
by the DC component in the DM current. Becauselx@eflux flows in both the center
and outer legs, excessive DC flux increases ngtlRnbut alsoRo, causing saturation of
both the DM and CM inductance. Hence, the propesedture can suppress saturation
of both the DM and CM inductance, thus avoiding ¢bater and outer legs from being
designed with expanded cross-section to ensuressa@getolerance to saturation.
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Fig. 5.5. Photographs of the prototype of the proposed &trec
(a) Front side. (b) Rear side.

On the other hand, the proposed structure haseammalinber of turns on the outer legs
than the conventional structure under the saméwata length. Therefore, the proposed
structure has a drawback that its equivalent CMigtat has a smaller number of turns
than the conventional structure. This indicatestti@proposed structure requires smaller
Ro in order to keep the same CM inductance as theectional structure.

If reducingRo inevitably requires for expanding the cross-sectibthe outer legs, for
example when we cannot employ a core material Wwgher permeability, the proposed
structure may not lead to effective reduction ia tlore volume. However, the proposed
structure can offer effective core reduction inestltonditions, for example when
designing necessary tolerance to the DC flux detersthe cross-sectional area rather
than designing necessary value Ry. We present a case study to estimate the core
reduction effect under this condition in Sectio#.5.

5.3. Experiments

The purpose of this section is to confirm experitaiyithe operating principles of the
proposed structure. The experiment evaluated thewimg two subjects. One is the
functional equivalence of the proposed structurthéodiscrete DM and CM inductors.
The other is miniaturization of the discrete inadustby the magnetic integration using
the proposed structure.

A. Prototypes

We developed two prototypes providing the DM and @lluctance under the same
requirement specifications presented in TableGrike is the proposed structure; and the
other is the series-connected discrete DM and GMadtors. These specifications were
designed as a part of an input filter of a PFC eoter, whose maximum input AC current
was set at 16Arms. In this application, the inputent has the frequency far lower than
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Gap 0.9mm

L1: DM Inductor T1: CM Inductor
Material  Ferrite PC47 Material  Ferrite PC47
Core PCA47PQ32/30Z-12 Core PC47PQ32/30Z-12
(TDK Corp.) (TDK Corp.)
Height 31mm Height 30mm
Windings $0.9x4parallel Windings $0.9x4parallel
9.5T:9.5T 8.5T:8.5T

Fig. 5.6. Photograph of the prototype of the discrete inolsct

the DM noise. Hence, the input current can be deghas the DC component in the DM
current. We specified the DM and CM inductancehatihstantaneous input current of
16A. In addition, we required the saturation curi@rthe DM and CM inductance to be
greater than the maximum instantaneous input cyrcen22.5A.

Both prototypes were made of ferrite cores withilsimpermeability and saturation
flux density. The prototype of the proposed streeeta made of PC40 (TDK Corporation),
whereas that of the discrete inductors is madeG#7/P(TDK Corporation). PC40 and
PC47 have the typical relative permeability of 23@@d 2400, respectively; and they have
the saturation flux density of 510mT and 530mT peesively. We designed these
prototypes to have the same vertical dimensionthedame average height so that the
horizontal dimension reflects the volume.

Figure 5.4 illustrates the physical structure @ pinototype of the proposed structure.
In the prototype, we placed the flattened centgiinghe front side and the outer legs in
the rear side. This disposition is beneficial inhamcing the CM inductance by
minimizing flux path length through the two outegs$. Additionally, for easy assembly,
we installed two gaps in the top and bottom beaess the center leg, respectively, to
provide the reluctanc&c (corresponding to the gap on the center leg in bid).
Contrarily, we installed no gap on the outer |éfse photographs of the prototype are
presented in Fig. 5.5.

The cross-sectional area of the center leg wasguedi so that the maximum
instantaneous input current approximately indudes daturation flux density there.
Meanwhile, we designed the cross-sectional areéheobuter leg 1.19 times as great as
that of the center leg. Because the DC flux indhier leg is half of that in the center leg,
the DC flux density in the outer leg does not exicé2% of the saturation flux density.
Hence, the outer leg was designed with sufficieatgim of the DC flux to suppress the
CM inductance decrease.
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Fig. 5.7. Evaluation circuits of the conversion ratios besw@®M
and CM noise. (a) Evaluation of CM noise resporséOM noise
excitation. (b) Evaluation of DM noise respons€i noise excitation.

On the other hand, the prototype of the discrededtors was made of two basic PQ
cores, as shown in Fig. 5.6. We designed wiregif thindings to have the similar cross-
sectional area as the prototype of the proposedtate. In addition, we designed this
prototype to have similar DC resistance as theopype of the proposed structure, as
shown in Table 5.1.

B. Functional Equivalence between the Prototypes

We confirmed that the proposed structure is fumetily equivalent to series-connected
discrete inductors by evaluating conversion ratiesveen DM and CM noise, i.e. CM
voltage response to DM noise excitation and DMag@tresponse to CM noise excitation.
The conversion ratios must vanish in series-comueaeal DM and CM inductors.
Hence, we need to verify that the prototype of pheposed structure shows as small
conversion ratios as the prototype of the disdretactors.

Evaluation circuits of the conversion ratios aregented in Fig. 5.7. We connected the
windings A and B in series as shown in Fig. 5.afa] Fig. 5.7(b). Then, we applied AC
voltage signal with the amplitude 85Vpeak to the series-connected windings.
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Fig. 5.8. Measured conversion ratios. (a) Ratio of CM noise
response to DM noise excitation. (b) Ratio of DMseaesponse to CM
noise excitation.

Now, we express the voltage induced in each windsigg the DM voltag&bm and
the CM voltageéVew. If we denote the induced voltage in the windingid B as/a and
VB, respectively, we have

{VA :VCM +VDM’ (5 8)
VB =VCM _VDM'

Note that the AC signal voltage correspond¥46Vs, i.e. 2/owm, in Fig. 5.7(a) and to
Vat+Va, i.e. 2/cwm, in Fig. 5.7(b). Hence, the AC signal is a DM aglé source that excites
DM noise current in Fig. 5.7(a) and a CM voltagarse that excites CM noise current
in Fig. 5.7(b).

We connected the midpoint between the terminaiseoAC signal to the ground. Then,
we measured the voltage potential at the connegpiong of the windings A and B. The
measured voltage represents the CM voltage resporisein Fig 5.7(a) and the DM
voltage responseVow in Fig. 5.7(b). We obtained the conversion rabigsiormalizing
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the amplitude of the measured voltage by half theldaude of the AC signal voltage.
The normalized voltage in Fig. 5.7(a) correspomdghe ratio of CM noise response to
DM noise excitation, and that in Fig. 5.7(b) copmsds to the ratio of DM noise response
to CM noise excitation.

We examined the conversion ratios in the frequeange below 500kHz because the
dimensional resonance may deteriorate the soft-etegproperty of the ferrite core
above the frequency. Figure 5.8 shows the reslitis.ratios of the proposed structure
were found approximately as small as those of tberete inductors. Both the prototypes
showed the ratio of CM noise response smaller ffanand the ratio of DM noise
response smaller than 1% below 500kHz.

Consequently, we concluded that the two prototgpespproximately equivalent each
to the other in their electrical functions, as estpd from the theory.

C. DM and CM Filtering Capability

Next, we confirmed that the two prototypes haveilaimfiltering capability by
evaluating the DM and CM inductance as well afxlkand CM saturation current. The
evaluation methods are as follows.

Figure 5.9 illustrates the evaluation circuit af fbM inductance and the DM saturation
current. The windings A and B were connected imesen a similar manner as in Fig.
5.7(a). Therefore, DM voltage was applied to thetqtiype during the on-state of the
switch S1. We held S1 in the on-state until the BiMrent sufficiently saturated the
prototype. At the same time, we measured the appttageVcoi and the DM current
IcoiL. The currentcoi increased monotonically during the on-state oaSilustrated in
Fig. 5.9(b). Hence, we obtained the DM inductabse as the differential inductance
[12] defined by

Vv
Low =———, (5.9)
oM dlCOIL/dt
wheret is the time. The DM inductant®wm can be obtained as a functionafiL. The
DM saturation current is the DM currdiabi. whenLom decreases to 75% of its value at
lcoiL=0A.

The method to evaluate the CM inductance is slghtbre complicated than the
method for the DM inductance. Figure 5.10(a) ilasts the evaluation circuit. In this
experiment, we further connected the capacitor @i twe capacitance of 1nF between
the ground and the connecting point of the windiaAgand B. Then, we held the switch
S1 in the on-state until the DM current increasedhte predetermined levébc as
illustrated in Fig. 5.10(b). After the turn-off 8fL, the DM current circulated through the
diode D1. The circulating DM current maintaineceitsfor a while because no DM
voltage was applied to the prototype.
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Fig. 5.9. Method to evaluate the DM inductance and the DM
saturation current. (a) Evaluation circuit. (b) ¥gle and current
waveforms in the evaluation process.

At the same time, an LC oscillation occurred betwdiee capacitor C1 and the
prototype. This oscillation was excited at the tafhof S1, because the voltaye of the
capacitor C1 was approximately half of the supmitage of 15V at the turn-off of S1
and then/c was going to settle finally to zero as the ostidlawas dissipated. As a result,
the voltage and current waveforms can be illusrateFig. 5.10(b). Note that the voltage
Vc equals to the CM voltagécm of the prototype when the DM current circulatestigh
D1. Therefore, this oscillation corresponds toltleoscillation between C1 and the CM
inductancd.cm of the prototype. Hence, we obtairiegh according to

_ 1
Cibs ’

LCM

, (5.10)

whereCi is the capacitance of C1 aadsc is the angular frequency of the oscillation.
The CM inductancé.cuw can be obtained as a functionlet by determiningLcw at
various levels ofloc. The CM saturation current is the DM currdat when Lcm
decreases to 75% of its valud a¢=0A.

The measurement resultslafv andLcm are presented in Fig. 5.11. As summarized in
Table 5.1, evaluation results of both the protosypet the requirement specifications.
They showed approximately the same DM and CM irehee. On the other hand, the
proposed structure showed slightly better DM saimmacurrent than the discrete
inductors. As for saturation of the CM inductanosly the proposed structure has the
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Fig. 5.10. Method to evaluate the CM inductance and the CM
saturation current. (a) Evaluation circuit. (b) ¥ge and current
waveforms in the evaluation process.

saturation current because the discrete CM indulties not saturate by the DM current.
Nonetheless, the proposed structure showed CM admtar current far above the
requirement specification.

Consequently, the prototypes are confirmed to lsawdar filtering capability.

D. Comparison of the Volume

Finally, we compared the volume between the prptesy The result is shown in Fig.
5.12. Because the prototypes have the same vediicension and the same average
height, the horizontal dimension reflects the totalume including the dead space.
Comparing the horizontal dimension between thegbypes, we found that the proposed
structure reduced the total volume by 31%.
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Fig. 5.11. Measurement results of (a) the DM inductabgg and
(b) the CM inductanckcm.

This reduction effect was contributed not only tiyneating dead space but also by
reducing the core. According to comparison of tee aore volume, we found that the
proposed structure also reduced the core volumk7Bfy. Consequently, we concluded
that the proposed structure successfully miniagarithe discrete inductors.

5.4. CoreReduction Effect of Suppressing DC Flux

This section analytically estimates the core raductffect of the proposed structure
in comparison with the conventional structure shanwhig. 5.1(b). For this purpose, we
estimates the core dimensions of the conventidnadtsire, when the same specifications
as Table 5.1 is applied and the same physicalstaneture as Fig. 5.4 is employed. We
determine the core dimensions of the conventiamattre by modifying the prototype
of the proposed structure discussed in the prewgeason. Then, we compare the core
volume between the estimated conventional stru@ncethe prototype of the proposed
structure.
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When estimating the conventional structure, wetlsetotal wire length the same as
the prototype of the proposed structure. HencePiigesistance can be kept the same
without expanding the cross-section of the wire tnother hand, we expand the cross-
section of magnetic paths to keep the DM and CMra#ibn current the same as the
prototype of the proposed structure. For conver@gwe assume the same cross-sectional
shapes of the center and outer legs as the pretatfyfhe proposed structure, when we
expand the cross-section. In addition, we adRiseind Ro to keep the DM and CM
inductance the same as the prototype of the prdpstsecture. When we adjuBb, we
change the permeability of the core material wkeping the saturation flux density
unchanged. As for adjustinBc, we assume that reluctance of the air gaps mainly
contributesRc and we adjust the gap length to obtain appropvalige forRc.

In the first step, we compose the conventionalcsting directly on the magnetic core
employed in the prototype of the proposed structBeeause the total wire length is kept
unchanged, this conventional structure has ther de¢ewindings with the number of
turnsNo_temp Set at 16.

Next, we expand the cross-section of the magnetie. dWe assume to enlarge the
cross-sectional area of the outer leg by a faxtdmen, the number of turi& mod of the
outer leg windings after this modification shoukldhanged according to (5.11) because
the perimeter of the cross-section is expandedoby

No mos = No_arp/Va =16/4/a. (5.11)

In order to estimate that provides the same CM saturation current aptbposed
structure, we consider the DC fluxgawhen the DC component in the DM current equals
to the CM saturation current. We denote the DC fluxhe expanded core at the CM
saturation current a@ mod, and that in the prototype of the proposed strectisg org.

108



Gap

0.91mm[fF" 711
1 Center leg §
Center leg
29 |k . s \ 11324
mm|| Outer i | Outer { Gap Outer f i Outer mm
leg i | leg | TAMM leg i leg
v - A I VTR YRR— v
35mm - ) 42mm g

(@) (b)

Fig. 5.13. Top view of (a) the core in the prototype of tmegosed
structure and (b) the estimated core of the conwealt structure. The
solid lines illustrate the outline of the top beamne; and the dotted lines
illustrate the outline of the center and outer legs

Because we require the same DM inductdnge and the same CM saturation current,
we have the following relation according to (5.8§&ig. 5.3:

¢2_mod _ 2NC_Org + NO_org — 20 (512)

D org No_mod NO_mod

whereNc org andNo org are the numbers of turns of the center leg wirgliagd the
outer leg windings in the prototype of the propostdcture, respectively.

Because the reluctan&® determines the CM inductance, increase ratlocédit the
CM saturation current must be the same as thetype®f the proposed structure in order
to accomplish the same CM saturation current. Adiogty, the DC flux density in the
outer legs at the CM saturation current must begded to be the same as the prototype
of the proposed structure. Hence, we have

(5.13)
a= ¢2_mod )
¢2_org
Equations (5.11)—(5.13) determiaeandNo_mod:
(5.14)

a=156 Ny =13

The DC flux density in the center leg at the DMusation current must also be
designed to be the same as the prototype of thmpeal structure in order to accomplish
the same DM saturation current. As a result, we aé&ed to expand the cross-section of
the center leg by, according to similar discussion to obtain (5.18)addition, we need
to expand the cross-section of the top and botteamis bya because the DC flux also
flows through the beams.

The above discussion also determines the gap lextgtie top and bottom beams of
the estimated core of the conventional structuetldmod andlg org be the gap length of
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the estimated core and the proposed structuregctgply. Applying Ampere’s law to
the closed flux path passing through the centeatedjone of the outer legs, we obtain
the following equation:

(5.15)
B
Zﬂ_satlg_org = (ZNC_org + NO_org )I sat !
9
, B, | N | (5.16)
_ mod — 'YO_mod ' sat
'ug g_ _

whereBsa is the DC flux density at the DM saturation cutres, andyg is the absolute
permeability of the gap material. From (5.15) abd.§), we obtain:

5.17
Ig_mod — NO_mod :1_3 ( )
Igforg 2chorg + NOforg 20
Substitutindg org=0.0014m into (5.17), we obtali§ mod:
l, g = 0.00091 (5.18)

Finally, we obtain the estimation result of theecdimensions as shown in Fig. 5.13.
If we assume the height of the legs the same aprtitetype of the proposed structure,
the net core volume of the conventional structsrestimated as 3&0’'mn?. On the
other hand, the net core volume of the proposedtsire is 2.810°‘mn?. Consequently,
the proposed structure is found to reduce the goleme by 41% compared to the
conventional structure.

5.5. Conclusions

The magnetic integration is an attractive technitqueniniaturize EMC filters. Prior
works have reported EMC filters that applied tleshnique to integrate a DM inductor
and a CM inductor. However, the conventional magn&tructure employed in these
works can often suffer from the magnetic saturaticthe DM or CM inductance, because
the equivalent number of turns for the DM inductaiscrestricted to only half of the total
number of turns and it can be insufficient to seggrDC flux induction. This may lead
to expanding the cross-section of magnetic pathsngure necessary tolerance to the
magnetic saturation, thus hindering the miniatiigreeffect of the magnetic integration.

To address the problem, this chapter proposed al strwucture that allows assigning
more turns to the DM inductance than the conveatistructure. We confirmed that the
proposed structure is equivalent to series-condetiserete DM and CM inductors both
theoretically and experimentally. Furthermore, venfomed experimentally that the
proposed structure can miniaturize the discreteddill CM inductors.
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An analytical estimation was carried out to evaduabre reduction effect of the
proposed structure in comparison with the convealistructure. The result revealed that
the proposed structure reduced the core volumelBy dnder the same total wire length
and under the same specifications, in which saturdty the DC flux is a determining
factor in the cross-sectional area of magneticgath

These results demonstrate effectiveness of theopsapstructure for miniaturizing

EMC filters.
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Chapter 6

UNIDIRECTIONAL BOOST CHOPPER WITH SNUBBER ENERGY
REGENERATION USING AN INTEGRATED MAGNETIC
COMPONENT

6. 1. Introduction

Recently, growing awareness of environmental ptaegives rises to public concern
to vehicles with less environmental burden, suclElgtric Vehicles (EVs), Hybrid
Vehicles (HVs), and Fuel Cell Vehicles (FCVs).

These vehicles are propelled by electric motor®e Motors are driven by inverters,
which convert DC power from battery into AC powdrhen the vehicles travel at high
speed, the inverters need to provide large am@itfcAC voltage to the motors in order
to overcome large induction of the counter electitive force. Consequently, the
inverters often require high DC voltage supply. #os reason, some practical propulsion
systems equip boost choppers between the batteriethe inverters [1][2].

However, the additional boost choppers tend to fothe conversion efficiency.
Moreover, there are risks that the resulting ineeeaf energy loss may overload the
limited cooling capability of the vehicle. Theredoithe choppers need to improve their
efficiency.

As widely known, the soft-switching technique isuseful remedy for the purpose.
Various circuits have been reported in the proceeavorks [3]-[21]. However, their
application to vehicular propulsion generally seembe impeded by the fact that the
load of the chopper, along with the output voltagejes largely according to traveling
conditions. Particularly, the following four difiidties can be listed as the probable reason.

First, some circuit topologies tend to suffer framlimitation on soft-switching
capability in some operating conditions, as rembrtethe works [3][4]. This possibly
results in considerable decrease of efficiency uweéetain driving conditions. Thus, a
soft-switching circuit is preferably capable of tsgivitching regardless of the input-
output voltage relation and the operating modeghsas the continuous or the
discontinuous conduction mode.

Second, some circuit topologies tend to need hayhputational capability or large-
sized memory for implementing soft-switching cohtifeor example, many circuits, as
reported in the works [5]-[10], utilize LC oscillab as the mechanism to achieve soft-
switching. In such cases, the soft-switching cdntmmay require calculation of
trigonometric functions or reference to large-sitaiole in order to find optimal timing

TReprinted, with permission, from K. Umetani, F. m@ato, and K. Yagyu, A unidirectional boost
chopper with snubber energy regeneration usingupled inductor, IEEJ Transactions on Electrical
and Electronic Engineering, May 2014.
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Fig. 6.1. Proposed boost chopper.

for the switching to coincide with the oscillatioifhus, a soft-switching circuit is
preferably controlled by a simple algorithm compbeébasic calculations as arithmetic
operations.

Third, some circuit topologies tend to suffer frdange cost-up due to additional
switches for implementing soft-switching functiéior example, many circuits, including
those reported in the works [11]-[17], have onemmre additional switches, which
conduct the inductor current to an alternative enirpath during switching operation of
the main switches. Consequently, current ratinthefadditional switches is designed to
tolerate maximum inductor current of all possibbei@tions. If the range of load power
is large, as is often the cases in vehicular psipn] the additional switches may
contribute the cost-up significantly due to thange current rating.

Certainly, there is a soft-switching technique [18] in which this drawback is
alleviated by utilizing a transformer. In this teajue the additional switch can be
designed to conduct smaller current than the irfumirrent. However, the switch still
needs to conduct at least half of the inductoresurrThus, a soft-switching circuit is
preferably implemented by fewest additional swiklhad they preferably conduct far
smaller current than the inductor current.

Fourth, some circuit topologies require additiomatage or current stress on the main
switch of the boost chopper. For example, the @sqroposed in the works [20][21] are
beneficial in meeting all the first three prefermlploints. However, their main switch
inevitably conducts greater current than the inoluctirrent momentarily after their turn
on. As a result, these techniques may require greatrent rating for the main switch in
order to tolerate the additional current stresseurile momentary heavy load during
sudden acceleration of vehicle. Thus, a soft-switgttircuit is preferably free from
additional stress on the main switch.

Solving the above mentioned difficulties possibgids the soft-switching technique
to be applied in practical vehicular choppers. Néhadess, we have few candidates that
meet all the preferable points so far. The purpufstnis chapter is to propose a soft-
switching unidirectional boost chopper as a cartdidiar a propulsion system of FCVs.
In addition to solving the above mentioned difficed, the proposed converter further
reduces the circuit volume by integrating the maigreamponents in the auxiliary circuit
into an integrated magnetic component.
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Fig. 6.2. An example of implementing Tal, Ta2, Lal, and bg2
a single magnetic core and two windings.

Section 6.2 presents the proposed circuit and gits circuit behavior. Section 6.2
also presents the integrated magnetic componentogetpin the proposed converter.
Section 6.3 discusses the soft-switching contretti®n 6.4 then presents experimental
results to confirm soft-switching operation andaéincy improvement.

6. 2. Proposed Chopper

A. Circuit Overview

The proposed unidirectional chopper is presentddgn6.1. The circuit is composed
of the basic chopper made of the main switch Slamdhain diode D1, and an additional
circuit surrounded by the dotted line. The ciradisgram is similar to the previously
reported technique [18][19]. However, the additiariecuit enables S1 to achieve Zero-
Current Switching (ZCS) at the turn on instead @fdZVoltage Switching (ZVS). As for
the turn off, it enables S1 to achieve ZVS. Theilaary switch Sa also achieves ZCS at
the turn on. Contrarily, Sa is not capable of sefitching at the turn off. Nonetheless, its
turn-off loss is generally ignorable compared tduation of the switching loss of S1,
because it conducts far less current than S1 dsesown later.

The additional circuit contains magnetic devicegressed by an equivalent circuit of
Tal (Ta2), Lal, and La2. Tal and Ta2 are windirfgs @upled inductor. Contrary to
the preceding technique [18][19], in which Tal ddobave the larger winding turn
number than Ta2, the proposed circuit allow Tal2atee far larger turn number than Tal,
enabling small current in Ta2 suffice to induceléaiger current in Tal. The devices Lal
and La2 are inductors. The inductor Lal is indispdate for soft-switching operation. On
the other hand, La2 is not necessary for the c¢ifanction. However, it is implemented
naturally as leakage inductance of Ta2 in manyschseause TaZ2 tends to have a large
number of turns and thus it is generally made iof Wire.

The inductors Tal (Ta2), Lal, and La2 are abletoriplemented on a single magnetic
core, as shown in Fig. 6.2. The two windings A &dn a pair of E cores suffice to
accomplish the circuit function of all the threductors. The coupled inductor Tal (Ta2)

116



is implemented at the center leg, where the wirglihgand B are magnetically coupled

each to the other. The inductor Lal is implementgdhe windings at the outer legs,

along with the leakage inductance of the windingTAe inductor La2 is the leakage

inductance of the winding B. In the next subsectio® present the detailed demonstration
that the magnetic device shown in Fig. 6.2 is egjent to Tal (Ta2), Lal, and La2 by

means of the Lagrangian dynamics.

B. Equivalency of Integrated Magnetic Component

As shown in Chapter 2, Lagrangian dynamics can tkzead to transform a
complicated magnetic circuit into an equivalentctrie circuit. Here, we apply the
method to the integrated magnetic component ibtistt in Fig. 6.2.

First, we describe magnetic structure of the corspbas a magnetic circuit model of
electromotive force and reluctance. The model iss@nted in Fig. 6.3(a). Each
electromotive force corresponds to a winding oregnetic path. We denote the number
of turns byN:1—Na4. Additionally, we denote the electric currentlie tvinding A and B by
¢, andq,, respectively.

The reluctanc®c:1 represents the reluctance of gaps and core of mgs, whileRs2
represents that of center leg. We assume, for coenee, that the two outer legs have
the same reluctance. Leakage magnetic paths olithdings are implemented as the
reluctanceR.1—Rus. The fluxes that flow througRe1, Rz, andRL1-4 are denoted a@-3
and @14

The Lagrangiah that belongs to Fig. 6.3(a) is expressed by theviing equation:

L =Nh(e — )+ Natle —4.) - Nt —4s) - Not (e - 4)

1 1 1 1 1
_E Relﬂz _E Rw@z _E Rsl%z _E RL1¢T_12 _E RL2¢f_22
1 > 1 2
SR SR @), (6.1)

whereA is a Lagrangian multiplier.

As a Lagrangian multiplier is an ignorable varig2l2], the Lagrangian multiplier term
can be eliminated by substituting (6.2) into (6.1).

¢t¢,+¢=0. (6.2)
As a result, we obtain:

L =Ny (% —¢.)+ Noth(e —¢.)+ Nl + ¢ + 4)

. 1 2 1 2 1 2 2 1 2
NGB -q.)- SRt —SRH SRularef -2 oRa’. (63
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Fig. 6.3. Magnetic model of the integrated magnetic compbnen
and magnetic devices in its equivalent circuit. Qalginal integrated
magnetic component. (b) Equivalent circuit.

Then, we introduce fluxegs defined as follows:

1
=q+56. (6.4)

Now, we substitute (6.4) into (6.3). The resubliained as follows:

— N; =N, § : RGl
AP REARETL S
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Fig. 6.4. Electric circuit translated from (6.5)

. ) 1
+ (Nl + N3)0u¢A - RGl(”A2 + N0 5 _E RLsﬂ_sz

. 1 . 1 . 1
- N1Q1¢{1 _E RL1¢{12 - Nzaugq_z _E RL2¢?.22 + N4Q2¢f_4 _E RL4¢{42 . (6-5)

The Lagrangian given by (6.5) corresponds to actrdecircuit that consists of basic
magnetic devices, such as ideal transformers addciars. The magnetic circuits
translated from the Lagrangian are presented in Bgp 6.3(b). Note that the four
inductors that consist of fluxeg and@1- @3 have windings that share the same electric
current, i.e. they are connected in series. Thesgan replace them by a single inductor
whose inductance equals the sum of their inductance

Consequently, we finally obtain the equivalent &leccircuit presented in Fig. 6.4.
The result indicates that the integrated magnetgpgonent shown in Fig. 6.2 implements
Tal(Ta2), Lal and La2 of the proposed chopper.

C. Circuit Behavior

This subsection discusses the circuit behavior utigecontinuous conduction mode.
The voltage and current waveforms are illustratedFig. 6.5; and the schematic
illustration of current flow in each operating madeshown in Fig. 6.6.

In Mode 1, the proposed chopper operates the sanigeabasic chopper. The main
switch S1 is in the off-state and the current offlovs into the output terminal through
the diode D1. Then, in Mode 2, Sa is turned on. tline-on of Sa is ZCS, because the
current of La2 is zero at the time and the indum¢aof La2 suppresses rising of the drain
current of Sa. Because Sa is now in the on-stageouitput voltage is applied to Ta2 and
the induced voltage appears in Tal, which is macait coupled with Ta2. The induced
voltage is applied to Lal, thus increasing the enirthat flows from L1 to the output
terminal through Dal, Tal, and Lal. Consequentty/ctirrent path from L1 to the output
shifts from the path through D1 to that through LBie current of TaZ2 is far smaller than
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Fig. 6.5. Operating waveforms of the proposed chopper utiaer
continuous current mode.

that of Tal, because Ta2 has far greater numierms than Tal. Therefore, the current
of Sais far smaller than that of L1, which alld®ato have smaller current rating compare
to S1.

When the current of L1 has shifted the path emtirle current of D1 falls to zero.
Then, S1 is turned on, and the operation stepsadeVB. Because most current of L1
flows through Lal, the inductance of Lal suppresisasy of the drain current of S1 at
the turn on. As a result, ZCS is achieved at the om of S1.

In Mode 3, the current of Lal decreases becausatinegroltage is applied to Lal.
After the Lal current falls to zero, instantaneoegative current flows until reverse
recovery of Dal. The inductance of Lal forces ¢avfthe negative current. In order to
protect Dal from overvoltage due to the currerd,zénar diode Za and the diode Da4
are equipped in parallel with Tal and Lal. Thesigete the destructive current by
circulating it through Lal, Tal, Za, and Da4.

In Mode 4, the auxiliary switch Sa maintains thestate, although the current of Lal
has already fallen to zero. As the induced voltag&al is smaller than the inverse
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voltage applied to Dal, no current is induced id.Lahus, the coupled inductor Ta2
operates as an inductor, and the snubber cap&ate discharged through Ta2 and La2.

After Ca is discharged below a predetermined veltiggel, Sa is turned off and the
operation steps in Mode 5. The current of Ta2 fltevthe output terminal through La2
and Dag3, to discharge Ca until its voltage fallgdo. Although the turn-off of Sa is hard-
switching, the switching loss can be suppresseghtagnorable level compared to S1
because the conduction current of Sa is smaller ttinat of S1.

In Mode 5, the negative voltage induced in Tal &hoot induce circulating current
through Tal, which results in additional conductioss. This is the reason why we do
not employ a clamping diode [23] for Tal and Ladt émploy the zenar diode Za and
the diode Da4.
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The operation in Mode 5 determines the minimum eewo#tage for Za. The zenar
voltage should be greater than the maximum indwee#thge of Tal during Mode 5.
Because the voltage applied to Ta2 does not extteeautput voltage, the induced
voltage of Tal is less than the output voltageddidi by the turn ratio of Tal to Ta2.
Therefore, the zenar voltage should be greaterttiiavoltage.

The circuit behavior in Mode 6 is the same as thdahe normal chopper. The main
switch S1 is in the on-state and the current oftadually increase.

Then, S1 is turned off in Mode 7. Because Ca isadntdischarged at the beginning
of the mode, the current of L1 flows into Ca thrbu@ga?2. As a result, rising of the drain
voltage of S1 is suppressed and ZVS is achievéteaurn off of S1.

After the capacitor Ca is entirely charged to tbhgat voltage, the current of L1 then
flows into the output terminal through D1. Finaltiie circuit operation returns to Mode
1.

The circuit behavior in the discontinuous conduttinode is almost the same as the
above. The only difference is that Mode 2 and M8dte omitted, because the current of
L1 has fallen to zero at the end of Mode 1 and thasurrent no longer need to shift the
path to that through Tal and Lal. Therefore, Sarised on simultaneously with the turn-
on of Sl.

As discussed above, the additional circuit alwaysdeicts current from the drain of S1
to the output terminal, thus adding no currentsstte S1. Besides, the voltage across S1
is confined between zero and the output voltageumse of diode clamping by D1 and
the body diode of S1. Hence, the proposed chopjuts the same voltage stress on S1 as
the basic hard-switching chopper that consistslodgi D1.

Consequently, the proposed chopper can operate battethe continuous conduction
mode and the discontinuous conduction mode. Furttwer, the current of Sa is smaller
than that of L1, which allows Sa to have smallerent rating compared to S1. And
neither voltage nor current stress is added toySthdy soft-switching operation.

The next section discusses the remaining requiresmigsted in the introduction,
namely the soft-switching capability regardlesshe input and the output voltage and
that the control of Sa is implementable by basiharetic operations.

6. 3. Control of Auxiliary Switch Sa

In order to accomplish the soft-switching of Sk tontroller of Sa is required to fulfill
the following two operations. One is to shift thé durrent entirely from D1 to the
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additional circuit in Mode 2. This operation ensutbe ZCS turn-on. The other is to
discharge Ca entirely at the end of Mode 5. And tipieration ensures the ZVS turn-off.

This section discusses the control of Sa analyyidal show that the above two
requirements are both achievable regardless tmpwt and the output voltage and that
they are able to be implemented arithmetically.

A. ZCSTurn-on

This subsection discusses the control of Sa foZ@®® turn-on.

Let Va1, Via1, andVia2 be the voltage of Tal, Lal, and La2, as showngn@:7. In
addition, we denote the current of Tal and TalZzasndlta2, and denote the inductance
(self-inductance) of the inductors simply by theame. We regard the leakage inductance
of the coupled inductor Tal (Ta2) is contained &l land La2. Thus, the coupling
coefficient of the coupled inductor is regardedlad-or convenience, we define the
terminals A-D as shown in Fig. 6.7.

Throughout Mode 2, the voltage potential differebetween the terminal A and B
remains zero and that between the terminal C aeduals to the output voltagéur.
Therefore, we have the following relations in Mdie

NV *VMia2 =Vours Via ~Vea =0; (6.6)
dl dl, d, dl
VLa_’I. = Lalf’ VLa2 = La2#’ VTal :TM(N# _f} (6-7)

whereN is the turn ratio of Ta2 to Tal.

Introducing the total currehg that flows into the additional circuit, i.e=ltai+l a2, we
obtain (6.8) from the above equations.

2 2\t
dls _Vour 1+[ﬁ_'\'_j(i+i+'\'_j | 6.8)
dt La2 Lal La2 Tal Lal La2
The right-hand side of (6.8) is almost constantaose the output voltagéour is
decoupled by the output capacitor. Hence, we canoapnate the increase ratelefas
constant. The duration of the Mode 2, which we deagAt,, is obtained as the time for
Isto rise from zero to the current of L1 at the tam which we denote dsn .

at, = a2 Lo (6.9)

(N ON2Y 11 N2
wherea=1+| ——— | —+—+—| .
al La2 Tal Lal LaZ

Equation (6.9) shows thal> can be determined for any input and output voleg®
current, unlesgit does not exceed the on-state period of S1. Natentis a constant.
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Therefore, 4tz is proportional tolonAoutr and thus can be set by multiplication and
division.

B. ZVSTurn-off

Next, we step in Sa control for the ZVS turn-off.

The ZVS turn-off can be achieved at any input antpat voltage and current. The
reason is explained as follows. During Mode 3 arati®4, inverse voltage is applied to
the diode Da2. As are result, the snubber capaCitois electrically isolated from the
main chopper made of S1 and D1. Hence, Ca cantlvelglischarged at any conditions
by maintaining the auxiliary switch Sa in the oatstfor sufficiently long time.

Furthermore, the ZVS turn-off is also able to betoalled arithmetically. As shown in
the successive discussion, the duration of Modéts} is approximately proportional to
lonAour. If the duration of Mode 44t4) is set, for example, at the constant time which
suffice to discharge Ca entirely at all input andpait conditions, then the on-state
duration of Sa is calculated by summation, multggiion and division. The duratiafis
andAts can be determined according to the following distan.

First, we determine the currdatandl’a which lta1 andlta2 reach at the end of Mode
2, respectively. The curreht andl’a is obtained from (6.6), (6.7) and (6.9), as fokow

| :L]
AULEN+L T, N
L 1+Lal/Tal
ATLEN+L, T, OV

(6.10)

We then determinelts. In Mode 3, the voltage potential difference betwdhe
terminal A and B equals teVour. The difference between the terminal C and D
approximately equals Mout because Mode 3 is generally too short to disch@egd hus,
we obtain the following relation:

NV +Viao =Vours Via ~Vra = Vour - (6.11)

The decrease rate bta is obtained from (6.7) and (6.11):

-1
di.., NT, -T,-L
—Tal =y | NT alal T oo | 6.12
dt OUT[ al NzTal_ NTal+ La2 al alJ ( )

The right-hand side of (6.12) is again a constdahce Atz is obtained as the time for
ITa1 to fall fromla to zero:

_NB g
1+ N + Lal/Tal VOUT '

(6.13)

Ly
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Ta2+La2 Ta2+La2

Ca| Vei=Vour Caly =y,
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(a) Mode 4
Ta2+La2 Ta2+La2

a |y, = — Ca| v,=0 =

Ca VCa I/B I Vo[ﬂ‘ Ca | VOUT
Initial State Final State
(b) Mode 5

Fig. 6.8. Equivalent circuits of the additional circuit fdfode 4
and Mode 5.

NT, T, Ly
N°T, - NT,+L,,
Consequently4ts is shown proportional ttonAVour.

Next, we determine the constant timefity. Here, we adopt the least time that suffices
to discharge Ca entirely at the end of Mode 5 urdlenperating conditions. Note that
the discharge time is longest, whes is equals to zero and the voltage across\ca (
equals to its maximum possible value, Meur, at the beginning of Mode 4. For this
reason, the discontinuous conduction mode takeotigest discharge time, aaits is
determined by discussing the operation under thgemo

In Mode 4 and Mode 5, the coupled inductor Ta2 wa& an inductor. Accordingly,
the additional circuits in the operation mode axpressed by the equivalent circuits
illustrated in Fig. 6.8. The equivalent circuitsosh that Vca can be obtained by
considering the LC oscillation made of Ta2, La2 @ The voltagé/ca oscillates
around zero in Mode 4, and arowisbt in Mode 5. For convenience, we denote the value
of lta2 and Vca at the end of Mode 4 ds and Vs respectively. According to the
conservation of oscillatory energy, we have thio#ing simultaneous equations:

wheref=L, +T, —NT,

1

1
ECaVOUTz =

(Taz + Laz)l 52 +ECaV52!
, 1 , (6.14)
Ca(VOUT _VB) ZECaVOUT .

N

%(TaZ + Laz)l 32 T

N[

Solving the above equations, we obtdir Vout/2. On the other hanWca is expressed
by the following equation, if we introduce the titne@hose origin is set at the beginning
of Mode 4:
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Table. 6.1. Specifications of the prototype.

Rating

VOUT=400V, POUT*=5kW

Frequency

60kHz

S1

SPW47N60CFD, 600V, 47A

D1

HFAS50PAG0, 600V, 50A

Sa

STB4NK60Z, 600V, 4A

Ll**

27QuH
(Nippon Chemi-Con: AW30201WLH)

Lal**

1.21uH

La2**

45.61H

Tal**

1.24uH (5 Turns)

Ta2**

100uH (45 Turns)

Ca

4.4nF

Za

IN5374Bx 2, 75V, 5W

Dal, Da2

HFA30TAGO0C, 600V, 15A

Da3, Da4

HFA16TAG0C, 600V, 8A

*  Maximum Output Power

** |Inductance is measured by an impedance analygitent 4294A)

t

Ve =Vour 808§ e |.
“ - {‘\/ (Taz + La2 )Ca ]

Finally, At4 is obtained as the time wh¥ga falls to Ve:

- mf(T, +L,)C
AtA:,/iTa2+LaziCacoslz— 22__a2/ s,

3

(6.15)

(6.16)

Equations (6.13) and (6.16) show that the ZVS fffnean be implemented by

determining Sa control timing by arithmetic opeyat onlon andVour.

6. 4. Experiment

Circuit behavior of the proposed boost chopper assulting improvement of
conversion efficiency are evaluated experimentally.

Circuit behavior is examined by observation of apieg waveforms and switching
waveform of S1. Improvement of efficiency is exaednby comparing the efficiency
between the proposed chopper and the basic hatdhswg chopper, i.e. the chopper that
only consists of S1 and D1. In addition, we estedahe breakdown of the total loss to

confirm contribution of the soft-switching of S1ttee improvement.
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Tal, Lal
#lm \/\\ /\/Gap 0.5mm
\"\Taz, La2
¢ 0.4mm, 45Turn
Ferrite Core

TDK PC40EE20/20/5-Z

20mm

Fig. 6.9. Photograph of the integrated magnetic device, fwhic
implements Tal (Ta2), Lal, and La2 of the prototype

Table. 6.2. Measured Inductance of the Winding A and B.

Symbol ngdlng W]13nd1ng Inductance
Lwn Measured Opened 2.45uH
L Measured Closed 1.60pH
L Opened Measured 146pH
Ly Closed Measured 95.4uH

A 5kW prototype chopper is employed in the expentn&he specifications are shown
in Table 1. The main switch S1 and the main diodedcooled on a water-cooling heat
sink. The other circuit elements including the #ddal circuit are cooled with blower.
The integrated magnetic device and the main inductas sufficiently cooled, because
temperature indicator labels (Nichiyu Giken Kogyo.CLtd. Thermo Label A-90)
attached on them indicated that their temperagiadways kept below 50.

According to (6.10), the large ratio fdris beneficial in suppressig:2 and the current
of the auxiliary switch Sa. On the other hand, X6é@licates that excessively larfe
results in long period for Mode 2 and may constth@minimum duration of the on-state
of S1. In this prototype, we choBk9.

The inductors Tal (Ta2), Lal and La2 are implentntea pair of ferrite E cores in
the same way as Fig. 6.2. As discussed in SubgsegiibB, Tal has the number of turns
expressed aN2+Ns/2-N1/2, using the number of turns defined in Fig. @.Rus, we set
N2+N3/2-N1/2=5 and\4=45 to obtairN=9. While keeping the ratio, we can further adjust
the inductance of Lal by increasing or decreallingndNs by the same turn number. As
a result, we obtaineii=1, N2=4, andNs=3.

The integrated magnetic device employed in theopype is presented in Fig. 6.9. The
circuit parameters of the equivalent circuit, shawiable 6.1, are estimated from the
measurement of the magnetic device according tontethod presented in the next
subsection.
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Fig. 6.10. Operating waveforms of the proposed boost chopper
under the continuous conduction mode (Input:200\tpDdt:400V,
4kW; Duty=50%).

A. Inductance Estimation of the I ntegrated Magnetic Component

The inductance of the inductors in the equivaleintud is estimated based on
inductance measurement of the winding A and B, wherother winding is opened and
closed, respectively. We present the result in @ ék2. On the other hand, the measured
inductance can be expressed analytically usingnpetexs of the equivalent circuit.
Therefore, equating the expression to the resuthefsurement, we can estimate the
parameters.

Here, we discuss the estimation utilizing the syisilbsed in Section 6.3.

The expression fokbmi andLwms are easily obtained, because they are the suimeof t
self inductance that constitutes the measured windihus, we have:

Lys =T + L, (6.17)
Lz = Ta2 * Lz (6.18)

As for Lm2, we calculate the relation between the voltdgend the currenitrai of the
winding A. The voltage relation can be expressefbisys:
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Fig. 6.11. Operating waveforms of the proposed boost chopper
under the discontinuous conduction mode (Input:200utput:400V,
200W; Duty=26%).

NVr #Via =00 Vig =Vig =V (6.19)

Solving (6.19) and (6.7), we obtain the followirgdation:

T,L di
L + al—a2 Tal :V
[ a Tﬂﬂﬂ] " . (6.20)

Thus, we obtain

Tal La2

L,,=L, +—222_
. . Ta2+La2.

(6.21)

Similarly, we calculate the voltage and currenatieh forLms. Now, the voltage is set
as follows:

NVra +Viae =V, Vi =V =0. (6.22)
Solving (6.22) and (6.7) yields the following redet:
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L + TaZLa_‘I. dITa2 :V
2T, L, ) dt
Ta2 La_‘L

O LM4:La2+ﬁ.
al al

(6.23)

Comparing Table 6.2 with (6.17), (6.18), (6.21)d 46.23) resulted in the inductance
Lal, La2, Tal, and Ta2 shown in Table 6.1.

B. Operating Waveforms

Current and voltage waveforms are observed by tipgréhe experimental chopper
for one operation cycle. Before the one cycle dpmmawe charged the inductor L1 with
predetermined current in advance, so that the wawvef reflect the operation under a
specific condition. We adopt 200V as the inputagé, 400V as the output voltage. The
output power is set at 4kW and 200W so that thdopype is operated under the
continuous and discontinuous conduction modes. Weulated the duratiodit>—A4ts
according to the previous section for gating cdrdafahe auxiliary switch Sa.

Figure 6.10 illustrates the voltage and currentefanms observed in the operation
under the continuous conduction mode. The wavefamm$ound almost consistent with
that expected in Subsection 6.2.C.

In addition, the requirements for the ZCS turn-od the ZVS turn-off are found to be
achieved as expected from the theoretical discnssis for the ZCS turn-omya: rises
linearly during Mode 2 and S1 is turned on at thetwhen the current of D1og) falls
down to zero. And as for the ZVS turn-off, Ca idimty discharged before the end of
Mode 5.

The waveforms in Mode 4 and Mode 5 indicate thébbruenergy regeneration. The
currentlra2 increases during the discharge of Ca. This fatitates that electric energy
charged in Ca is transferred to magnetic energyihand La2. After Sa is turned off at
the beginning of Mode 372 flows into the output terminal and gradually deses to
zero. Finally, energy of Ca, along with magnetiergly of Ta2 and La2, is regenerated
as the output power.

On the other hand, two discrepancies are foundaodévb between the theory and the
experiment. One is thafca rises slightly after once it dropped to zero. Ahd other is
that the voltage across Sés{) oscillates several times during the mode. Botthem
seem to be caused by the parasitic capacitance®fand Sa, which is ignored in the
theoretical discussions.

After Ita2 falls to zero at the end of Mode 5, the volt&gedrops. Then, electric charge
stored in the parasitic capacitance of Da3 andr8aedeased according to the voltage
drop. The released charge flows into Ca, thus n@isica again. In general, the
capacitance of Ca is designed much larger thanptmasitic capacitance of the
semiconductor device, because small capacitancpar@ah to the parasitic capacitances
does not contribute significantly to ZVS at thenuaff. Therefore, the effect of raising
Vca again tends to be ignorable compared to the owipltage and hardly affects soft-
switching capability.
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Fig. 6.12. Turn-on waveforms of the main switch S1 operated
under the continuous conduction mode. (Input: 200fput: 400V,
4kW; Duty=50%)
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Fig. 6.13. Turn-on waveforms of the main switch S1 operated
under the continuous conduction mode. (Input: 200dtput: 400V,
4kW; Duty=50%)

The recharge process of Ca also explains the aseoil found inVs, because Ca is
recharged through Ta2 and La2. There are a para€itoscillator composed of Ta2, La2,
and the parasitic capacitors. The recharge pracestes the parasitic oscillator, resulting
in the oscillation irfVsa. This interpretation is supported by the fact thatfrequency of
the oscillation is in the order of the eigenfrequeaf the oscillator.

The results of the discontinuous conduction modesented in Fig. 6.11, are also
found consistent with that described in Subsec@8¢hC. In this operating modéra
remains zero because the inductor current no longeds to shift the path to Tal and
Lal. In addition, the waveforms of the currént and the voltagd/ca successfully
showed the oscillation between Ta2, La2, and Cislade 4 and 5, indicating energy
regeneration of the snubber Ca. On the other tha@dbove mentioned two discrepancies
are also found in Mode 6, which are also reasoralgjained by the parasitic capacitance
in the additional circuit.

To summarize, the circuit behavior as a whole ssent with that expected from
theoretical discussions, regardless to the contisws discontinuous conduction mode.
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Fig. 6.14. Turn-off waveforms of the main switch S1
operated under the continuous conduction mode
(Input: 200V; Output: 400V, 4kW; Duty=50%)
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Fig. 6.15. Turn-off waveforms of the main switch S1
operated under the discontinuous conduction mode
(Input: 200V; Output: 400V, 200W; Duty=26%)

C. Switching Waveforms

turn off.
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Although parasitic oscillation occurs in Mode 6 doeresidual charge in the parasitic
capacitance of Da and Sa, the charge is genemallifficient to affect the voltage across
Ca, thus scarcely hinders the soft-switching.

Figures 6.12—6.15 present the switching waveforfrihe proposed chopper and the
basic hard-switching chopper, observed during thee @ycle operation. Figure 6.12 and
6.13 show the voltage across Sk and the current of S1<) of the turn on in the
continuous and discontinuous conduction modes eatisely. And Fig. 6.14 and 6.15
show those at the

Comparing the waveforms between the proposed antatd-switching chopper, we
confirmed the soft-switching of the proposed choppge a result)s: is found to be
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Fig. 6.16. Measured power efficiency for the proposed chojiper
comparison with the hard-switching chopper. (In@@0V, Output:
400V)

suppressed at the turn on of the proposed chopeer i@ the continuous conduction
mode, which indicates the ZCS turn-on. Additionally: is also found to be suppressed
at the turn off in the both conduction modes, whiodicates the ZVS turn-off.
Consequently, the ZCS turn-on and the turn-off ZiéSobserved in the switching
waveforms.

D. Conversion Efficiency

Improvement of conversion efficiency is evaluatgdcbmparing efficiency between
the proposed chopper and the basic hard-switchimagpper. Efficiency is measured
during operating the experimental choppers contislyo Gate resistors of S1 are
selected in both choppers so that they exhibistimlar amount of the current surge in
Is1 at the turn on and the voltage surge/in at the turn off. We adopted 200V as the
input voltage and 400V as the output voltage, thmes as in Subsection 6.4.B. Six
measurement points are set between 200W-5kW irotieut power. We employed
CROMA 63204 (6 parallel-connected) operated undemidde as the power load.

Figure 6.16 illustrates the result. The proposedppler showed improvement of
efficiency when the output power exceeds 2kW. Tlagimum improvement is found to
be 0.6%, when the output power is set at 5kW.

On the other hand, the proposed chopper did nat #mprovement when the output
power is lower than 2kW. The possible reason & #fficiency of snubber energy
regeneration is lower than efficiency of the mawogper, i.e. S1 and D1. The snubber
energy stored in Ca is constant regardless todtubpower. Therefore the efficiency
of snubber regeneration affects more profoundlyht total efficiency as the output
power becomes smaller. Meanwhile the switching lesomes smaller according to the
output power. Hence the reduction of switching logs/ not cover worse efficiency of
the regeneration process, especially when the bptpwer is low.
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When the output power is high, the snubber enésggomparatively ignorable.
Therefore the reduction of switching loss consigyerontributed to the improvement of
total conversion efficiency.

E. Breakdown of Total Loss

Figure 6.17 illustrates estimated breakdown ofl tots, when the output power is set
at 4kW. The estimation is based on the voltage @amdent waveforms measured in
Subsection 6.4.B and 6.4.C. The estimation predictee total loss observed
experimentally within an error of 10%.

The conduction loss of diodes is estimated by apprating the voltage drop by their
typical values. And that of MOSFETSs are estimatgdsipposing typical resistance at
their on-state. Both the typical voltage drop aesistance are determined by considering
the dependency on the junction temperature. Thepeesture is estimated on the
breakdown of the loss so that the loss of eacha®mductor device consistently results
in the junction temperature. Switching loss is gkited from the switching waveforms
presented in Fig. 6.12 and 6.14. Loss of magnecds is estimated by summing loss
created by AC and DC component of the current cheginding. The loss by AC and
DC component is estimated by supposing constana®CDC resistance, respectively.
We adopted the AC resistance at switching frequasaye constant AC resistance.

The estimation result shows that the proposed dropgmnificantly reduced the
switching loss in the main chopper and it is themtantributor of the reduction of the
total loss. The reduction is greater than the lfsthe additional circuit. Thus, it is
consistent that the soft-switching effectively adnited to the improvement of the
efficiency.
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6.5. Conclusions

Boost choppers are often utilized in EVs, HVs, &@Vs. These choppers tend to be
strongly required to improve efficiency becauseliofited cooling capability of the
vehicles. However, the soft-switching techniquesgenerally difficult to be reasonably
applied, because the load power and the outputg®livaries widely according to
traveling conditions, resulting in limitation offs@witching capability and large cost-up
due to implementing additional circuits and sofitshing control.

This chapter proposed a novel soft-switching teqimaito overcome the difficulty in
the unidirectional boost choppers of FCVs. The neple seems to be advantageous in
the following four features:

1. Soft-switching is achievable regardless to the aupower and voltage.

2. Soft-switching control can be implemented by arigimoperations on the
output voltage and the inductor current.

3. The additional circuit contains only one switch,ie¥hneeds smaller current
rating than the main switch.

4. Neither voltage nor current stress is added tanthen switch by the soft-
switching operation.

Experiments using the 5kW prototype were carrigd@aonfirm circuit behavior. The
observed behavior was consistent with that expduyetieoretical discussion. The ZCS
turn-on and the ZVS turn-off are also successfoligerved in the switching waveforms.

Additionally, improvement of efficiency is evaludten the prototype. The proposed
chopper showed improvement, when the output posvgraater than 2 kW. Maximum
improvement is 0.6% at 5 kW output. According te treakdown estimation of the total
loss, the improvement was mainly contributed byuogay switching loss of the main
switch S1. This suggests that the proposed chappmmessfully improved efficiency by
soft-switching.

This chapter focused on the circuit topology areldperational principles. However,
a practical design method of the additional ciregéms also to be needed in order to
apply the proposed circuit to practical applicasioim future works, the author will
investigate the inductance design method of thetiaddl circuit, along with an
optimizing design method of the integrated magne#eice with minimum copper and
core volume.
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Chapter 7

LAGRANGIAN-BASED DERIVATION OF A NOVEL SLIDING-
MODE CONTROL FOR SYNCHRONOUS BUCK CONVERTERS

7.1. Introduction

Synchronous buck converters have been utilized wida application area, such as
communication, robotics, and consumer electronidsse converters are generally
required to stabilize the output voltage againatlohange. A well-known specification
for this stability is transient response to a dtegd change, which is a faster change
beyond the possible response speed of the convéttewever, in many practical
applications, the load is designed to change witth@ response speed. In these
applications, the dynamic load regulation agaimshgaratively slow load changes, or
the output impedance [1], may also be a usefulispaion.

With respect to the output voltage stability, tW#fR-based sliding-mode control have
been attracting great interest because it can fa&transient response in wide operating
range [2]. However, as shown later, the dynamid legulation can be further improved
by a novel sliding-mode control method proposethis chapter.

We utilized Lagrangian modeling [3] to derive tluisntrol method because it can
convert complicated energy conserving systems &mtaple dynamically equivalent
systems [3][4]. In fact, this chapter converts fyachronous buck converter into two
independent systems, which enables decoupling leetit® output voltage and the load
current. Along with theoretical derivation of theoposed control, this chapter also
presents simulation results that support improverakthe dynamic load regulation.

7.2. Proposed Control Method
A. Lagrangian Modeling

This section derives Lagrangian model of a synabusrbuck converter system shown
in Fig. 7.1(a). To model this system as an eneaypserving system, we regard the load
as an imaginary synchronous boost converter thatstes the load by extracting the load
current, as shown in Fig. 7.1(b). (We neglect thgent ripple of this converter.) We
regard that switch S4 operates at duty cilewhich is unknown to the controller of the
buck converter. For convenience, we assume thattods L1 and L2 are the same. Let
N andR be the number of their winding turns and the ri@nce of their cores. We regard
the switching-state indicators presented in [3[5absection 1.3 of this thesis as duty

TReprinted, with permission, from K. Umetani, M. Yamoto, and E. Hiraki, Lagrangian-based
derivation of a novel sliding-mode control for siinenous buck converters, IEEJ Journal of Industry
Applications, Nov. 2015.
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Oe: 01, 92, Qc: Electric charge
D,, D,: Duty cycles E: Voltage

(@
% T s1 Eh "
E

A=
_'\'_ SZIEll} ml%

Boost converter emulating the load

(b)
Fig. 7.1. Buck converter system analyzed in this chapter. (a
Synchronous buck converter with a load. (b) Analyzmuivalent
system.

cycles to discuss a state-averaged model. Themahggn model [3]\ for this system
IS

. . 1 1 1
A= quﬂ + qu@ _ER# _ER@Z _E(Q"'QC)Z + EqE

+ Al{qE -D, + (1_ Dz)Qz} + /]2(% -0~ qc)' (7.1)

where@ and @ are the fluxes in L1 and L2; andq are the charge flowing through
L1 and L2,Q is the initial charge of Chc is the charge flowing into CE is the voltage
of the power sourcd); is the duty cycle of SU; and A2 are the Lagrangian multipliers.
A dot over a variable represents its time derivativ

Now, we apply a coordinate transformation [5] tolj7to obtain Lagrangian of a
dynamically equivalent system. First, we elimindi@grangian multiplier terms by
substituting ge=D10:—(1-D2)g2 and q:=qctqz into (7.1). Second, we introduce new
variablesg, @ andga defined asp=(@a+®)/2, g=@—-@ andga=(g1+gz)/2. Eliminating
@, @, 1 andge from (7.1) yields

. 1. 1 1
N =2Ng\p, — RW,ZA +ED,L0, +E NG & _Z R% _E(Q *t0c )2 +ED.Qc . (7.2)
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L3, L4 inductanceN%/2R, 2N2/R
C2 capacitanceC

(@)

Jc, 0a: Electric charge
Dc, D,: Duty cycles E: Voltage

(b)
Fig. 7.2. Equivalent system of Fig. 1(b). (a) Convertethaf tharge
dc. (b) Converter of the chargg.

where Da and Dc are imaginary duty cycles defined d3.=D;+D>-1 and
Dc=(D1—D2+1)/2. Note thaDa takes from-1 to 1; andc takes from 0 to 1. Hence, (7.2)
can be translated into an equivalent system ofibdependent converters shown in Fig.
7.2, according to the method presented in [3] capdér 1.

Figure 7.2(a) is a closed systemaaf therefore, it is unaffected by the load current
incorporated imga. Because the output voltaye: of Fig. 7.1(a) is equal to the C2 voltage
Ve in Fig. 7.2(a), controlling/c2 in Fig. 7.2(a) eliminates the effect of the loadirent
on Vout.

In Fig. 7.2(a)qc is controlled througibc. In the actual circuit, however, we can only
adjustD; to obtain appropriatBc. Because of the relatidn=2Dc+D2>—-1, D2 need to be
inferred in order to calculate necessBryfrom the required value fdc.

According to the voltage relation at the induct@; lve have

di
8es -, -1-D,) 7.9
whereiou is the load current, ands the time. Substituting (7.3) in@1=2Dc+D>-1

and noting that L1 and L2 have the same inductamedjave

L2

D, = 2D, —V?+%G"? (7.4)
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Simulation Parameters

Voltage sensor
! L1: 2.2uH, C1: 2.24F, E:3.3V
Sawtooth oscillator:

min OV, max 1V, freq. 1IMHz
K,=100,K,=20,K;=2.2x1076
T=1ms,Vref=1V

\
]
I
i

W] Step N—Oe Ky (14T)/sT O Vref EVoItage reference

< O Kky(2#sT)/sT vref

Fig. 7.4. Simulation model of the PWM-based sliding-mode
control. (Parameter values are the same as Fig. 7.3

B. Proposed Control

Based on the above discussion, we can formulatprthgosed control of Fig. 7.1(a).
The control consists of the following two stepsD&termineDc according to the PWM-
based sliding mode control of the imaginary corerite. Fig. 7.2(a), and 2. Determine
D: from D¢ according to (7.4).

Figure 7.3 illustrates an example of the contrgloathm. Step 1 observes the C1
voltage and current, which are the C2 voltage amckeat, to generatBc for control of
Fig. 7.2(a). Then, Step 2 calculates from Dc according to (7.4). Gain operators can
replace division operators, i€E, if the input voltage is almost constant.

The proposed control is an extension of the PWMebtadiding-mode control shown
in Fig. 7.4 because STEP?2 is the only difference.
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PWM-based sliding-mode control
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Fig. 7.5. Output voltage under step load change.

1.02 —— PWNM-based sliding-mode control
—— Proposed control (Decoupling control)
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Timel[s] Load: Sinusoidal current source

AC amp. 5Ap, freq. 10kHz, DC offset 5A.

Fig. 7.6. Output voltage under sinusoidal load current.

7.3. Simulation

Simulation was carried out to confirm effectivenegshe proposed control shown in
Fig. 7.3 in comparison with the PWM-based slidingeia control shown in Fig. 7.4. The
simulation parameters are presented in Fig. 7.8.slimulator is PSIM9.3 (Myway Plus
Corp.).

Figure 7.5 shows the transient response when #Hterkesistance is switched between
1Q and Z2. The result shows that the proposed control stadmest the same response
as the PWM-based sliding-mode control. Therefdne, groposed control showed no
improvement in the transient response to a steppdbange.

Figure 7.6 shows the output voltage fluctuationgmvthe load is sinusoidal current
sink with 5Aveak 10kHz. The output voltage fluctuation was effeelwsuppressed in the
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proposed control. Therefore, the proposed convertgsroved the dynamic load
regulation against slow load current fluctuation.

7.4. Conclusions

Buck converters are generally required to stabtlieeoutput voltage. To improve the
stability, this chapter proposed a novel controthrod for synchronous buck converters.
The proposed control can improve the dynamic legalation against slow load current
fluctuation. Simulation results revealed successiyppression of the output voltage
fluctuation under sinusoidal load current, wheraasimprovement was found in the
transient response to a step load change. In futorés, the author will evaluate the
performance of the proposed control experimentally.
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CONCLUSIONS

Lagrangian dynamics is expected to promote analytinderstandings of electric
power conversion techniques because it has thewimly attractive features: 1. It can
directly analyzes behavior of the electromagnegtd$ rather than the voltage-current
relations; 2. It can analyzes the electromagnetic-lmearity; 3. It can analyzes the
systems that incorporates the electronics and thehamics simultaneously. These
features are probably essential to extend appdicadf the power electronics to newly
developing technical fields such as the integraednetic components, the induction
heating, the wireless power transfer, the switchielgctance motor drive, the system
integration and so on. However, we have few knogdetd apply Lagrangian dynamics
to the power electronics, although Lagrangian dyinarmas already been widely spread
in the mechanical fields.

This thesis addressed this issue by proposing aadelogy to apply Lagrangian
dynamics to the power electronics. Part | presefdadnovel basic analytical methods
for the power electronics based on Lagrangian dycermhese methods enables analyses
that the conventional circuit theory is difficutt tonduct, and are useful for application
to the newly developing technical fields. The fallngs are the main conclusions of Part
l.

1. A Lagrangian modeling method of power conversiarcwsts was presented in
Chapter 1. The method can also generates Lagramgaaiels of circuits that
incorporates the complicated magnetic circuits. praposed method offers easy
procedure because the Lagrangian models are gireotifigurable from the
physical structure of the electric and magneticwts. Behavior of the circuits can
be systematically analyzed by applying the Lagramgnodel to the well-known
Euler-Lagrange equation. Furthermore, the stateespendel of the circuit can also
be obtained systematically under a simple predetexhprocedure.

2. A Lagrangian method to derive the equivalent ctcwf integrated magnetic
components was presented in Chapter 2. This metlwode expected to derive a
simpler circuit than the conventional methods, wlagplied to an integrated
magnetic component with a small number of flux patiat can be magnetized
independently. The Lagrangian method was verifidteotetically and
experimentally by a case study using the integraieding coupled inductor.

3. A Lagrangian method of the duality transformatioaswpresented in Chapter 3.
The conventional methods of the duality transforamasuffer from complicated
procedures when applied to non-planar circuits;farttiermore, they often suffer
from different results, which cannot be derivediy other methods. On the other
hand, the Lagrangian method offers a universal syslematic procedure that
derives all possible duals. The Lagrangian meth@@sily applicable to non-planar
circuits in the same manner as to planar circuissabse it does not need the
topological transformation. The Lagrangian methad werified by two examples.
One of the examples is a typical non-planar cirfraiin which the conventional
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methods are known to derive either one of two dhffié duals. As a result, the
Lagrangian method succeeded to derive both oftbedtials deductively.

4. A Lagrangian method to formulate switched relucéamootor models was
presented in Chapter 4. The proposed method carlnménse magnetic non-
linearity of the motors. Furthermore, this modei ba connected to the propulsion
circuits of the motor and the mechanical systerthefload to form a Lagrangian
model of the entire motor propulsion system. Thaeefthe behavior of the entire
system can be analyzed systematically using Eudgrdnge equation. The
formulation of the switched reluctance motor wasifiesl by an example of
operation analysis of a simple SRM driving system.

This thesis also gave some examples of these Lgigramethods applied to practical
industrial applications. Part Il presented threeahdechniques for practical applications
in which Lagrangian dynamics took an essential.rdlee followings are the main
conclusions of Part Il.

1. A novel integrated magnetic component for EMC fdtavas developed and
proposed in Chapter 5. The integrated magnetic coemts are expected to
miniaturize EMC filters. However, conventional magjo structures suffer from
lowers tolerance to the magnetic saturation, whiely reduce the miniaturization
effect by the magnetic integration. Chapter 5 zd8i Lagrangian dynamics to
analyze the proposed magnetic structure that ingzrowe tolerance to the
magnetic saturation. A theoretical analysis anceerpents verified the operating
principle of the proposed structure. Additionaliy, analytical estimation revealed
that the proposed structure successfully reduceddre volume by 41% compared
with a conventional magnetic structure.

2. A novel soft-switching boost chopper with an ineggd magnetic component was
developed and proposed in Chapter 6. The integratagnetic component is
utilized for miniaturizing a novel lossless LC sheb in the proposed chopper
which achieves the zero-current switching turn-nd the zero-voltage switching
turn-off. Chapter 6 utilizes Lagrangian dynamics develop the integrated
magnetic component. Experiments successfully eerifine operating principles of
the proposed chopper as well as efficiency impramrby the soft-switching.

3. A novel control method for synchronous buck coremsrtwas developed and
proposed in Chapter 7. Sliding-mode control forkbaonverters is beneficial in
fast transient response to a step load changed@ @perating range. The proposed
control method further improved dynamic load retala against load current
fluctuations within the response speed of the cdeve Simulation results
revealed successful suppression of the outputgellactuations under sinusoidal
load current.

146



ACKNOWLEDGEMENT

Foremost, | would like to express my sincere gudegtto my advisor, Prof. Masayoshi
Yamamoto for continuous support of my Ph. D. stadyl research. His remarkable
enthusiasm motivated me and sustained my intelr@stgpower electronics researches.
As a result, | was motivated to enter the Ph. Dure® and to begin a career as a
professional researcher. His guidance helped méaltime in my Ph. D. course in
Shimane University.

Besides, | would like to thank Prof. Eiji Hirakirfevarm support of my Ph. D. study,
encouragement, and insightful comments.

| would also like to thank Takanari Sasaya and TioonoKimura for their permission
to enter the Ph. D. course during my career in DBNC®rporation and for their helpful
comments to improve quality of my research papers.

My sincere thanks also goes to colleagues in DEIC®Eporation: Keisuke Yagyu,
Iwamoto Fujiyuki, Takahiro Tera, Kazuhiro Shirakgwar. Seikoh Arimura, Hiroshi
Taki and Tetsuo Hirano for helpful discussionsnstating collaboration, and hard work
before deadline. | really enjoyed working with them

Many thanks go to Prof. Barry Roser for improvihg English quality of my research
paper related to Chapter 2.

Thanks also go to my labmates in Power Electronad®ratory, Shimane University,
for creative discussions and collaborations. Spetianks to Jun Imaoka, Wilmar
Martinez, Hirokatsu Umegami, Humiya Hattori, Mas&asaki, Taiki Tanada, Masashi
Hama, Taichi Kawakami, Yuki Itoh, Yasuo Sasaki, Bldaslshihara for their great
contribution and cooperation in research.

Finally, | would like to thank my family, my wifeuhko Umetani, and my son Haruki
Umetani, my parents Dr. Takehiko Umetani and Kybkoetani, and my wife’s parents
Hideaki Nakai and Kazuko Nakai, for big spirituapport throughout my life.

147



