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critical nonlinear Schrödinger equation
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Abstract

The Cauchy problem for the critical nonlinear Schrödinger equation is consid-

ered in the Sobolev space of fractional order. Some modified Strichartz estimates

are constructed and applied to the problem to obtain small global solutions with

less regularity assumption for the nonlinear term.
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1 Introduction

We consider the Cauchy problem for nonlinear Schrödinger equations{
∂tu(t, x) + i∆u(t, x) = f(u)(t, x) for (t, x) ∈ R × Rn,

u(0, ·) = u0(·) ∈ Hs(Rn),
(1.1)

where n ≥ 1, ∆ :=
∑n

j=1 ∂
2/∂x2

j is the Laplacian, f(u) := λ|u|p−1u or f(u) := λ|u|p

with λ ∈ C for example, 1 < p < ∞, u0 is a given initial datum in the Sobolev space

Hs(Rn) for 0 ≤ s < ∞. Cazenave and Weissler [3] proved the existence of time global

solutions of (1.1) for small data under the conditions

0 ≤ s <
n

2
, [s] + 1 < p = p(s) := 1 +

4
n− 2s

, (1.2)

where p(s) is the critical number for (1.1) by the scaling uR(t, x) = R2/(p−1)u(R2t, Rx)

for any R > 0, and [s] denotes the largest integer less than or equal to s. The condition
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[s] + 1 < p is the required regularity for f(u), and it can be improved to s < p by the

method by Ginibre, Ozawa and Velo in [4] (see [12]). The aim of this paper is mainly

to improve this condition to
s

2
< p = p(s), (1.3)

and to that end we also aim to refine the modified Strichartz estimate by Pecher [13].

Here, the special case s = 2 was proved in [3, Theorem 1.4]. However, the other case

has been left open for long time.

To describe the corresponding results, we define p0(s) by

p0(s) :=


1 for s ≤ 2,

s− 1 for 2 < s < 4,

s− 2 for 4 ≤ s.

And we consider the problem (1.1) under the condition

0 ≤ s <
n

2
, p0(s) < p < p(s). (1.4)

The condition p0(s) < p for s ≤ 2 and s ≥ 4 is natural since 1 < p and the s-derivative

of u in the spatial variables requires the (s− 2)-derivative of f(u) by the first equation

in (1.1). The existence of time local solutions of (1.1) under (1.4) has been shown by

Tsutsumi [16] for s = 0, Ginibre and Velo [5, Theorem 3.1] for s = 1 (see also [6]),

Tsutsumi [15] for s = 2 for f(u) = λ|u|p−1u with iλ ∈ R mainly by the use of the

Lp − Lq estimate and the regularization technique. Kato [9, 10] used the Strichartz

estimate and gave alternative proofs for the cases s = 0, 1, 2 both for f(u) = λ|u|p−1u

and f(u) = λ|u|p with λ ∈ C. Pecher [13] used the fractional Besov space for the time

variable and proved the result when s is a real number with (1.4) and s > 1. He has also

shown the existence of time global solutions when the initial data are sufficiently small.

The condition p0(s) < p was improved to s/2 < p for 2 < s < 4 in [17], which seems to

be natural since p0(s) is discontinuous at s = 4 and by the property of the Schrödinger

equation (one time derivative corresponds to two spatial derivatives). However, the

methods in [13] and [17] are not applicable to time global solutions for the critical case

p = p(s) by the technical conditions on the Strichartz estimates there. Especially, the

interpolation argument to construct the Strichartz estimates prevent us from treating

the critical point p(s) in its application to (1.1). In this paper, we improve the Strichartz

estimates in [13] and [17] using the auxiliary space `αLq(R, Lr(Rn)) defined by (1.5)

below, and we show the time global solutions for p = p(s).

To state the main results in this paper, we prepare several function spaces. Let

{ϕj}∞j=−∞ be the Littlewood-Paley decomposition of the unity on R. Namely, let ϕ
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be a function whose Fourier transform ϕ̂ is a non-negative function which satisfies

supp ϕ̂ ⊂ {τ ∈ R; 1/2 ≤ |τ | ≤ 2} and
∑∞

j=−∞ ϕ̂(τ/2j) = 1 for τ 6= 0. We define

ψ and ϕj for j ∈ N by ϕ̂j(·) = ϕ̂(·/2j), ψ̂ =
∑

j≤0 ϕ̂j . We define χj :=
∑j+1

k=j−1 ϕk

for j ≥ 1, χ0 := ψ + ϕ1. We put ψ(x) := F−1
ξ ψ̂(|ξ|) and ϕj(x) := F−1

ξ ϕ̂j(|ξ|) for

x ∈ Rn and ξ ∈ Rn. For s ∈ R and 1 ≤ r, α ≤ ∞, the Besov space is defined by

Bs
r,α(Rn) := {u ∈ S ′(Rn); ‖u‖Bs

r,α(Rn) < ∞}, where S ′(Rn) is the space of tempered

distributions on Rn,

‖u‖Bs
r,α(Rn) := ‖ψ ∗x u‖Lr(Rn) +



∑
j≥1

(
2sj‖ϕj ∗x u‖Lr(Rn)

)α
1/α

if α <∞,

sup
j≥1

2sj‖ϕj ∗x u‖Lr(Rn) if α = ∞,

where ∗x denotes the convolution in the variables in Rn. We prepare the Besov space

of vector-valued functions (see [1], [14]). For functions u = u(t, x) and v = v(t, x),

we denote their convolutions in t and x variables by u ∗t v and u ∗x v, respectively.

For 1 ≤ q, ` ≤ ∞ and a Banach space V , we denote the Lebesgue space for func-

tions on R to V by Lq(R, V ) and the Lorentz space by Lq,`(R, V ). We define the

Sobolev space W 1,q(R, V ) := {u ∈ Lq(R, V ); ∂tu ∈ Lq(R, V )} and the Besov space

Bs
q,α(R, V ) :=

{
u ∈ S ′(R, V ); ‖u‖Bs

q,α(R,V ) <∞
}

, where

‖u‖Bs
q,α(R,V ) := ‖ψ ∗t u‖Lq(R,V ) +

∑
j≥1

(
2sj‖ϕj ∗t u‖Lq(R,V )

)α
1/α

if α < ∞ with trivial modification if α = ∞. We define the space `αLq(R, Lr(Rn)) :={
u ∈ L1

loc(R, Lr(Rn)); ‖u‖`αLq(R,Lr(Rn)) <∞
}
, where

‖u‖`αLq(R,Lr(Rn)) := ‖ψ ∗x u‖Lq(R,Lr(Rn)) +

∑
j≥1

‖ϕj ∗x u‖α
Lq(R,Lr(Rn))

1/α

(1.5)

if α <∞ with trivial modification if α = ∞. We also define `αLq,`(R, Lr(Rn)) similarly.

We recall the Strichartz estimate. For 1 ≤ r ≤ ∞, we put δ(r) := n(1/2 − 1/r).

We say that the pair (q, r) is admissible if 2 ≤ q, r ≤ ∞ and 2/q = δ(r) with (q, r, n) 6=
(2,∞, 2). For 1 ≤ r ≤ ∞, r′ denotes its conjugate number defined by 1/r + 1/r′ = 1.

Lemma 1.1. (See, e.g., [8], [11] and the references therein.) Let s ∈ R, and let (q, r)

and (γ, ρ) be admissible pairs. Then the solution u of{
∂tu+ i∆u = f on R × Rn,

u(0, ·) = u0(·)
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satisfies

‖u‖L∞(R,Hs(Rn))∩Lq(R,Bs
r,2(Rn)) ≤ C‖u0‖Hs(Rn) + C‖f‖Lγ′

(R,Bs
ρ′,2(Rn)),

where the constant C > 0 is independent of u, f and u0. Moreover, u ∈ C(R,Hs(Rn)).

Lemma 1.2. ([13, Proposition 2.5], [17, Lemma 2.3]) Let s > 0, and let (q, r) be an

admissible pair with 2 < q <∞. Then the solution u of the problem{
∂tu+ i∆u = 0 on R × Rn,

u(0, ·) = u0(·)

satisfies

‖u‖
B

s/2
q,2 (R,Lr(Rn))

≤ C‖u0‖Hs(Rn),

where the constant C > 0 is independent of u and u0.

In this paper, we firstly show the following Strichartz estimate for the inhomoge-

neous problem.

Theorem 1.3. Let n ≥ 1, 0 < θ < 1, 2 ≤ α ≤ ∞. Let (q, r) and (γ, ρ) be admissible

pairs. Assume ρ < ∞ when α < ∞. Let 1 ≤ q̄, r̄ ≤ ∞ satisfy 2/q̄ − δ(r̄) = 2(1 − θ).

For any fixed function f , let us consider the problem{
∂tu+ i∆u = f on R × Rn,

u(0, ·) = 0.
(1.6)

Then there exists a constant C > 0 which is independent of u and f such that

(1) ‖u‖Bθ
q,α(R,Lr(Rn)) ≤ C‖f‖Bθ

γ′,α(R,Lρ′ (Rn)) + C‖f‖`αLq̄(R,Lr̄(Rn)). (1.7)

Moreover, if max{α, q̄} ≤ q, then

(2) ‖u‖Lq(R,B2θ
r,α(Rn)) ≤ C‖f‖Bθ

γ′,α(R,Lρ′ (Rn)) + C‖f‖`αLq̄(R,Lr̄(Rn)). (1.8)

In addition, u ∈ C(R,Hs(Rn)) if α = 2.

Remark 1.4. Theorem 1.3 is a refinement of the following inequality previously ob-

tained by Pecher [13, Propositions 2.6 and 2.7], Uchizono and Wada [17, Lemma 2.3].

‖u‖Bθ
q,2(R,Lr(Rn))∩Lq(R,B2θ

r,q(Rn)) ≤ C‖f‖Bθ
q′,2(R,Lr′ (Rn)) + Cmax

±
‖f‖Lq̄± (R,Lr̄± (Rn)), (1.9)

where 1/q̄± = (1 − θ ∓ ε)/q′ + (θ ± ε)/q and 1/r̄± = (1 − θ ∓ ε)/r′ + (θ ± ε)/r with

sufficiently small ε > 0. The most important advantage of our new estimates (1.7) and
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(1.8) is that they are scale invariant. Namely, if we consider the scaling uR(t, x) =

Rn/2−2θu(R2t, Rx), fR(t, x) = Rn/2+2−2θf(R2t, Rx) for any R > 0, (1.6) is invariant

under this transform, and (the homogeneous counterparts of) the both sides of (1.7)

and (1.8) are also invariant under this transform. On the other hand, the last term

in the right-hand side of (1.9) is not scale-invariant because of the presence of ε in

the definition of q̄±, r̄±. This is why we cannot treat the critical nonlinear problem as

long as we rely on (1.9). Moreover, in our estimates, we can choose the pairs (q, r),

(γ, ρ) and (q̄, r̄) independently, whereas in (1.9), we have to choose (γ, ρ) = (q, r) and

(q̄±, r̄±) satisfying the above formulas. This can be an advantage when we consider not

only pure power but also more complicated nonlinear terms.

As an application of Theorem 1.3, we show the global well-posedness of the problem

(1.1) for small initial data under the condition (1.3). For any function f from C to C,

we denote the derivatives ∂f/∂z and ∂f/∂z̄ by f ′, where z̄ is the complex conjugate

of z. For 1 < p < ∞, we say that f satisfies N(p) if f ∈ C1(C,C) in the sense of the

derivatives by z and z̄, f(0) = f ′(0) = 0, and

|f ′(z1) − f ′(z2)| ≤

 C max
w=z1,z2

|w|p−2|z1 − z2| if p ≥ 2,

C|z1 − z2|p−1 if 1 < p < 2
(1.10)

for any z1, z2 ∈ C. We note that f(z) = λ|z|p−1z and f(z) = λ|z|p with λ ∈ C satisfy

N(p) (see [7, Remark 2.3′]). For s ≥ 0, an admissible pair (q, r) and 1 ≤ α ≤ ∞, we

define a function space Xs
q,r,α by

Xs
q,r,α := C(R,Hs(Rn)) ∩ C1(R,Hs−2(Rn)) ∩ L∞(R,Hs(Rn)) ∩W 1,∞(R,Hs−2(Rn))

∩Bs/2
q,2 (R, Lr(Rn)) ∩ Lq(R, Bs

r,α(Rn)) ∩W 1,q(R, Bs−2
r,α (Rn))

with the metric in L∞(R, L2(Rn))∩Lq(R, Lr(Rn)), where we remove C1(R,Hs−2(Rn)),

W 1,∞(R,Hs−2(Rn)) and W 1,q(R, Bs−2
r,α (Rn)) when s < 2.

Theorem 1.5. Let n ≥ 8. Let 1 < s < 4 with s 6= 2, and let s/2 < p = p(s) ≤ s. If

s ≥ 3 with p < 2, or equivalently if 3 ≤ s < (n− 4)/2, we further assume either of the

following:

(i) n = 11; or (ii) n = 12 and 7 −
√

15 (= 3.12 · · · ) ≤ s < 5 −
√

3 (= 3.26 · · · ). (1.11)

Let f satisfy N(p). Then, there exists an admissible pair (q, r) such that if u0 ∈ Hs(Rn)

is sufficiently small, then the Cauchy problem (1.1) has a unique global solution u in

Xs
q,r,α. Moreover, the solutions depend on the initial data continuously, namely, the
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flow mapping u0 7→ u is continuous from Hs(Rn) to Xs
q,r,α. Here, we put α := 2 for

s < 3, and α := q for 3 ≤ s.

Remark 1.6. The assumption n ≥ 8 is natural since the condition p(s) ≤ s holds if

and only if

s1 :=
n+ 2 −

√
(n− 2)2 − 32
4

≤ s ≤ s2 :=
n+ 2 +

√
(n− 2)2 − 32
4

, (1.12)

and n ≥ 8 is required for (n − 2)2 − 32 ≥ 0. We see that s1 ≤ 2 when n ≥ 8, s2 = 3

when n = 8, s2 = (11 +
√

17)/4 = 3.78 · · · when n = 9, and s2 > 4 when n ≥ 10.

Remark 1.7. Let s/2 < p(s) < 2 with 3 ≤ s < 4. The inequality p(s) < 2 implies

s < (n − 4)/2. If n ≤ 11, then s/2 < p(s) holds; on the other hand, if n ≥ 12, the

inequality s/2 < p(s) implies s < s3 := (n + 4 −
√

(n+ 4)(n− 12))/4. (If n ≤ 11, we

put s3 = ∞.) Therefore, we have 3 ≤ s < min{(n− 4)/2, s3}, so that 11 ≤ n ≤ 13 and

3 ≤ s <


7/2 when n = 11,

4 when n = 12,

(17 −
√

17)/4 (= 3.21 · · · ) when n = 13.

(1.13)

However, in Theorem 1.5, we further assume (1.11). Namely, we can treat all the range

of s when n = 11, while there are open ranges of s to be filled when n ≥ 12, possibly by

the technical reason (see §4.3).

Combining the known results with Theorem 1.5, we obtain the following corollary.

Corollary 1.8. Let n ≥ 1, 0 ≤ s < min {n/2, 4}, s/2 < p = p(s). When s ≥ 3 with

p < 2, assume (1.11). Let f satisfy N(p). The Cauchy problem (1.1) is well-posed

time-globally in C(R,Hs(Rn)) ∩ Y for small initial data in Hs(Rn), where Y is some

auxiliary function space.

Proof. The case s = 2 has been shown in [3, Theorem 1.4]. The case n ≥ 1, 0 ≤ s < n/2,

s < p = p(s) has been shown in [4, 12]. The remaining case is proved by Theorem

1.5.

Throughout the paper, we denote by A . B the inequality A ≤ CB for some

constant C > 0 which is not essential in our argument. For any function f = f(t) or

f = f(x), its Fourier transform is denoted by f̂ . For any function f = f(t, x), f̂ and

f̃ denote its Fourier transform by x and (t, x) variables, respectively. We abbreviate

Lr(Rn) by Lr, Lq(R, Lr(Rn)) by LqLr, `αLq(R, Lr(Rn)) by `αLqLr as long as no fear of

confusion. We use the homogeneous Sobolev space Ḣs(Rn) and Besov space Ḃs
p,q(Rn)

(see [2] for the definitions and properties).
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2 Preliminaries

We prepare several lemmas which are required in this paper.

Lemma 2.1. Let 1 < p < ∞, 0 < s < min{2, p}, 1 ≤ r0, r1, ρ, α ≤ ∞. Let f satisfy

N(p). Let 1/r0 = (p− 1)/ρ+ 1/r1. Then we have

‖f(u)‖Ḃs
r0,α(Rn) . ‖u‖p−1

Lρ(Rn)‖u‖Ḃs
r1,α(Rn)

for any u ∈ Lρ(Rn) ∩ Ḃs
r1,α(Rn).

Proof. The case α = 2 has been proved in [4, Lemma 3.4]. The case α 6= 2 follows from

its straightforward modification.

Lemma 2.2. Let s ∈ R, 0 < θ < 1, 1 ≤ q0, q1 ≤ ∞, 1 ≤ α ≤ ∞. Put 1/q :=

(1 − θ)/q0 + θ/q1. Let V , V0, V1 be Banach spaces which satisfy V0 ∩ V1 ⊂ V and

‖u‖V . ‖u‖1−θ
V0

‖u‖θ
V1

for any u ∈ V0 ∩ V1. Then the inequality

‖u‖Bθs
q,α/θ

(R,V ) . ‖u‖1−θ
B0

q0,∞(R,V0)
‖u‖θ

Bs
q1,α(R,V1)

holds for any u ∈ B0
q0,∞(R, V0) ∩Bs

q1,α(R, V1).

Proof. By the inequality ‖ζ ∗t u‖V . ‖ζ ∗t u‖1−θ
V0

‖ζ ∗t u‖θ
V1

for ζ = ψ,ϕj , we have

‖ψ ∗t u‖Lq(R,V ) . ‖ψ ∗t u‖1−θ
Lq0 (R,V0)‖ψ ∗t u‖θ

Lq1 (R,V1), and∑
j≥1

(
2θsj‖ϕj ∗t u‖Lq(R,V )

)α/θ


θ/α

. sup
k≥1

‖ϕk ∗t u‖1−θ
Lq0 (R,V0)

∑
j≥1

(
2sj‖ϕj ∗t u‖Lq1 (R,V1)

)α
θ/α

when α 6= ∞. So that, we have the required estimate when α 6= ∞. The case α = ∞
also follows by trivial modification.

Lemma 2.3. Let s ∈ R, 1 ≤ r, α ≤ ∞. The norm defined by

‖u‖
eBs

r,α(Rn)
:=
∥∥∥(F−1

ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥
Lr(Rn)

+


{∑

j≥1

(
2sj/2

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

)α}1/α

if α <∞,

supj≥1 2sj/2
∥∥∥(F−1

ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

if α = ∞

for any function u is equivalent to the norm ‖u‖Bs
r,α(Rn).

7



Proof. First, we show ‖u‖Bs
r,α(Rn) . ‖u‖

eBs
r,α(Rn)

. We use the identity

2∑
k=−2

ϕ̂(|ξ|2/22j+k) = 1

on the support of ϕ̂(|ξ|/2j), and the Young inequality to have

‖ϕj ∗x u‖Lr(Rn) =
∥∥∥(F−1

ξ ϕ̂(|ξ|/2j)
)
∗x u

∥∥∥
Lr(Rn)

.
2∑

k=−2

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/22j+k)

))
∗x u

∥∥∥
Lr(Rn)

.

Then we have∑
j≥1

(
2sj‖ϕj ∗x u‖Lr(Rn)

)α
1/α

.

∑
j≥1

(
2sj/2

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

)α


1/α

+
∥∥∥(F−1

ξ

(
ϕ̂(|ξ|2)

))
∗x u

∥∥∥
Lr(Rn)

.

The last term in the right hand side is bounded by∥∥∥(F−1
ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥
Lr(Rn)

+
∥∥∥(F−1

ξ

(
ϕ̂(|ξ|2/2)

))
∗x u

∥∥∥
Lr(Rn)

since ψ̂(|ξ|2) + ϕ̂(|ξ|2/2) = 1 on the support of ϕ̂(|ξ|2). Similarly, by

ψ̂(|ξ|2) +
2∑

j=1

ϕ̂(|ξ|2/2j) = 1

on the support of ψ̂(|ξ|), we have

‖ψ∗xu‖Lr(Rn) .
∥∥∥(F−1

ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥
Lr(Rn)

+
2∑

j=1

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

.

So that, we obtain ‖u‖Bs
r,α(Rn) . ‖u‖

eBs
r,α(Rn)

. Next, we show the opposite inequality.

Since
∑1

k=−1 ϕ̂(|ξ|/2[j/2]+k) = 1 on the support of ϕ̂(|ξ|2/2j) for j ≥ 1, we have

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

.
1∑

k=−1

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|/2[j/2]+k)

))
∗x u

∥∥∥
Lr(Rn)
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for j ≥ 1 by the Young inequality. Then we have∑
j≥1

(
2sj/2

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|2/2j)

))
∗x u

∥∥∥
Lr(Rn)

)α


1/α

.
1∑

k=−1

∑
j≥1

(
2sj/2

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|/2[j/2]+k)

))
∗x u

∥∥∥
Lr(Rn)

)α


1/α

. ‖u‖Bs
r,α(Rn) +

0∑
k=−1

∥∥∥(F−1
ξ

(
ϕ̂(|ξ|/2k)

))
∗x u

∥∥∥
Lr(Rn)

, (2.1)

where we have used

2sj/2ϕ̂(|ξ|/2[j/2]+k) =

{
2smϕ̂(|ξ|/2m+k) for j = 2m, m = 1, 2, · · · ,
2s/2 · 2smϕ̂(|ξ|/2m+k) for j = 2m+ 1, m = 0, 1, 2, · · ·

for the last inequality. The last term in (2.1) is bounded by ‖u‖Bs
r,α(Rn) since ψ̂(|ξ|) +

ϕ̂(|ξ|/2) = 1 on the supports of ϕ̂(|ξ|/2−1) and ϕ̂(|ξ|). Similarly, since ψ̂(|ξ|)+ϕ̂(|ξ|/2) =

1 on the support of ψ̂(|ξ|2), we have∥∥∥(F−1
ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥ . ‖u‖Bs
r,α(Rn).

Therefore, we have obtained ‖u‖
eBs

r,α(Rn)
. ‖u‖Bs

r,α(Rn).

Lemma 2.4. (1) Let V be a Banach space. Let 1 ≤ q < p < ∞, and put θ :=

1/q − 1/p. Let 1 ≤ α ≤ ∞. Then the embedding Bθ
q,α(R, V ) ↪→ Lp,α(R, V ) holds,

namely, ‖u‖Lp,α(R,V ) . ‖u‖Bθ
q,α(R,V ) holds for any u ∈ Bθ

q,α(R, V ).

(2) Let n ≥ 1, 1 ≤ r < r0 < ∞, and put s/n := 1/r − 1/r0. Let 1 ≤ α ≤ ∞. Then

the embedding Bs
r,α(Rn) ↪→ Lr0,α(Rn) holds, namely, ‖u‖Lr0,α(Rn) . ‖u‖Bs

r,α(Rn) holds

for any u ∈ Bs
r,α(Rn). Especially, Bs

r,α(Rn) ↪→ Lr0(Rn) holds if α ≤ r0.

Proof. (1) For sufficiently small ε > 0, we define p± by 1/p± := 1/p∓ ε. We have

‖u‖Lp± (R,V ) ≤ ‖ψ ∗ u‖Lp± (R,V ) +
∞∑

j=1

‖ϕj ∗ u‖Lp± (R,V ),

‖ψ ∗ u‖Lp± (R,V ) . ‖ψ ∗ u‖Lq(R,V ), ‖ϕj ∗ u‖Lp± (R,V ) . 2(θ±ε)j‖ϕj ∗ u‖Lq(R,V )

by ψ = ψ ∗ (ψ + ϕ1), ϕj = ϕj ∗
∑1

k=−1 ϕj+k and the Young inequality. So that, we

obtain

‖u‖Lp± (R,V ) . ‖u‖Bθ±ε
q,1 (R,V ).
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By the real interpolation (Lp+ , Lp−)1/2,α = Lp,α and (Bθ+ε
q,1 , B

θ−ε
q,1 )1/2,α = Bθ

q,α, we

obtain the required result. The proof of (2) follows analogously. We put 1/r± :=

1/r−(s±ε)/n = 1/r0∓ε/n for sufficiently small ε > 0. We have Bs±ε
r,1 (Rn) ↪→ Lr±(Rn).

By the interpolation (Lr+ , Lr−)1/2,α = Lr0,α and (Bs+ε
r,1 , B

s−ε
r,1 )1/2,α = Bs

r,α, we have

Bs
r,α(Rn) ↪→ Lr0,α(Rn). By the identity Lr0,r0 = Lr0 and the embedding Bs

r,α ↪→ Bs
r,r0

for α ≤ r0, we obtain the last result.

We note the embedding ‖u‖`α(Lq(R,Lr(Rn))) . ‖u‖Lq(R,B0
r,α(Rn)) if q ≤ α by the

Minkowski inequality, so that, ‖u‖`α(Lq(R,Lr(Rn))) . ‖u‖Lq(R,Lr(Rn)) if q ≤ α and 1 <

r ≤ 2 ≤ α by ‖u‖B0
r,α

. ‖u‖B0
r,2

. ‖u‖Lr (see [2, Theorem 6.4.4]).

Lemma 2.5. Let n ≥ 1, 0 < θ < 1, 1 ≤ r0, r̄, q̄, ρ, γ ≤ ∞, 1 < q0 < ∞, and let

2/q̄ − δ(r̄) = 2/q0 − δ(r0) = 2(1 − θ), 2/γ = δ(ρ). Let max{2, ρ′, γ′} ≤ α ≤ ∞. Let

ρ <∞ if α <∞. Let r0 satisfy ρ′ ≤ r0 < r̄ or r̄ < r0 ≤ ρ′. Then the inequality

‖u‖`αLq0,∞(R,Lr0 (Rn)) . ‖u‖1−k
`αLq̄(R,Lr̄(Rn))‖u‖

k
Bθ

γ′,α(R,Lρ′ (Rn))

holds for any u, where 0 < k ≤ 1 is the number defined by 1/r0 = (1 − k)/r̄ + k/ρ′.

Proof. Since q1 defined by 1/q1 := 1/q0 + kθ satisfies 1/q1 = (1− k)/q̄ + k/γ′, we have

1 ≤ q1 < q0 < ∞. We consider only the case α < ∞ since the case α = ∞ follows by

its straightforward modification. By Lemmas 2.2 and 2.4, we have

‖ϕj ∗x u‖Lq0,∞Lr0 . ‖ϕj ∗x u‖Bkθ
q1,∞Lr0

. ‖ϕj ∗x u‖1−k
B0

q̄,∞Lr̄‖ϕj ∗x u‖k
Bθ

γ′,∞Lρ′ ,

which yields∑
j≥1

‖ϕj ∗x u‖α
Lq0,∞Lr0

1/α

.

∑
j≥1

‖ϕj ∗x u‖α
B0

q̄,∞Lr̄

(1−k)/α∑
j≥1

‖ϕj ∗x u‖α
Bθ

γ′,∞Lρ′

k/α

.

For the last term, by the definition of the Besov space, we have∑
j≥1

‖ϕj ∗x u‖α
Bθ

γ′,∞Lρ′

1/α

.

∑
j≥1

‖ψ ∗t ϕj ∗x u‖α
Lγ′

Lρ′

1/α

+

 ∑
j,m≥1

(
2θm‖ϕm ∗t ϕj ∗x u‖Lγ′Lρ′

)α

1/α

,
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where we have used Bθ
γ′,α ↪→ Bθ

γ′,∞. By the assumption γ′ ≤ α, the first term in the

right hand side is bounded by ‖ψ ∗t u‖Lγ′
B0

ρ′,α
, and the second term is bounded by(∑

m≥1

(
2θm‖ϕm ∗t u‖Lγ′

B0
ρ′,α

)α)1/α

. So that, we have

∑
j≥1

‖ϕj ∗x u‖α
Bθ

γ′,∞Lρ′

1/α

. ‖u‖Bθ
γ′,αB0

ρ′,α
.

Therefore, we obtained∑
j≥1

‖ϕj ∗x u‖α
Lq0,∞Lr0

1/α

. ‖u‖1−k
`αB0

q̄,∞Lr̄‖u‖k
Bθ

γ′,αB0
ρ′,α

. (2.2)

Since we have

‖ψ ∗x u‖Lq0,∞Lr0 . ‖u‖1−k
`αB0

q̄,∞Lr̄‖u‖k
Bθ

γ′,αB0
ρ′,α

(2.3)

by the similar argument, we have obtained

‖u‖`αLq0,∞Lr0 . ‖u‖1−k
`αB0

q̄,∞Lr̄‖u‖k
Bθ

γ′,αB0
ρ′,α

.

By the embeddings Lq̄ ↪→ B0
q̄,∞ and Lρ′ ↪→ B0

ρ′,α, we obtain the required result, where

we have used 2 ≤ ρ ≤ ∞ by 2/γ = δ(ρ), and ρ <∞ if α <∞ for Lρ′ ↪→ B0
ρ′,α.

3 Proof of Theorem 1.3

Throughout this section we put U(t) = exp(−it∆). The solution u to (1.6) is written

as

u(t) =
∫ t

0
U(t− t′)f(t′)dt′.

We prepare several claims to prove the theorem. We define a function v0 by

v̂0(ξ) := p.v.
∫ ∞

−∞

f̃(τ, ξ)
2πi(τ − |ξ|2)

dτ.

Claim 3.1. ‖u‖Bθ
q,αLr . ‖f‖Bθ

γ′,αLρ′ + ‖v0‖B2θ
2,α

.

Proof. Since u is written as û(t, ξ) =
∫ t
0 e

i(t−t′)|ξ|2 f̂(t′, ξ)dt′, we have

û(t, ξ) = p.v.
∫ ∞

−∞
f̃(τ, ξ)

eitτ − eit|ξ|
2

2πi(τ − |ξ|2)
dτ. (3.1)

11



So that, we have

ϕj ∗t û(t, ξ) = p.v.
∫ ∞

−∞
f̃(τ, ξ)

eitτ ϕ̂j(τ) − eit|ξ|
2
ϕ̂j(|ξ|2)

2πi(τ − |ξ|2)
dτ

= p.v.
∫ ∞

−∞

eitτ

2πi(τ − |ξ|2)
ϕ̂j(τ)f̃(τ, ξ)dτ − eit|ξ|

2
ϕ̂j(|ξ|2)v̂0(ξ),

where we have used ϕj ∗t e
itτ = eitτ ϕ̂j(τ) and ϕj ∗t e

it|ξ|2 = eit|ξ|
2
ϕ̂j(|ξ|2). By the fact

p.v.
∫ ∞

−∞

eitτ

2πi(τ − |ξ|2)
dτ = eit|ξ|

2
p.v.

∫ ∞

−∞

eitν

2πiν
dν =

1
2
sign(t)eit|ξ|

2
, (3.2)

we have

ϕj ∗t u(t, x) =
1
2

∫ ∞

−∞
sign(t− t′)U(t− t′)(ϕj ∗t f)(t′, x)dt′

− U(t)
((

F−1
ξ

(
ϕ̂j(|ξ|2)

))
∗x v0

)
(x).

By Lemma 1.1, we obtain

‖ϕj ∗t u‖LqLr . ‖ϕj ∗t f‖Lγ′Lρ′ +
∥∥∥(F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x v0

∥∥∥
L2
.

Similarly, we also have

‖ψ ∗t u‖LqLr . ‖ψ ∗t f‖Lγ′Lρ′ +
∥∥∥(F−1

ξ

(
ψ̂(|ξ|2)

))
∗x v0

∥∥∥
L2
.

So that, we obtain the required estimate by the definition of the Besov space and

Lemma 2.3.

Claim 3.2. For any real numbers q0 and r0 with

1 ≤ q0 ≤ ∞, 1 ≤ r0 ≤ 2, 2/q0 − δ(r0) = 2(1 − θ), (3.3)

the following estimate holds;

‖v0‖B2θ
2,α

. ‖f‖Bθ
γ′,αLρ′ + ‖f‖`αLq0,∞Lr0 . (3.4)

Proof. The definition of v0 gives the equation

ϕ̂j(|ξ|2)v̂0(ξ) = p.v.
∫ ∞

−∞

ϕ̂j(|ξ|2)χ̂j(τ)f̃(τ, ξ)
2πi(τ − |ξ|2)

dτ

+
∫ ∞

−∞

ϕ̂j(|ξ|2) (1 − χ̂j(τ)) χ̂j(|ξ|2)f̃(τ, ξ)
2πi(τ − |ξ|2)

dτ

=: V1j + V2j ,
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where we have put the two terms in the right hand side as V1j and V2j . The term V1j

is estimated by

V1j = ϕ̂j(|ξ|2) p.v. F−1
t

(
χ̂j(τ)f̃(τ, ξ)
i(τ − |ξ|2)

)∣∣∣
t=0

=
1
2
ϕ̂j(|ξ|2)Fx

∫ ∞

−∞
sign(−t′)U(−t′) (χj ∗t f) (t′, ξ)dt′,

where we have used (3.2) for the second equation. The term V2j is estimated by

V2j =
1
2π

∫ ∞

−∞
K̃j(τ, ξ)χ̂j(|ξ|2)f̃(τ, ξ)dτ,

= F−1
t

(
K̃j(τ, ξ)χ̂j(|ξ|2)f̃(τ, ξ)

) ∣∣∣
t=0

= Fx

(
Kj ∗t,x

(
F−1

ξ

(
χ̂j(|ξ|2)

))
∗x f

) ∣∣∣
t=0

,

where we have put

K0(t, x) :=
1

(2π)n+1

∫∫
R1+n

eitτ+ixξϕ̂(|ξ|2) (1 − χ̂(τ))
i(τ − |ξ|2)

dτdξ,

Kj(t, x) := 2nj/2K0(2jt, 2j/2x)

for j ≥ 1. By the dual of Lemma 1.1, we have ‖V1j‖L2 . ‖χj ∗t f‖Lγ′Lρ′ . Let 1 ≤
q̃0, r̃0 ≤ ∞ be the numbers defined by 1 = 1/q̃0 + 1/q0, 3/2 = 1/r̃0 + 1/r0, where such

r̃0 exists by 1 ≤ r0 ≤ 2. We have

‖V2j‖L2 ≤ ‖Kj‖Leq0,1Ler0

∥∥∥(F−1
ξ

(
χ̂j(|ξ|2)

))
∗x f

∥∥∥
Lq0,∞Lr0

by the Hölder and Young inequalities. By scaling, we have

‖Kj‖Leq0,1Ler0 = 2−θj‖K0‖Leq0,1Ler0 .

Since K0 satisfies |K0(t, x)| . (1+ |t|+ |x|)−` for any ` ≥ 1 by the integration by parts,

the term ‖K0‖Leq0,1Ler0 is finite. So that, we have obtained

‖ϕ̂j(|ξ|2)v̂0(ξ)‖L2
ξ

. ‖χj ∗t f‖Lγ′Lρ′ + 2−θj
∥∥∥(F−1

ξ

(
χ̂j(|ξ|2)

))
∗x f

∥∥∥
Lq0,∞Lr0

.

Similarly, we also have

‖ψ̂(|ξ|2)v̂0(ξ)‖L2
ξ

. ‖χ0 ∗t f‖Lγ′
Lρ′ +

∥∥∥(F−1
ξ

(
χ̂0(|ξ|2)

))
∗x f

∥∥∥
Lq0,∞Lr0

.

Therefore we obtain the required result under the condition (3.3).
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Claim 3.3. Let α ≤ q. For any real numbers q1 and r1 with

1 ≤ q1 ≤ q, 1 ≤ r1 ≤ r, 2/q1 − δ(r1) = 2(1 − θ), (3.5)

the following estimate holds;

‖u‖LqB2θ
r,α

. ‖f‖Bθ
γ′,αLρ′ + ‖f‖`αLq1,∞Lr1 + ‖v0‖B2θ

2,α
. (3.6)

Proof. We use (3.1) to have

ϕ̂j(|ξ|2)û(t, ξ) = p.v.
∫ ∞

−∞

eitτ ϕ̂j(|ξ|2)
2πi(τ − |ξ|2)

f̃(τ, ξ)dτ − eit|ξ|
2
ϕ̂j(|ξ|2)v̂0(ξ)

=: U1j − U2j ,

where we have put the terms in the right hand side as U1j and U2j . The term U1j is

estimated by

U1j = p.v.
∫ ∞

−∞

eitτ ϕ̂j(|ξ|2)χ̂j(τ)
2πi(τ − |ξ|2)

f̃(τ, ξ)dτ

+
∫ ∞

−∞

eitτ ϕ̂j(|ξ|2)(1 − χ̂j(τ))χ̂j(|ξ|2)
2πi(τ − |ξ|2)

f̃(τ, ξ)dτ

= F−1
t

(
1

i(τ − |ξ|2)
FtFx

( (
F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x χj ∗t f

) )
+Fx

(
Kj ∗t,x

(
F−1

ξ

(
χ̂j(|ξ|2)

))
∗x f

)
.

Then we have(
F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x u(t, x)

=
1
2

∫ ∞

−∞
sign(t− t′)U(t− t′)

((
F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x χj ∗t f

)
(t′, x)dt′

+Kj ∗t,x

(
F−1

ξ

(
χ̂j(|ξ|2)

))
∗x f − U(t)

((
F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x v0

)
(x),

where we have used (3.2) for the first term in the right hand side. By Lemma 1.1, we

have∥∥∥(F−1
ξ

(
ϕ̂j(|ξ|2)

))
∗x u

∥∥∥
LqLr

.
∥∥∥(F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x χj ∗t f

∥∥∥
Lγ′Lρ′

+
∥∥∥Kj ∗t,x

(
F−1

ξ

(
χ̂j(|ξ|2)

))
∗x f

∥∥∥
LqLr

+
∥∥∥(F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x v0

∥∥∥
L2

=: Ij + IIj + IIIj .

Let 1 ≤ q̃1, r̃1 ≤ ∞ be the numbers defined by 1/q = 1/q̃1 + 1/q1 − 1, 1/r = 1/r̃1 +

1/r1 − 1, where such q̃1 and r̃1 exist by 1 ≤ q1 ≤ q and 1 ≤ r1 ≤ r. By the Young and

generalized Young inequalities, we have

Ij . ‖χj ∗t f‖Lγ′Lρ′ ,
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IIj . ‖Kj‖Leq1,1Ler1

∥∥∥(F−1
ξ

(
χ̂j(|ξ|2)

))
∗x f

∥∥∥
Lq1,∞Lr1

.

Since ‖Kj‖Leq1,1Ler1 = 2−θj‖K0‖Leq1,1Ler1 by scaling, and ‖K0‖Leq1,1Ler1 <∞, we have∥∥∥(F−1
ξ

(
ϕ̂j(|ξ|2)

))
∗x u

∥∥∥
LqLr

. ‖χj ∗t f‖Lγ′
Lρ′+2−θj

∥∥∥(F−1
ξ

(
χ̂j(|ξ|2)

))
∗x f

∥∥∥
Lq1,∞Lr1

+
∥∥∥(F−1

ξ

(
ϕ̂j(|ξ|2)

))
∗x v0

∥∥∥
L2
.

Similarly, we also have∥∥∥(F−1
ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥
LqLr

. ‖χ0 ∗t f‖Lγ′
Lρ′ +

∥∥∥(F−1
ξ

(
χ̂0(|ξ|2)

))
∗x f

∥∥∥
Lq1,∞Lr1

+
∥∥∥(F−1

ξ

(
ψ̂(|ξ|2)

))
∗x v0

∥∥∥
L2
.

So that, by Lemma 2.3, we obtain

‖u‖LqB2θ
r,α

.
∥∥∥(F−1

ξ

(
ψ̂(|ξ|2)

))
∗x u

∥∥∥
LqLr

+
∥∥∥2θj

∥∥∥(F−1
ξ

(
ϕ̂j(|ξ|2)

))
∗x u

∥∥∥
LqLr

∥∥∥
`α
j≥1

. ‖f‖Bθ
γ′,αLρ′ + ‖f‖`αLq1,∞Lr1 + ‖v0‖B2θ

2,α
,

where we have used α ≤ q for the first inequality.

Claim 3.4. Let 2 ≤ α ≤ ∞. Let ρ < ∞ when α < ∞. Then the following estimate

holds;

‖v0‖B2θ
2,α

. ‖f‖Bθ
γ′,αLρ′ + ‖f‖`αLq̄Lr̄ .

Proof. The required estimate follows from Claim 3.2 with (q0, r0) := (q̄, r̄) if r̄ ≤ 2.

When r̄ > 2, we put r0 := 2 and 1/q0 := 1 − θ. Then we have ρ′ ≤ r0 < r̄, and we

apply Lemma 2.5 to the last term in (3.4). Then we obtain the required result.

We prove the theorem. The result (1) follows from Claim 3.1 and Claim 3.4. The

result (2) follows from Claim 3.3 with (q1, r1) = (q̄, r̄) and Claim 3.4 if r̄ ≤ r. When

r̄ > r, we put r1 := 2 and 1/q1 := 1 − θ. Then we have ρ′ ≤ r1 < r̄, and we apply

Lemma 2.5 to the second term in (3.6). And we obtain the required result.

Finally, we prove that u ∈ C(R,Hs(Rn)) if α = 2. We put uN = ψ̂∗xu+
∑

j≤N ϕ̂j ∗x

u, which satisfies (1.6) with f replaced by fN = ψ̂∗xf+
∑

j≤N ϕ̂j∗xf . By Lemma 1.1, we

see that uN ∈ C(R,Hs(Rn)). Moreover, by the estimate (2) in the present theorem, uN

tends to u in L∞(R,Hs(Rn)) since fN tends to f in Bθ
γ′,α(R, Lρ′(Rn))∩`αLq̄(R, Lr̄(Rn)).

Therefore u ∈ C(R,Hs(Rn)).
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4 Proof of Theorem 1.5

We regard the solution of the Cauchy problem (1.1) as the fixed point of the integral

equation given by

u(t) = Φ(u)(t) := U(t)u0 +
∫ t

0
U(t− t′)f(u(t′))dt′

for t ∈ R, where u(t) := u(t, ·). Let n, s, p satisfy the assumption in the theorem. For

any given 2 ≤ γ ≤ ∞, we define ρ, q and r by

q := pγ′,
2
γ
− δ(ρ) =

2
q
− δ(r) = 0.

We note that (γ, ρ) and (q, r) form admissible pairs if 2 ≤ q ≤ ∞. We put

1
m(r, s)

:=
1
r
− s

n
> 0, (4.1)

where the last inequality holds since 1/m(r, s) = 2(p/(p − 1) − 1/γ′)/np > 0 by the

assumption p = 1 + 4/(n− 2s). Moreover, m(r, s) satisfies

1
ρ′

=
p− 1
m(r, s)

+
1
r
. (4.2)

For any 2 ≤ α ≤ ∞, we put X := Xs
q,r,α and X(R) := {u ∈ X ; u(0) = u0, ‖u‖X ≤ R}

for R > 0. We show that Φ is a contraction mapping on X(R) for some R > 0. We

separate the proof of the theorem into three cases 1 < s < 2, 2 < s < 3 and 3 ≤ s < 4.

We prove the continuous dependence of the solutions to the initial data only for the

case 1 < s < 2 since the case 2 < s < 4 follows analogously. In the following, after we

put α = 2 for the case 1 < s < 3, we still continue to use α since we would like to use

the proof for the case 1 < s < 3 to prove the case 3 ≤ s < 4.

4.1 The case 1 < s < 2

We put θ := s/2, γ := 2(n + 2)/n, α := 2. Then ρ = 2(n + 2)/n, 2 < q < ∞, where

2 < q holds since it is rewritten as n − 2s < 2(n + 2) by p = 1 + 4/(n − 2s). So that,

2 < r < 2n/(n− 2). We start from the basic estimate.

Claim 4.1. The following estimates hold;

‖Φ(u)‖L∞L2∩LqLr . ‖u0‖L2 + ‖u‖p−1
LqBs

r,m(r,s)
‖u‖LqLr ,

d(Φ(u),Φ(v)) . max
w=u,v

‖w‖p−1
LqBs

r,m(r,s)
d(u, v)

for any u and v.
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Proof. By Lemma 1.1, we have

‖Φ(u)‖L∞L2∩LqLr . ‖u0‖L2 + ‖f(u)‖Lγ′
Lρ′ .

By (4.2), we have

‖f(u)‖Lγ′Lρ′ . ‖u‖p−1

LqLm(r,s)‖u‖LqLr . ‖u‖p−1
LqBs

r,m(r,s)
‖u‖LqLr (4.3)

by the Hölder inequality and Lemma 2.4. So that, we obtain the first inequality. We

also obtain the second inequality similarly by

‖Φ(u) − Φ(v)‖L∞L2∩LqLr . ‖f(u) − f(v)‖Lγ′Lρ′ . max
w=u,v

‖w‖p−1
LqBs

r,m(r,s)
‖u− v‖LqLr .

We put q̄ := γ′. We define r̄ by the equation 2/q̄ − δ(r̄) = 2(1 − θ). Since ρ < ∞,

1 < q̄ ≤ α ≤ q, and 1 < r̄ <∞, we use Lemmas 1.1, 1.2, and Theorem 1.3 to have

‖Φ(u)‖X . ‖u0‖Hs + ‖f(u)‖Bθ
γ′,αLρ′ + ‖f(u)‖`αLq̄Lr̄ . (4.4)

We estimate the second and third terms in the right hand side, respectively.

Claim 4.2. ‖f(u)‖`αLq̄Lr̄ . ‖f(u)‖Lγ′
B0

r̄,α
. ‖u‖p

LqBs
r,α

.

Proof. We have ‖f(u)‖`αLq̄Lr̄ . ‖f(u)‖Lγ′
B0

r̄,α
by q̄ = γ′ ≤ α. Let ε > 0 be a sufficiently

small number. By the Sobolev embedding Bε
m(r̄,−ε),α ↪→ B0

r̄,α, Lemma 2.1 with the

equation 1/m(r̄,−ε) = (p − 1)/m(r, s) + 1/m(r, s − ε), and the embedding Bs
r,α ↪→

Lm(r,s) ∩Bε
m(r,s−ε),α by α ≤ m(r, s), we have

‖f(u)‖B0
r̄,α

. ‖f(u)‖Bε
m(r̄,−ε),α

. ‖u‖p−1

Lm(r,s)‖u‖Bε
m(r,s−ε),α

. ‖u‖p
Bs

r,α
.

Since q̄ = γ′ = q/p, we obtain the required inequality.

Claim 4.3. ‖f‖Bθ
γ′,αLρ′ . ‖u‖p−1

LqBs
r,α

‖u‖Bθ
q,αLr .

Proof. We use the equivalent norm (see [14] and [17, (2.3)])

‖f(u)‖Bθ
γ′,αLρ′ = ‖f(u)‖Lγ′

Lρ′ +
{∫ ∞

0

(
τ−θ‖f(u(·)) − f(u(· + τ))‖Lγ′

Lρ′

)α dτ

τ

}1/α

.

The first term in the right hand side is bounded by ‖u‖p−1
LqBs

r,α
‖u‖LqLr by (4.3). The

second term is bounded by ‖u‖p−1
LqBs

r,α
‖u‖Bθ

q,αLr by the inequality

|f(u(·)) − f(u(· + τ))| . (|u(·)| + |u(· + τ)|)p−1 |u(·) − u(· + τ)|.
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By the above claims, we have obtained

‖Φ(u)‖X ≤ C‖u0‖Hs + C‖u‖p
X ≤ C‖u0‖Hs + CRp,

d(Φ(u),Φ(v)) ≤ C max
w=u,v

‖w‖p−1
X d(u, v) ≤ CRp−1d(u, v)

for any u, v ∈ X(R) for some constant C > 0. Taking R such that CRp−1 ≤ 1/2 and

R ≥ 2C‖u0‖Hs for sufficiently small u0, Φ becomes a contraction mapping on XR.

The last part of the theorem, the continuous dependence of the solutions to the

initial data, follows easily. Indeed, for any solutions u and v ∈ X for initial data u0

and v0 ∈ Hs(Rn), respectively, we have

d(u, v) . ‖u0 − v0‖L2 + ‖f(u) − f(v)‖Lγ′Lρ′ . ‖u0 − v0‖L2 + max
w=u,v

‖w‖p−1
X d(u, v)

by the similar argument for Claim 4.1. So that, the flow mapping u0 7→ u is continuous

from Hs(Rn) to X.

4.2 The case 2 < s < 3

We put θ := s/2−1, γ := 2, and α := 2. Then we have 1/ρ = 1/2−1/n, 2 < q <∞, 2 <

r < 2n/(n− 2), where 2 < q holds by q = 2p and p > 1. Claim 4.1 holds by the similar

argument. By ‖Φ(u)‖Ḣs = ‖∆Φ(u)‖Ḣs−2 and the equation ∆Φ(u) = i (∂tΦ(u) − f(u)),

we have

‖Φ(u)‖L∞Hs . ‖Φ(u)‖L∞L2 + ‖f(u)‖L∞Ḣ2θ + ‖∂tΦ(u)‖L∞Ḣ2θ . (4.5)

Similarly, we also have

‖Φ(u)‖LqBs
r,α

. ‖Φ(u)‖LqLr + ‖f(u)‖LqḂ2θ
r,α

+ ‖∂tΦ(u)‖LqḂ2θ
r,α
. (4.6)

The second terms in the right hand side in (4.5) and (4.6) are estimated as follows.

Claim 4.4. ‖f(u)‖L∞Ḣ2θ . ‖u‖p

L∞Ḣs
.

Proof. Since we have 1/2 = (p− 1)/m(2, s) + 1/m(2, 2), 2 < m(2, 2) <∞, and 2θ < p,

we apply Lemma 2.1 to f(u) and we obtain

‖f(u)‖Ḣ2θ . ‖u‖p−1

Lm(2,s)‖u‖Ḃ2θ
m(2,2),2

. ‖u‖p

Ḣs
, (4.7)

where we have used the embedding Ḣs ↪→ Lm(2,s)∩ Ḃ2θ
m(2,2),2 for the last inequality. We

obtain the required result taking L∞ norm in time.

Claim 4.5. ‖f(u)‖LqḂ2θ
r,α

. ‖u‖p−1

L∞Ḣs
‖u‖LqḂs

r,α
.
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Proof. We have 1/r = (p− 1)/m(2, s)+1/m(r, 2), r < m(r, 2) <∞, and 2θ < p, where

m(r, 2) <∞ holds by m(r, 2) < m(r, s) and (4.1). By Lemma 2.1, we have

‖f(u)‖Ḃ2θ
r,α

. ‖u‖p−1

Lm(2,s)‖u‖Ḃ2θ
m(r,2),α

. ‖u‖p−1

Ḣs
‖u‖Ḃs

r,α
,

where we have used the embeddings Ḣs ↪→ Lm(2,s) and Ḃs
r,α ↪→ Ḃ2θ

m(r,2),α for the last

inequality. The required result follows from the Hölder inequality in time.

Next, we estimate the third terms in (4.5) and (4.6). Since ∂tΦ(u) satisfies

(∂t + i∆) ∂tΦ(u) = ∂tf(u), (4.8)

we have

∂tΦ(u)(t) = U(t)u1 +
∫ t

0
U(t− t′)(∂tf(u))(t′)dt′,

where u1 := −i∆u0 + f(u0). We put r̄1 := ρ′ and q̄2 := γ′, and we define q̄1 and r̄2 by

the equations
2
q̄j

− δ(r̄j) = 2(1 − θ) for j = 1, 2. (4.9)

Then we have 1/q̄1 = 1/γ′ − θ = (3 − s)/2, 2 ≤ q̄1 < ∞, 1/r̄2 = 1/ρ′ − (s − 2)/n =

1/2+ (3− s)/n, 1 < r̄2 ≤ 2. Since ρ <∞, 1 < q̄2 ≤ α ≤ q, we use Lemmas 1.1, 1.2 and

Theorem 1.3 to have

‖∂tΦ(u)‖L∞H2θ . ‖u1‖H2θ + ‖∂tf(u)‖Bθ
γ′,2Lρ′ + ‖∂tf(u)‖`2Lq̄1Lr̄1 . (4.10)

‖∂tΦ(u)‖LqB2θ
r,α

. ‖u1‖H2θ + ‖∂tf(u)‖Bθ
γ′,αLρ′ + ‖∂tf(u)‖`αLq̄2Lr̄2 . (4.11)

By (4.7), we have

‖u1‖H2θ . ‖u0‖Hs + ‖f(u0)‖H2θ . ‖u0‖Hs + ‖u0‖p
Hs . (4.12)

The second terms in the right hand sides in (4.10) and (4.11) are bounded by ‖f(u)‖Bθ+1
γ′,2Lρ′

since α ≥ 2.

Claim 4.6. ‖f(u)‖Bθ+1
γ′,2Lρ′ . ‖u‖p−1

LqLm(r,s)‖u‖Bθ+1
q,2 Lr . ‖u‖p−1

LqBs
r,m(r,s)

‖u‖Bθ+1
q,2 Lr .

Proof. We use the equivalent norm

‖f(u)‖Bθ+1
γ′,2Lρ′ = ‖f(u)‖Lγ′

Lρ′

+
{∫ ∞

0

(
τ−θ−1‖f(u(·)) − 2f(u(· + τ)) + f(u(· + 2τ))‖Lγ′Lρ′

)2 dτ

τ

}1/2

(4.13)
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(see [14, p22, Remark 1, p27, Theorem 3]). The first term in the right hand side is

bounded by ‖u‖p−1

LqLm(r,s)‖u‖LqLr by the same argument in (4.3). To estimate the second

term, we put v(·) := u(· + τ) and w(·) := u(· + 2τ). We use the inequality

|f(u) − 2f(v) + f(w)| . (|u| + |v| + |w|)p−1|u− 2v + w|

+

{
(|u− v| + |v − w|)p if p < 2,

(|u| + |v| + |w|)p−2(|u− v| + |v − w|)2 if p ≥ 2

to have

‖f(u) − 2f(v) + f(w)‖Lγ′
Lρ′ . ‖u‖p−1

LqLm(r,s)‖u− 2v + w‖LqLr

+

{
‖u− v‖p

LqLpρ′ if p < 2,

‖u‖p−2

LqLm(r,s)‖u− v‖2
LqLr∗ if p ≥ 2,

where 2/r∗ := 1/m(r, s)+1/r. So that, the second term in the right hand side in (4.13)

is bounded by

‖u‖p−1

LqLm(r,s)‖u‖Bθ+1
q,2 Lr +


‖u‖p

B
(θ+1)/p
q,2p Lpρ′

if p < 2,

‖u‖p−2

LqLm(r,s)‖u‖2

B
(θ+1)/2
q,4 Lr∗

if p ≥ 2.

By Lemma 2.2, we have

‖u‖
B

(θ+1)/p
q,2p Lpρ′ . ‖u‖1−1/p

LqLm(r,s)‖u‖
1/p

Bθ+1
q,2 Lr

,

‖u‖
B

(θ+1)/2
q,4 Lr∗ . ‖u‖1/2

LqLm(r,s)‖u‖
1/2

Bθ+1
q,2 Lr

,

where we have used Lq ↪→ B0
q,∞. Therefore, by Bs

r,m(r,s) ↪→ Lm(r,s) in Lemma 2.4, we

obtain the required result.

Claim 4.7. ‖∂tf(u)‖`2Lq̄1Lr̄1 . ‖f(u)‖Bθ+1
γ′,2Lρ′ .

Proof. By the Sobolev embeddings Bθ
γ′,2 ↪→ Lq̄1 and Lρ′ ↪→ B0

ρ′,2, we have

‖∂tf(u)‖`2Lq̄1Lr̄1 . ‖∂tf(u)‖`2Bθ
γ′,2Lρ′ . ‖∂tf(u)‖Bθ

γ′,2B0
ρ′,2

. ‖f(u)‖Bθ+1
γ′,2Lρ′ (4.14)

as required.

Claim 4.8. The following estimate holds;

‖∂tf(u)‖`αLq̄2Lr̄2 . ‖u‖p−1

LqLm(r,s)‖∂tu‖LqB2θ
r,m(r,2θ)

. ‖u‖p−1
LqBs

r,m(r,s)
‖∂tu‖LqB2θ

r,m(r,2θ)
.

20



Proof. Since 1 < r̄2 ≤ 2 and α ≥ 2, we have Lr̄2 ↪→ B0
r̄2,α (see [2, Theorem 6.4.4]). By

q̄2 = γ′ ≤ α, 1/r̄2 = (p− 1)/m(r, s) + 1/m(r, 2θ), we have

‖∂tf(u)‖`αLq̄2Lr̄2 . ‖∂tf(u)‖Lq̄2B0
r̄2,α

. ‖∂tf(u)‖Lq̄2Lr̄2

. ‖u‖p−1

LqLm(r,s)‖∂tu‖LqLm(r,2θ) . ‖u‖p−1

LqLm(r,s)‖∂tu‖LqB2θ
r,m(r,2θ)

,

where we note 2 ≤ r < m(r, 2θ) < m(r, s) <∞. By the embedding Bs
r,m(r,s) ↪→ Lm(r,s)

in Lemma 2.4, we obtain the required result.

By the above claims, (4.12), and α ≤ m(r, 2θ) < m(r, s), we obtain

‖Φ(u)‖X . ‖u0‖Hs + ‖u0‖p
Hs + ‖u‖p

X .

d(Φ(u),Φ(v)) . max
w=u,v

‖u‖p−1
X d(u, v)

for any u and v ∈ X. So that, Φ is a contraction mapping on X(R) for some R > 0 if

‖u0‖Hs is sufficiently small.

4.3 The case 3 ≤ s < 4

We put θ := s/2 − 1. We note θ ≥ 1/2 by s ≥ 3. Let γ be any number which satisfies

θ <
1
γ′
< min

{
1,

p

2

}
, and

(n− 2s+ 4)p
2(n+ 2)

≤ 1
γ′

≤ p(p− 1)
2

, (4.15)

where the last condition 1/γ′ ≤ p(p− 1)/2 is required only for the case p < 2. We note

that there exists γ which satisfies (4.15). Indeed, θ < min{1, p/2} holds by s < 4 and

s − 2 < s/2 < p. Let us consider the case p ≥ 2. Since 1 ≤ p/2, it suffices to check

(n− 2s+ 4)p/2(n+ 2) < 1, which is equivalent to

3 ≤ s < min

{
4, 1 +

√
(n− 6)(n+ 2)

2

}
=


1 +

√
5 = 3.23 · · · if n = 8,

1 +
√

33
2 = 3.87 · · · if n = 9,

4 if n ≥ 10,

(4.16)

and the condition (4.16) is satisfied since s2 < 1 +
√

(n− 6)(n+ 2)/2. Here, s2 is

defined by (1.12). Therefore, if p ≥ 2, then there exists γ which satisfies (4.15). Let

us next consider the case p < 2, so that p(p− 1)/2 < p/2 < 1. In this case, we should

check (n−2s+4)p/2(n+2) ≤ p(p−1)/2 and θ < p(p−1)/2. By Remark 1.7, it suffices

to consider the case 11 ≤ n ≤ 13. The inequality (n− 2s+ 4)p/2(n+ 2) ≤ p(p− 1)/2

holds if 3 ≤ s < 4 for n = 11, 7−
√

15 (= 3.12 · · · ) ≤ s < 4 for n = 12, and 7/2 ≤ s < 4

for n = 13. The inequality θ < p(p − 1)/2 holds if 3 ≤ s < 4 for n = 11, and
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3 ≤ s < 5 −
√

3 (= 3.26 · · · ) for n = 12; this inequality fails if 3 ≤ s < 4 for n = 13. So

that, there exists the above γ under the condition (1.11).

We put α := q = q̄2. We have 2 < ρ < 2n/(n − 2) by 1/2 < 1/γ′ < 1. We also

have 2 < q < ∞ by 0 < 1/γ′ < p/2. So that, 2 < r < ∞. We put r̄1 := ρ′, and we

define q̄1 and r̄2 by (4.9). We have 2 ≤ q̄1 < ∞ since q̄1 is written as 1/q̄1 = 1/γ′ − θ

and 1/γ′ < 1, 1/2 ≤ θ < 1/γ′. We also have 1 < r̄2 < ∞ by q̄2 = q and the equation

(4.9). Claim 4.1, and Claims 4.4, 4.5, 4.6, 4.7 hold in this setting by the analogous

arguments. In the case 2 < s < 3, we have put 1/r̄2 = 1/2+(3− s)/n by (4.9), and the

property 1 < r̄2 ≤ 2 has been used in the proof of Claim 4.8. Since the definition of r̄2
in this subsection does not always satisfy this condition, we need to modify Claim 4.8

as follows.

Claim 4.9. The following estimate holds;

‖∂tf(u)‖`αLq̄2Lr̄2 . ‖u‖p−1
L∞Hs‖∂tu‖LqB2θ

r,α
.

Proof. By α ≥ q̄2 and the Sobolev embedding Bε
m(r̄2,−ε),α ↪→ B0

r̄2,α, we have

‖∂tf(u)‖`αLq̄2Lr̄2 . ‖∂tf(u)‖Lq̄2Bε
m(r̄2,−ε),α

.

By r < m(r, 2θ) < m(r, s) < ∞, the equation 1/m(r̄2,−ε) = (p − 1)/m(2, s) +

1/m(r, 2θ − ε) and the embedding B2θ
r,∞ ↪→ B2θ−ε

r,m(r,2θ−ε), we have

‖∂tf(u)‖Lm(r̄2,−ε) . ‖u‖p−1
Hs ‖∂tu‖B2θ

r,∞
. (4.17)

We put 1/m∗ := (2+ε)/n. By the equation 1/m(r̄2,−ε) = (p−1)/m(2, s)+1/m(r, 2θ−
ε), we have

‖∂tf(u)‖Ḃε
m(r̄2,−ε),α

. ‖u‖p−1

Lm(2,s)‖∂tu‖Ḃε
m(r,2θ−ε),α

+ ‖f ′(u)‖Ḃε
m∗,α

‖∂tu‖Lm(r,2θ) .

.
(
‖u‖p−1

Ḣs
+ ‖f ′(u)‖Ḃε

m∗,α

)
‖∂tu‖Ḃ2θ

r,α
,

where, for the last inequality, we have used the embeddings Ḣs ↪→ Lm(2,s), Ḃ2θ
r,α ↪→

Ḃε
m(r,2θ−ε),α, Ḃ2θ

r,α ↪→ Ḃ2θ
r,m(r,2θ) ↪→ Lm(r,2θ). Here, we note that α ≤ m(r, 2θ) follows

from (n− 2s+ 4)p/2(n+ 2) ≤ 1/γ′ for Ḃ2θ
r,α ↪→ Ḃ2θ

r,m(r,2θ). By the equivalent norm, the

assumption (1.10), and the equation 1/m∗ = (p− 1)/m(2, s) + ε/n, we have

‖f ′(u)‖Ḃε
m∗,α

.
{∫ ∞

0

(
τ−ε sup

|y|<τ
‖f ′(u(x+ y)) − f ′(u(x))‖Lm∗

)α
dτ

τ

}1/α

.


‖u‖p−2

Lm(2,s)‖u‖Ḃε
m(2,s−ε),α

if p ≥ 2,

‖u‖p−1

Ḃ
ε/(p−1)
m∗(p−1),α(p−1)

if p < 2,

. ‖u‖p−1

Ḣs
,
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where we have used the embeddings Ḣs ↪→ Lm(2,s)∩Ḃε
m(2,s−ε),α∩Ḃ

ε/(p−1)
m∗(p−1),α(p−1). Here,

we note that, when p < 2, the inequalities m∗(p− 1) ≥ 1 and α(p− 1) ≥ 2 follow from

the equation 1/m∗(p−1) = 1/2−s/n+ε/n(p−1) and the condition 1/γ′ ≤ p(p−1)/2,

respectively. So that, we obtain

‖∂tf(u)‖Ḃε
m(r̄2,−ε),α

. ‖u‖p−1

Ḣs
‖∂tu‖Ḃ2θ

r,α
. (4.18)

By (4.17), (4.18), and q̄2 = q, we have ‖∂tf(u)‖Lq̄2Bε
m(r̄2,−ε),α

. ‖u‖p−1

L∞Ḣs
‖∂tu‖LqB2θ

r,α
.

Therefore, we have obtained the required estimate.

By Claim 4.9 instead of Claim 4.8, we are able to show that Φ is a contraction

mapping analogously to the case 2 < s < 3. We note that we have to put α = q = q̄2

since we need α ≤ q for (4.11) by Theorem 1.3, and α ≥ q̄2 = q to prove Claim 4.9.
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