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The theory of static critical phenomena in systems at equlibrium is discussed. The
nature of the classical phenomenological theory of Landau is explained. Critical point
exponents 3, v, 7', O, ... obtained from the Landau theory differ from the results of
the theory for Ising model and experimental results. Statistical evaluation of the order
parameter is obtained by taking into account the fluctuation. Then the correlation
effect is considered. These approaches make implicit use of the assumption that the
free energy if expandable in power series in the order parameter. From the calculation
of spatial fluctuation and long range correlation effect the validity of the Landau theory
is discussed.

§ 1. Introduction

Change of phase—the boiling of water, the melting of iron—is a striking phenomena
in matter. In many cases the properties of various phases seem quite dissimilar and
separate, and transitions between them are abrupt. As the temperature is raised the
properties of a liquid and the vapor in equilibrium become more and more similar
until, at a particular temperature, the differences vanishes. The state at this temperature
is the critical point. At room temperature iron has the spontaneous magnetization in
the absence of magnetic field. As the temperature is raised this magnetization dimin-
ishes and suddenly disappears at a temperature of 770°C. This state of iron is called
the Curie point.. Similar phenomena are observed in many cases: Néel point .in
antiferromagnetism, A-point in liquid helium 4, and so on.

All these phenomena have in common that at a definite transition point a substance
gains or loses all at once. In this respect they differ from the first order phase
transitions, melting, evaporation, sublimation, in which the physical change is not
sudden but take place by a small portion of the substance from one state to another.

More formally those transitions in which one or more first derivatives of the relevant
thermodynamic potential change discontinuously as a function of their variables may
be first order transitions. For a fluid it is appropriate to consider the Gibbs free
energy G as a function of p and T ; the specific volume V=(0G/dp)r and the entropy
S=—(0G/0H), are discontinuous across the vapor pressure curve. In a ferromagnet
the equilibrium magnetization M= — (§F/6H)r where F is the Helmholtz free energy
and H the magnetic field, changes abruptly st the field passes through zero when T
is less than T.
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On the other hand, transitions in which the first derivatives of the thermodynamic
potential remain continuous while only higher order derivatives such as the compress-
ibility, the specific heat or the susceptibility are divergent or change discontinuously at
the transition point may conveniently be termed second order transitions(due to Ehrenfest)
or continuous transitions. It is for such transitions we use the term critical point.

There are quite marked similarities between apparently very distinct phase transitions.
Theoretical and experimental questions have much in common for all critical points.
They are attested by the fact that they have been treated by very similar models and
theories. These models and theories are based on the idea that phase transitions and
critical points are brought about through the mutual cooperative interactions of many
particles. The essential similarity of the early theory for the cooperative phenomena,
the van der Waal theory of the liquid-vapor critical point, Curie-Weiss theory of
ferromagnetism, the Bragg-Williams and Bethe theory of order disorder phenomena
give an excellent qualitative picture of critical phenomena, but fail more and more
seriously in their quantitative predictions as the critical point is reached. Their ultimate
inadequcy is demonstrated with Onsager’'s) exact solution of the two dimensional

Ising model of ferromagnetism.

§ 2. Thermodynamical Theory on the Second Order Phase Transitions
—— The Landau Theory

The important theoretical concept for the second order phase transition is the order
parameter® P. The parameter is a numerical measure of ordering built up in the
vicinity of the critical point. For example, in a ferromagnetic crystal with an easy
axis of magnetization along the 2z direction, a suitable order parameter P is the statistically
averaged z component of magnetization M(r) at the point r. The order parameter may
vanish above the critical point, but it must be nonzero in the region below T, and
approches zero cotinuously as T— T, from below.

A relatively simple phenomenological theory, which is useful to understand general
behavior near critical point, was provided by Landau® who has taken into account the
spatial fluctuation of the order parameter P. Although the theory does not agree with
experimental observations very close to the critical point, it serves to realize a qualitative
behavior except in the vicinity of critical point.

A dominant characteristic of the critical phenomena is the large increase of the
microscopic fluctuations in the vicinity of critical point. The fluctuation of magnetization,
energy can reach effectively macroscopic magnitudes, and correspondingly, the second
thermodynamic derivatives (specific heats, susceptibilities, etc.)

The continuity of the change of state for a second order phase transition is expressed
mathematically by the fact that near a transition point order parameter, say, magnetiz-
ation M can take arbitrary small values. In the following description, we prefer
magnetization of a ferromagnet as the order parameter. Considering now the neigh-
borhood of a transition point, it would seem reasonable to expand the free energy per
unit volume of a ferromagnet in a power series in the magnetization :

F (M, T) =Fy+a(T)M2+b(T)M*+. .. @))
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The first term F, represents the free energy which would exist were it not for magne-
tization. Direct spin-spin interaction produce the remaining term in F. Because these
interactions do not change when we change the sign of M, these terms contain no odd
terms. This is the origin of the term M? and M* in Eq. (1).

As regards the coefficients a of the
second order term, it is easy to see
that it vanishes at the transition point.
Indeed, for the disordered phase the
minimum of F must correspond to
the value M = 0 ; this obviously req-
uires a> 0. Conversely, on the other

FWM, T)-Fo

side of transition point, in the ordered
phase, the equilibrium state (for the
minimum of F) must correspond to
nonzero value of M ; this is only
possible for a < 0. Figure shows the
form of the function F for a%O.

Being positive on one side of the

transition point and negative on the
other, a(T) must vanish at the point itself :

a(Te) =0. @

But for the transition itself to be a stable state, i. e., for F to be a minimum there as
a function of M (at M = 0), it is necessary that the third order term must also vanish
at this point, and fourth order term must be positive :

b(T:) > 0. 3

Being positive at the transition point, the coefficient b is, of course, also positive in
its neighborhood. The transition point is determined by Eq. (2). Near the transition

point we can write

a(T) = a'(T—T.), (€Y

a .
where a’ = (’?T is a constant.
T=Te¢

The dependence of M on temperature near 1. in the ordered phase is determined
by the condition that F should be a minimum as a function of M. Equating the
derivative 8F/0M to zero,

we obtain
M (a+2bM?) = 0,
whence
’
M=0 and M?2= —g—bng—(Tc—T). 5)

(the solution M = 0 corresponds to the disordered phase.)
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Hence near T, the system can produce large scale fluctuations in M with relatively
little coast in free energy which if fourth order in M.

We now follow the thread of the Landau theory and derive the relations between
the critical phenomena.

First consider the temperature dependence of magnetization M at zero magnetic field.
According to Eq. (5) the magnetization just below T, is proportional to (T.—T)%.
We shall obtain and use several results of this type. we define a critical index 8 by
the condition that the order parameter go to zero as (T.— T)?. We have just known

that in the Landau theory @ = —;7 .

To continue the discussion of critical exponents, we insert the interaction —M H
between the magnetization and the applied magnetic field H — assumed parallel to the
easy axis ¢ — to F, and minimize the free energy, we obtain

M (2a+4b M?) = H. (6)
At T = T,, then a =0 so that
M = (H/4b)%. )

Another critical exponent ¢ is defined as M~ H? and hence O =—é—.

The susceptibility ¥ = (0M/0H)r is obtained by differentiating Eq. (6) with respect
to H. At zero magnetic field, the resulting susceptibility may be evaluated as

1 1
B2 T o (T=TY for T> T,
X = @)
1 1 for T<< T,

T 4a T 4d(T.—T)

which is just the Curie-Weiss law. The magnetic susceptibility is seen to diverge both
above and below T, as X~ (T—T.) -7 for T > T¢; X~ (TC—T);7’ for T <T, and
hence y =y’ = 1.

The final thermodynamic properties in the specific heat at zero magnetic field is
given by thermodynamics as

Cu= -T2% ©)
H=0
But, at H =0, we can use Eq. (5) to find
F, for T > T.,
el for T < T.. (10)

|7

The extra term in the free energy below T'. produces a constant term in specific heat.
Thus, there is a discontinuity of amount

4C =22 T a1)
2b C,
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The Landau theory does not work for Ising models, that is, the theoretical study
of Ising model has obtained the values of all the critical indices. Other theoretical®
and experimental® studies on the critical exponents differ with those from the Landau
theory. We have seen above that The Landau theory neglects fluctuations, hence it

has the range of validity.

§ 3. Statistical Averages of Magnetization

The free energy F of a ferromagnet can be assumed to depend on the magnetization
for no external field as in Eq. (1) and from Eq. (4)

F = Fo+a' (T—T)M*+b M* 12)

for temperature T near the Curie temperature T, ; a’ and b are positive and approxi-
mately temperature-independent.

We derive the temperature dependence of average magnetization M(T).

The probability of observing a magnetic moment density between M and M+dM is
proportional to exp (—F/kT) dM. Thus the most probable magnetization M, is the one
for which F(M, T) has a minimum as a function of M. When we neglect the effect of

fluctuations, the average magnetization
M=fMe xp (-F/kT)dM/fexp (—F/kT) dM (13)

is equal to M,. This is because the distribution function exp(—F/kT) is large in the
neighborhood of M,. From the condition that F(M, T) be a minimum, we find

a v
My [ (Te=D | for T<T. 1
‘ 0 for T> T,
as in Eq. (5)

Next, to obtain an estimate of the fluctuations on the calculation (M), we consider
the difference <M> — M, for two cases.

(a) Introduce a dimensionless parameter u for T < T. by

. kT %

M= Mo+ | gy | (1)
where
a’ 14

My =[5 (T—=D) . a7

Then, expanding F(M, T) about the value M,, we find

g a® ‘ —T)2 oy ¥ Ut

F = Fy= S (Te= D+ 2T (w0 + S+ ) (16)

with
A =[a*(T.—T)2/bkTT". an
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With this new variable, we find for the fractional fluctuation from Eq. (13),

co

f 2 exp [ — (2 +ud/A+ut/aA?)] du
AMy—M, -4
M, T ' (18)
fexp [— G2+ ud/A+ut/4A%)] du
—A

Exact evaluation of these integrals would be impossible. However, in the limit A > 1,
we have, to the first order in 1/A, that

o =)

f 1 exp [— (2 + Zj )_1 du = —-;14—fu4 exp (—u?)du ~ —— —fu“ exp (—u*)du.

_44. _A -0
(19
Thus, in this limit A>1, we obtain

_fu4 exp (—u®)du
My — M, = Ze _ 3 _ 3bkT (20)
M, oo T 4A* T 4d¥(T.—T)*
A“fexp (—u®)du

(b) Define a second parameter v for T > T, by

kT %
= [ a/(T_ ) v, 1)
then
3
F = Fo+kT (o* +"’§1’2‘>’ (22)

and hence, we find for the fluctuation

=)

fv exp[— (v*+v*/A) ] dv
, (23)

0
[exp = (v2+v1/4% T do
0
where A is defined in Eq. (17). In the limti A>1, we obtain

<M> [n*a "(T—T.) ] 24

In the presence of a magnetic field H, we add a term—MH to F. Thus the average
magnetization above Curie temperature is given by
_ f vexp {— (vt +vH/[ETd (T—T)%} dv
kT v
ME> = —p—ry]| = v ., @)
fexp (—v¥)dv

0
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where terms of order 1/A <1 have been neglected. Thus to first order in H,

(MUY = (I%I_—ch (Curie-Weiss law). (26)
The susceptibility is given by
X = XM 1 @2n

0H |u=0 24 (T—Te)

This result have already been obtained from thermodynamics in Eq. (8). The Landau
theory neglects fluctuations. The magnetization fluctuate considerably in actual ferro-
magnet. However, some of these fluctuations may be removed by averaging the order
parameter over a suitable region. For the Landau theory to work well, fluctuations in
the magnetization must be small in comparison with the magnetization itself. We have
then,

My—<{M)y < M,. (28)
This necessary condition becomes from Eq. (20) near T.

36kT.
H2(TC_T>2 <1, (29>

so that the Landau theory could only be correct if

lel :IT;ch|> < 3K '>1/2 , (30)

where AC is the jump in the heat capacity per unit volume predicted by the Landau
theory in Eq. (11).

§ 4. Critical Fluctuations and Long-Range Correlations

Next consider correlation of ‘fluctuations in the magnetization. The fluctuation in
the magnetization M(r) is given by [M(r) —(M(r)>]. The point to be studied is how
the deviation of M from its average at one point in the material coupled to the similar
fluctuations in the neighboring region. The mathematical description of this correlation

is given by the correlation function
Fr, ¥y = [M(r) —{M(r)y1 [MG") —<MG')>] (31)
and the susceptibility is given by
x= (kT)-! f £(r, ¥)dr. (32)

There are useful correlation function expressions for thermodynamic derivatives. For
example, if E(r) is the energy density, the specific heat at fixed H is given by

Cu = f CE@) —<E@)>] LEG)—<E@))D dr’ (33)
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To calculate the correlation function (31) we follow the style in 1he text by Landau
and Lifshitz). We may write the total free energy of the body as the integral

ngdeV,

taken over the total volume of the body, where F denotes as yet the free energy per
unit volume. Let (F)> be the average value of F, constant throughout the body.
As a result of fluctuation F become, together with the magnetization, a quantity which
changes from point to point of the body and

AF, = f (F—{F»)dV. (34)

We expand F—<F) in power of M—{M) at constant temperature. The first term in
the expansion is proportional to M—<{M), and vanishes on integration over the volume,

owing to the relation f M dV:f<M>d‘V, The second order term is of the form a(M—

{M>)?, where the positive coefficient a vanish at the critical point and is small near to
it. The coefficient of the third order term is also small near the critical point, so that
one ought to take the fourth order terms into account.

The point is that we have to consider the inhomogeneous magnetization. Then, the
expansion of F may contain not only the different power of magnetization itself, but
also its spatial derivatives of various orders. Since the body is isotropic, the first
derivatives can only enter into the expansion of the magnetization as the scalar combi-
nation (AM)? and the second as the combination AM (where 4 is the Laplacian
operator). The integral of the term of the form const. 4M over the volume transforms
into an integral over the surface of the body, irrelevant surface effect, while integral
of the term MAM transforms into the integral of (4M)2 Thus we can assume

F—{Fya(M—<M>)%*+c(4dM)2, (35)

where ¢ is a positive constant due to the exchange interaction ; the constant need by
no means vanish at the critical point and hence is not small near it.

The study of fluctuations of the Fourier components of the magnetization near the
critical point is of much greater interest. If we expand M—{M) as a Fourier series in
the volume V of the body, it takes the form

M—-<{M>= 14] M exp(ikr) (36)

where the components of the wave vector k take positive and negative values, and the

coefficients
1 .
M= -3+ f (M—<{(M>Yexp(ikr)dV
are connected by the relation
M_kzM;

which follows from the reality of M—{M). Substituting Eq. (36) into Eq. (35) and

integrating over the volume we get
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AF,=V 3 (a-+ ek Mi M. (37)

Each of the terms of this sum involves only one of the My : hence the the
fluctuations of the different My are statistically independent. Mx M) = |Mi|? enters
twice into Eq. (37) from +k. so that the probability distribution for the fluctuation of
the magnetization may be given by the Boltzmann factor exp [—2V(a+ck?) | My |2/kRT].
Hence we obtain the required mean sqare fluctuation

kT

N (G

(G5))

Note that this formula holds only for values of wave vector k which are not too large,

because the expansion (35) contains only the lower spatial derivatives of the coordinate.

Thus in the limit £2— 0 Eq. (38) coincide with Eq. (32), for 22 =1/X. Now that as
T — T, 1/X approaches to zero, the right side of Eq. (38) is inversely _proportional to
k% : This implies that the long wave length fluctuation of the magnetization increase
unusually large with tending to T.. These macroscopic. fluctuation—critical fluctuation
would be the origin for the many sort of singularities associated. with the second order
phse transition. This is, indeed, equivalent to the appearance macroscopic. long range
correlations. To recognize the situation, by means of an inverse Fourier transformation

to Eq. (38), we find

M) M)y TMG) —MOYYD = g 5 MMy exp [—ik(r—r)]

_ kT exp(—|r—r'|/&)
- 8][6' Ir—r’l . . (39)
where £ =1/c/a = 1/2cx is a measure for the range of correlation :
I c v
J =l for T > T, ,

As T— T, X grew up exceedingly, the coherent length &(~1/ X ) extend gradually,
and finelly the long-range correlation of macroscopic scale will appear.

Correlation function (40) is also calculated by other method and a criterion for the
validity of the Landau theory has been given in the paper by Kadanoff et al®.
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