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The theory of static critical phenomena in systems at equlibrium is discussed. The 

nature of the classical phenomenological theory of Landau is explained. Critical point 

exponents ~, T, T/ , ~, . . . obtained from the Landau theory differ from the results of 

the theory for Ising model and experimental results. Statistical evaluation of the order 

parameter is obtained by taking into account the fluctuation. Then the correlation 

effect is considered. These approaches make implicit use of the assumption that the 

free energy if expandable in power series in the order parameter. From the calculation 

of spatial fluctuation and long range correlation effect the validity of the Landau theory 

is discussed. 

S 1. Introduction 

Change of phase the boiling of water, the melting of iron is a striking phenomena 

in matter. In many cases the properties of various phases seem quite dissimilar and 

separate, and transitions between them are ' abrupt. As the temperature is raised the 

properties of a liquid and the vapor in equilibrium become more and more similar 

until, at a particular temperature, the diLferences vanishes. The state at this temperature 

is the critical point. At room temperature iron has the spontaneous magnetization in 

the absence of magnetic field. As the temperature is raised this magnetization dimin-

ishes and suddenly disappears at a temperature of 770'C. This state of iron is called 

the Curie poi,nt. . Similar phenomena are observed in many cases : N~el point .in 

antiferromagnetism, ~-point in liquid helium 4, and so on 

A11 these phenomena have in common that at a definite transition point a substance 

gains or loses all at once. In this respect they differ from the first order phase 

transitions, melting, evaporation, sublimation, in which the physical change is not 

sudden but take place by a small portion of the substance from one state to another 

More formally' those tran:sitions in which one or more_ first derivatives of the relevant 

thermodynamic potential change discontinuously as a function of their variables may 

be first order transitions. For a fluid it is appropriate to consider the Gibbs free 

energy _G as a function of p and T ; the specific volume V= (OGIOp)T and the entropy 

S= - (6~ldH) p are discontinuous across the vapor pressure curve. In a ferromagnet 

the equilibrium magnetization M= - (OFIOH) T Where F is the Helmholtz free energy 

and H the magnetic field, changes abruptly st the field passes through zero when T 

is less than Tc 
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　　On　the　other　hand、，trans1t1ons　m　wh1ch　the　f1rst　d－er1vat1ves　of　the　thermod．yna血1c

potent1a1re血a1n　cont1nuous　wh11e　on1y　h1gher　order　der1▽at1ves　such　as　the　compress＿

1b111ty，the　spec1f1c　heat　or　the　suscept1b111ty　are　d1yergent　or　chanσe　d．1scont1nuous1y　at

the　trans1t1on　p01nt　may　convement1y　be　temユed　second．ord－er　trans1t1ons（due　to　Ehrenfest）

or　cont1nuous　trans1t1ons　工t1s　for　such　trans1tlons　we　use　the　term　cr1t1ca1p01nt

　　There　are　qu1te　marked．s1血11ar1t1es　between　apparent1y　Yery　d．1st1nct　phase　transIt1ons

Theoret1ca1and．exper1menta1quest1ons　ha▽e　much　m　com皿on　for　a11cr1t1ca1p01nts

They　are　attested　by　the　fact　that　they　have　been　treated．by・very　s1m11ar　mode1s　and－

theor1es　These　mode1s　and　theor1es　are　based－on　the1dea　that　pb－ase　trans1t1ons　and－

cr1t1ca1p01nts　are　brought　about　through　the　mutua1cooperat1∀e1nteract1ons　of　many

part1c1es　The　essent1a1s1m11ar1ty　of　the　ear1y　theory　for　the　cooperatwe　phenomena，

the　van　der　Waa1theory　of　the11qu1d－Yapor　cr1t1ca1pomt，Cur1e－We1ss　theory　of

ferromagnet1sm　the　Bragg－W1111ams　and　Bethe　theory　of　order　d1sorder　phenomena

g1ve　an　exce11ent　qua11tat1ve　p1cture　of　cr1t1ca1pheno皿ena，but　fa11more　and皿ore

senous1y1n　the1r　quant1tat1・ve　pred．1ct1ons　as　the　cnt1ca1pomt1s　reached　The1r　u1tmate

1nad．equcy　1s　de皿onstrated　w1th　Onsager’s1）exact　so1ut1on　of　the　two　d．1mens1ona1

Is1ng　mode1of　ferroInaσnet1sm

§2　丁血鮒m⑪沮y皿劉㎜亘c畿且The⑪ry⑪皿漉㊧Seco皿沮O地鮒炉h鵬e　T醐皿s批io皿s

　　　　　The　L劉皿d劉咽丁血㊧⑪ry

　　The1mportant　theoret1ca1concept　for　the　second　ord－er　phase　trans1t1on1s　the　ord．er

parameter2）P　　The　parameter1s　a　numer1ca1血easure　of　ord－er1ng　bu11t　up1n　the

v1cm1ty　of　the　cr1t1ca1p01nt　For　examp1e，1n　a　ferromagnet1c　crysta1w1th　an　easy

ax1s　of　n1agnet1zat1on　a1ong　the　z　d1rect1on　a　su1tab1e　ord－er　parameter1）1s　the　stat1st1ca11y

a▽eraged乞component　of　magnet1zat1on－M（ア）at　the　p01nt　r　The　ord．er　parameter　may

vamsh　above　the　cr1t1ca1pomt，but1t皿ust　be皿onzer01n　the　reg1on　be1ow　T．and－

approches　zero　cotinuous1y　as　T→T．from　be1ow．

　　Are1at1∀e1ysmp1ephenomeno1og1ca1theory，wh1ch1susefu1tomderstand－genera1
behaY1or　near　cnt1ca1pomt　was　prov1d－ed　by　Land．au3）who　has　taken1nto　account　the

spat1a1f1uctuat1on　of　the　order　parameter1）．A1†hough　the　theory　d－oes　not　agree　w1th

expenmenta1obser▽at1ons　v・ery　c1ose　to　the　cr1t1ca1p01nt，1t　serves　to　rea11ze　a　qua11tat1ve

behav1or　except1n　the　v1c1n1ty　of　cr1t1ca1p01nt

　　Adom1nantcharacter1st1cofthecnt1ca1phenomena1sthe1argemcreaseofthe
m1croscop1c　f1uctuat1ons　m　the　v1cm1ty　of　cr1t1ca1pomt　The　f1uctuat1on　of　magnet1zat1on，

energy　can　reach　effect1ve1y　macroscop1c　magmtudes，and　correspondmg1y，the　second

thernユodynam1c　der1Yat1yes（spec1f1c　heats，suscept1も111t1es　etc）

　　The　contmu1ty　of　the　change　of　state　for　a　second．ord．er　phase　trans1t1on1s　expressed－

mathemat1cauy　by　the　fact　that　near　a　trans1t1on　pomt　ord．er　parameter，say，magnet1z＿

at1on〃can　take　arb1trary　sma11va1ues　In　the　fo11owmg　d．escr1pt1on，we　prefer

皿agnet1zat1on　of　a　ferro＝magnet　as　the　ord．er　parameter　Cons1der1ng　now　the　ne1gh＿

borhood　of　a　trans1t1on　pomt1t　wou1d　seem　reasonab1e　to　expand．the　free　energy　per

umt　vo1ume　of　a　ferromagnet　m　a　power　senes1n　the皿agnet1zat1on・

F（M，T）＝F。十α（T）M2＋ろ（T）〃4＋．． （1）
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The first term Fo represents the free energy which would exist were it not for magne-

tization. Direct spin-spin interaction produce the remaining term in F. Because these 

interactions do not change when we change the sign of M, these terms contain no odd 

terms. This is the origin of the term M2 and M4 in Eq. (1) 

As regards the coefficients a of the 

F (M, -T) -FO second order term, it is easy to see 

that it vanishes at the transition point 

Indeed, for the disordered phase the 

nununum of F must correspond to ~ the value M = O ; this obviously req- ~~~ ~: ~' 
~¥// ~;~ 

uires a> O. Conversely, on the other ~ ~;!~ ~ V .~~~;_ 
side of transition point, in the ordered ~? // :~ 
phase, the equilibrium state (for the ~ V ~

 

minimum of F) must correspond to 

nonzero value of M ; this is only 

possible for a form 0L the function F for a ~ O. O M~ 
-M Being positive on one side of the 

transition point and negative on the 

other, a(T) must vanish at the point itself 

a(Tc) = O. (2) 
But for the transition itself to be a stable state, i. e., for F to be a minimum there as 

a function of M (at M = O) , it is necessary that the third order term must also vanish 

at this point, and fourth order term must be positive : 

b(Tc) > O. (3) 
Being positive at the transition point, the coefficient b is, of course, also positive in 

its neighborhood. The transition point is determined by Eq. (2) . Near the transition 

ponnt we can wnte 

a(T) = d ( T- Tc) ' (4) 
where d = 6a is a constant. 

OT T=T 

The dependence of M on temperature ne,ar Tc in the ordered phase is determined 

by the condition that F should be a minimu~n as a function of M. Equating the 

derivative OF/OM to zero, 

we obtain 

M (a+2bM2) = O, 
whence 

a d M = O and M2 = - 2b = 2b (TC T) (5) 

(the solution M = O corresponds to the disordered phase.) 



Theory of Equilrbnum Statac phenomena Near Critical Points 65 

Hence near Tc the system can produce large scale fluctuations in M with relatively 

little coast in free energy which if fourth order in M, 

We now follow the thread of the Landau theory and derive the relations between 

the critical phenomena 

First consider the temperature dependence of magnetization M at zero magnetic field 

According to Eq. (5) the magnetization just below Tc is proportional to (Tc~T)~,4. 

We shall obtain and use several results of this type. we define a critical index ~ by 

the condition that the order parameter go to zero as (TC ~ T)p. We have just known 
l
 that in the Landau theory ~ = - . 2
 

To continue the discussion of critical exponents, we insert the interaction -MH 

between the magnetization and the applied magnetic field H assumed parallel to the 

easy axis z to F, and minimize the . free energy, we obtain 

M (2a+4b M2) = H (6) 
At T T*, then a = O so that 

1' 

M= (Hl4b) . (7) 
73 

Another critical exponent ~ is defined as M - Ha and hence ~ = l 
3
 

The susceptibility X = (OM/Orl) T is obtained by differentiating Eq. (6) with respect 

to H. At zero ma~crnetic field, the resulting susceptibility may be evaluated as 

l _ I for T> Tc' 2a ~ 2a/(T-Tc) 

~ 4a ~ 4a/(Tc~T) for T

which is just the Curie-Weiss law. The magnetic susceptibility is seen to diverge both 

above and below Tc as X- (T-Tc)~r for T> Tc ; X- (Tc~T)-r/ for T 
hence T = T/ = 1 

The final thermodynamic properties in the specific heat at zero magnetic field is 

given by thermodynamics as 

CH = - T 02F (9) OT2 H_o 

But, at H = O, we can use Eq. (5) to find 

F for T > Tc' F = ! o a2 (10) Fo 4b for T l -

The extra term in the free energy below T c Produces a constant term in specific heat 

Thus, there is a discontinuity of amount 

AC= d2 Tc' (11) 2b 
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The Landau theory does not work for Ising models, that is, the theoretical study 

0L Ising model has obtained the values of all the critical indices. Other theoretical4) 

and experimental5) studies on the critical exponents differ with those from the Landau 

theory. We have seen above that The Landau theory neglects fluctuations, hence it 

has the range of validity. 

S 3. Statistical Averages of Magnetization 

The free energy F of a ferromagnet can be assumed to depend on the magnetization 

for no external field as in Eq. (1) and from Eq. (4) 

F = F0+d ( T- Te)M2+ b M4 (12) 
for temperature T near the Curie temperature To ; a/ and b are positive and approxi-

mately temperature-independent. 

We derive the temperature dependence of average magnetization M(T) 

The probability of observing a magnetic moment density between ~l and M+dM is 

proportional to exp (-FlkT) dM. Thus the most probable magnetization Mo is the one 

for which F(M, T) has a minimum as a function of M. When we neglect the effect of 

fluctuations, the average magnetization 

M = f Me xp ( -F/kT)dM/ f exp ( -FlkT) dlAd (13) 

is equal to Mo' This is because the distribution function exp(-FlkT) is large in the 

neighborhood of Mo' From the condition that F(A4:, T) be a minimum, we find 

d I l* L J7-Mo = 2b (TC~T) for T

O for T> Tc 
as in Eq. (5) 

Next, to obtain an estimate of the fluctuations on the calculation 

, the difference 

 - Mo for two cases 
(a) Introduce a dimensionless parameter u for T 

kT l' L J , 
72 

M = Mo + 2a/ (TC ~ T) u 

wh ere 

d l/* L c ~ J~ Mo = 2b (T T) 

Then, expanding F(M, T) about the value Mo' we find 

d2 Tc~7~2+kT( u2+ u3 u4 
2
)
 F Fo~ 4b + 4A ' ( ) ¥ A 

( 14) 

we consider 

(15) 

(17) 

(16) 

with 

A = [a'2(T T) /bkT]~ (17) 
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Wrth thrs new vanable we frnd for the fractional fluctuatron from Eq. (13) , 

f u exp [ - (u2 + u3/A + u4/4A2)] du 

~ Mo f
 

exp [ - (u2 + u3/A + u4/4A2)] du 

-A 
Exact evaluation of these integrals would be impossible. However, in the limrt A ~ 1 

we have, to the first order in l/A, that 

f z~ exp - (.u2+ ~ + 4u~2) J du '---' - I I u4 exp (-u2)du L
 

f
 

f
 

u4 exp ( -u2)du ~~: -
~~A~ A 

-A 
( 19) 

Thus, in this limit A ~ 1, we obtain 

f
 

- zt4 exp (-u2)du 

_] Mo_ ~~; -= 3bkT (20) 3-Mo = ~ 41~L2 ~ ~ 4al2(T T) ~ 
'
 
f
 

A" exp (-u2)du 

(b) Define a second parameter v for T > Tc by 

M - kT 72 v (21) 
ll 

~ d (T- Tc) 

then 

and hence 

v4 ), F = F0+kT (v2 + A2 

we find for the fluctuatiOn 

f v exp [ - (v2 + v4/A) I dv 

kT l' ^  = r J '2 ~ 

La/ (T- Tc) * ~exp [ - (v2 + v4/A2) J dv 

defined in Eq. (17) . In the limti 'A~1, we obtarn 

 - kT 1' L I'8 ~ 7~d(T-Tc) 

(22) 

where A is 

In the presence of a magnetic field H, we add a term-MFI to F 

magnetization above Curie temperature is given by 

f v exp { - (v2 + vH/[kTd ( T- To) 1//'_} dv 

 - kT 72 ~ 1/ ^ 

~ d(T-Tc) _ ~exp ( - v2)dv 

(23) 

(24) 

Thus the average 

, (25) 
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where terms of order 1/-4 ~ I have been neglected. Thus to first order in H, 

 = H , (Curie-Weiss law) (26) 
2_1' ( T- Tc) 

The susceptibility is given by 

X - 0 _ I (27) 
~ dH El=0 ~ 2d(T-Tc) ' 

This result have already been obtained from thermodynamics in Eq. (8) . The Landau 

theory neglects fluctuations. The magnetization fluctuate considerably in actual ferro-

magnet. However, some of these fluctuations may be removed by averaging the order 

parameter over a suitable region. For the Landau theory to work well, fluctuations in 

the magnetization must be small in comparison with the magnetization itself. We have 

then, 

Mo ~ 
 ~~¥~~ Mo' (28) Thrs necessary condrtron becomes from Eq. (20) near Tc 

36k Tc 

4a!2 ( Tc ~ T) 2 ~ l, (29) 
so that the Landau theory could only be correct if 

I
 T- T. 3K 1/~ )

 ( , I e I = Tc 8~]C (30) ~ 

where A C is the jump in the heat capacity per unit volume predicted by the Landau 

theory in Eq. (11) . 

S 4. Critical Fluctuations and Long-Range Correlations 

Next consider correlation of 'fluctuations in the magnetization. The fluctuation in 

the magnetization M(r) is given by [M(r) -

]. The point to be studied is how the deviation of M from its average at one point in the material coupled to the similar 

fluctuations in the neighboring region. The mathematical description of this correlation 

is given by the correlation function 

f(r r/) = [M(r) -
] [M(r/) _
] (31) 

and the susceptibility is given by 

X = (kT) -I f f(r, r/)dr/. (32) 

There are useful correlation function expressions for thermodynamic derivatives. For 

example, if E(r) is the energy density, the specific heat at fixed H is given by 

f
 

CH = 
] [E(r/) _
]> dr (33) 
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To calculate the correlation function (31) we follow the style in ;he text by Landau 

and Lifshitz3). We may write the total free energy of the body as the integral 

t f F = FdV, 

taken over the total volume of the body, where F denotes as yet the free energy per 

unit volume. Let 
 be the average value of F, constant throughout the body As a result of fluctuation F become, together with the magnetization, a quantity which 

changes from point to point of the body and 

AFt = f (F-
)dV. 

(34) 

We expand F-

 in power of M- 

 at constant temperature. The first term in 
the expansion is proportional to M- 

, and vanishes on integration over the volume, owing to the relation fM dV = f

d'V, The second order term is of the form a(M-
)2, where the positive coefficient a vanish at the cr}tical point and is small near to 

it. The coefficient of the third order term is also small near the critical point, so that 

one ought to take the fourth order terms into account 

The point is that we have to consider the inhomogeneous magnetization. Then, the 

expansion of F may contain not only the different power of magnetization itself, but 

also its spatial derivatives of various orders. Since the body is isotropic, the first 

derivatives can only ente'r into the expansion of the magnetization as the scalar combi-

nation (AfM)2, and the second as the combination AM (where A is the Laplacian 
operator) . The integral of the term of the form const. AM over the volume transforms 

into an integral over the surface of the body, irrelevant surface effect, while integral 

of the term MAM transforms into the integral of ( AM) 2. Thus we can assume 

F- 
a (M- 
) 2 + c (AM) 2, (35) where c is a posit~ve constant due to the exchange interaction ; the constant need by 

no means vanish at the critical point and hence is not small near it 

The study of fluctuations of the Fourier components of the magnetization near the 

critical point is of much greater interest. If we expand M- 

 as a Fourier series in the volume V of the body, it takes the form 

M- 
 = ~] Mk exp (ikr) (36) 

k
 

where the components of the wave vector k take positive and negative values, and the 

coef f icients 

1
 = f Mk V (M- 

) exp (ikr) d V 
are connected by the relation 

M_k=M*k 

which follows from the reality of M- 
. Substrtutmg Eq (36) mto Eq (35) and integrating over the volume we get 
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AFt = V ~ (a ~- ck2) Mk M*k . (37) 
k
 

Each of the terms of this sum involves only one of the Mk : hence the the 

fluctuations of the different Mk are statist~cally independent. Mlk M~ = I Mk 1 2 enters 

twice into Eq. (37) from ~ k. so tha~ the probability distribution for the fluctuation of 

the magnetization may be given by the Boltzmann factor exp [ -2V(a+ck2) I Mk 1 2lkT] 

Hence we obtain the required mean sqare Lluctuation 

kT  = 2 V(a+ck.2) (38) 

Note that this formula holds only for values of wave vector k which are not too large, 

because the expansion (35) contains only the lower spatial derivatives of the coordinate 

Thus in the limit k -> O Eq. (38) coincide with Eq. (32) , for 2a = l/X. Now that as 

T~> Tc 1/K approaches to zero, the right side of Eq., (38) is inversely , proportional to 

k2 : This implies that the long wave length fluctuation of the magnetization increase 

unusually large with tendingr to Tc' These macroscopic. fluctuation critical fluctuation 

would be the origin for the many sort of -singularities associated.with the second order 

phse transition. This is, indeed, equivalent to th~ appearance macroscopic~ Iong range 

correlations. To recognize the situation, ,by means 0L. ~n inverse -Fourier transformation 

to Eq. (38), we find _ . _. _ = , 
l
 ] [M(r ) 

]_> = V2 ~ 
'exp [-ik(r-r/)] 

iL' . ' -
kT exp(Llr-r/ l/~) 

~ g~b ' r - r/ ' (39) 
where ~ = Vc~/a V2 )C rs a measure for the range of correlatron 

L c I 
1/' 

d ( T- Tc _ L: 

~:=: 

L/ _ _ 2a (TC T)1 . c ll 72 

for T > T*, 

for T

(40) 

As T -> Tc X grew up exceedingly, the coherent length ~ (-V/X ) extend gradually, 

and finelly the long-range correlation of macrosbopic scale will appear. 

Correlation function (40) is als.o calcu.Iated by other method and a criterion for the 

validity of the Landau theory has been given in the paper by Kadanoff et aZ6). ' 
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