博士論文の要約

島根大学大学院総合理工学研究科博士後期課程 マテリアル創成工学 特別プログラム地球・地球環境 専攻 氏 名 Amila Sandaruwan Ratnayake (S129803) September, 2015

Organic geochemical study on the Jurassic to Quaternary sediments of onshore and offshore basins, Western Sri Lanka

(スリランカ西部の陸域および海域堆積盆地におけるジュラ系~第四系堆積物に関する有機 地球化学的研究)

Sri Lanka records on of the longest and complete tectonic evolution from the mid-latitude in the southern hemisphere (during the Jurassic) to the equatorial northern hemisphere. Onshore and offshore sedimentary basins in Sri Lanka provide the natural laboratory to reconstruct paleoenvironmental and paleoclimatic during its northward voyage from Gondwana to Asia. The Jurassic Gondwana sediments were collected from the onshore Andigama and the Tabbowa Basins. The drillcore cutting samples from the Late Cretaceous to Miocene were obtained from the two exploration wells (the Barracuda and Dorado North) in the offshore Mannar Basin. The Late Quaternary sediment samples were collected from the coastal Bolgoda Lake in the southwest of Sri Lanka. CHNS elemental analysis (n = 1279) and gas chromatography and mass spectrometer (GC-MS) analysis (n = 177) were performed for sediment samples. The standard burial history, thermal maturity, and kinetic models were prepared for the Mannar Basin using petroleum system modeling software (BasinMod 1-D). The ¹⁴C radiometric dating was carried out using accelerated mass spectrometry for the Late Quaternary Bolgoda Lake samples.

[The Jurassic Andigama and Tabbowa Basins] Total organic carbon (TOC) contents are high (3.05-5.10%) in the Jurassic Andigama Basin. The Andigama mudstones are thermally immature. Terrestrial organic matter (OM) were deposited in the freshwater swamp under oxic condition. The OMs were mainly originated from gymnosperm with fungi.

[The pericratonic Mannar Basin] At the end of the Late Paleocene, sedimentary facies were drastically changed from calcareous mudstone to argillaceous marl/ marlstone. These facies variations have an apparent relation with the sedimentation rates in the basin. This shift is interpreted as the continuous subsidence of the basin and changes of an arid climate into warm and humid tropical conditions. The lowest sedimentation rate was recorded during the Eocene suggesting that the timing of collision between Indian and Asian plates. Burial history indicates rapid subsidence from the Late Cretaceous to the Paleocene during the rift transition stage. Subsidence rate was decreased during the Eocene. The deposition of CaCO₃ rich sediments could indicate movement of Indian plate into northward warmer tropical latitudes since the Late Paleocene. It is correlated with the Cenozoic global cooling towards the present glaciated Earth. TOC contents are relatively low (< 1%) in the lower most Early Campanian sediments. However, the Early Campanian to Late Maastrichtian, the Late Campanian to Late Maastrichtian and Middle

Oligocene to Early Miocene sediments can be recognized as OM rich source rock beds in this basin. The kinetic model of the representative Cretaceous sediments can indicate natural gas generation since the Early Eocene. The natural gas generation was gradually increased and reached peak conditions during the Miocene.

[The coastal Bolgoda Lake] The history of the Bolgoda Lake can be divided into two major chronostratigraphic divisions that are quasi-steady state (from ~7.5 ky B.P. to ~2.5 ky B.P.) and non-steady state (from ~2.5 ky B.P. to the Recent). The major environmental change was characterized by enhancement of TOC (%) and accumulation of reworking terrestrial OM in the semi-closed aquatic system after the sea-level regression (~2.5 ky B.P.). Accumulations of petroleum residues and pyrogenic polycyclic aromatic hydrocarbons (PAHs) in modern sediments identified anthropogenic activity after the European settlement (15th century).

The results show in the Jurassic to Quaternary onshore and offshore basins of Western Sri Lanka that (1) organic carbon burial is significantly controlled by terrestrial OM sources, (2) evaluation of OM type is essential to reconstruct paleoenvironment characteristics, and (3) nutrient availability is normally enhanced in terrestrial OM rich sediments in these basins.

CONTENTS

NEDODUCEION

CILLA DEED 1

CHAPIER I	INTRODUCTION	1
1.1 General introducti	on	1
1.2 Applications of organic geochemistry		
1.3 Significance		2
1.4 Objectives		3
CHAPTER 2	STUDY AREA	5
2.1 The onshore sedin	5	
2.2 The offshore Man	7	
2.2.1 Regional te	7	
2.2.2 Exploration history of Sri Lanka		9
2.3 The coastal Bolgo	11	
CHAPTER 3	MATERIALS AND METHOEDS	13
3.1 Materials		13
3.1.1 The onshore sediment samples		13
3.1.2 The offshore sediment samples		13
3.1.3 The coastal sediment samples		13
3.2 Methods		14
3.2.1 Geochemical analysis and age dating		14
3.2.2 Cleaning of offshore cutting samples		15
3.2.3 Stratigraphy and basin modeling in the offshore Mannar Basin		
CHAPTER 4 RI	ESULTS	19

4.1 The onshore sedimentary basins	19
4.1.1 Bulk measurements	19
4.1.2 Molecular compositions	20
4.2 The offshore Mannar Basin	27
4.2.1 Stratigraphy	27
4.2.1.1 Sandstones	27
4.2.1.2 Interbedded red mudstones and black mudstones	27
4.2.1.3 Volcanogenic sediments	28
4.2.1.4 Calcareous mudstone-argillaceous marlstone boundary	28
4.2.2 Sedimentation rates and burial modeling	28
4.2.3 Bulk sedimentary organic matter	35
4.2.4 Molecular compositions of sedimentary organic matter	40
4.3 The coastal Bolgoda Lake	46
4.3.1 Field observations	46
4.3.2 Bulk sedimentary organic matter	46
4.3.3 Living organic source materials	51
4.3.4 Molecular sedimentary organic matter	52
4.3.5 ¹⁴ C age dating	53
CHAPTER 5 DISCUSSION	61
5.1 The onshore sedimentary basins	61
5.1.1 Thermal maturity	61
5.1.2 Origin of organic matter	62
5.1.3 Depositional environment	65
5.1.4 PAHs distribution in the Andigama mudstones	66
5.1.5 Alkylated phenanthrenes in the Andigama mudstones	67
5.2 The offshore Mannar Basin	68
5.2.1 Stratigraphy and lithology	68
5.2.1.1 Sandstones	68
5.2.1.2 Interbedded red mudstones	69
5.2.1.3 Black mudstones	69
5.2.1.4 Volcanogenic sediments	70
5.2.1.5 Calcareous mudstone-argillaceous marlstone boundary	70
5.2.1.6 Turbidites	71
5.2.2 History of sedimentation rates	71
5.2.3 Burial history	73
5.2.4 Sedimentary organic matter	74
5.2.4.1 Variations of carbonate deposition	74
5.2.4.2 Variations of organic matter delivery	76
5.2.4.3 Variations of organic matter type delivery	77

5.2.4.4 Depositional environments	80	
5.2.5 Thermal maturity	82	
5.2.5.1 Sterane distribution	82	
5.2.5.2 Hopane distribution	83	
5.2.5.3 Prediction of paleogeothermal regime	84	
5.2.5.4 Kinetic model of the Mannar Basin	86	
5.2.6 Paleoenvironment and paleoclimate	88	
5.3 The coastal Bolgoda Lake	91	
5.3.1 Present lake environments	91	
5.3.1.1 Variations of organic matter delivery	91	
5.3.1.2 Origin of organic matter in surface sediments	92	
5.3.1.3 Depositional environments of the surface sediments	92	
5.3.1.4 Mangrove mud cores	93	
5.3.2 Environmental and climatic changes from middle Holocene	94	
5.3.2.1 Age and sedimentation rates	94	
5.3.2.2 Changes in organic matter contents	95	
5.3.2.3 Changes in origin of organic matter type	95	
5.3.2.4 Changes in depositional environments	97	
5.3.2.5 PAHs as artificial marker	98	
5.3.3 The Holocene sea-level changes and coastal landforms evolution	99	
5.3.4 Paleoecological and chemotaxonomical significant	103	
5.3.5 Early stage diagenesis in the tropical brackish sediments	110	
5.3.5.1 Total hopane distribution in surface and mangrove sediments	110	
5.3.5.2 Total hopane distribution in the lake core sediments	110	
5.3.5.3 Effects of reworking geohopanoids in the recent sediments	112	
5.3.6 Paleoclimate and environment	114	
5.3.7 Future environmental implications	115	
CHAPTER 6 CONCLUSION	117	
6.1 The onshore sedimentary basins	117	
6.2 The offshore Mannar Basin	117	
6.2.1 Stratigraphy and lithology	117	
6.2.2 Geochemical evaluations	119	
6.3 The coastal Bolgoda Lake	121	
6.4 General overview		
REFERENCES	127	
APPENDIX		