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Modified Strichartz estimates with an application to the

critical nonlinear Schrodinger equation
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Abstract

The Cauchy problem for the critical nonlinear Schrédinger equation is consid-
ered in the Sobolev space of fractional order. Some modified Strichartz estimates
are constructed and applied to the problem to obtain small global solutions with

less regularity assumption for the nonlinear term.
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1 Introduction

We consider the Cauchy problem for nonlinear Schrédinger equations

{ Oyu(t,x) + iAu(t,x) = f(u)(t,x) for (t,z) € R x R, (1)

u(0,) = uo() € H*(R™),

where n > 1, A == 37" 82/633? is the Laplacian, f(u) := Au[P~™tu or f(u) := AulP
with A € C for example, 1 < p < 00, ug is a given initial datum in the Sobolev space
H?*(R"™) for 0 < s < oco. Cazenave and Weissler [3] proved the existence of time global
solutions of (1.1) for small data under the conditions

4
n—2s’

0§s<g, [sS]+1<p=p(s):=1+ (1.2)

where p(s) is the critical number for (1.1) by the scaling ug(t, z) = R¥ P~Du(R?t, Rx)

for any R > 0, and [s] denotes the largest integer less than or equal to s. The condition
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[s] +1 < p is the required regularity for f(u), and it can be improved to s < p by the
method by Ginibre, Ozawa and Velo in [4] (see [12]). The aim of this paper is mainly

to improve this condition to

S <p=pn(s), (1.3)

and to that end we also aim to refine the modified Strichartz estimate by Pecher [13].
Here, the special case s = 2 was proved in [3, Theorem 1.4]. However, the other case
has been left open for long time.

To describe the corresponding results, we define py(s) by

1 for s <2,
po(s):=¢ s—1 for 2<s<4,
s—2 for 4<s.

And we consider the problem (1.1) under the condition
0<s< g, po(s) < p < p(s). (1.4)

The condition py(s) < p for s < 2 and s > 4 is natural since 1 < p and the s-derivative
of u in the spatial variables requires the (s — 2)-derivative of f(u) by the first equation
n (1.1). The existence of time local solutions of (1.1) under (1.4) has been shown by
Tsutsumi [16] for s = 0, Ginibre and Velo [5, Theorem 3.1] for s = 1 (see also [6]),
Tsutsumi [15] for s = 2 for f(u) = Au[P~'u with s\ € R mainly by the use of the
LP — L9 estimate and the regularization technique. Kato [9, 10] used the Strichartz
estimate and gave alternative proofs for the cases s = 0, 1,2 both for f(u) = A|lul/P~tu
and f(u) = MulP with A € C. Pecher [13] used the fractional Besov space for the time
variable and proved the result when s is a real number with (1.4) and s > 1. He has also
shown the existence of time global solutions when the initial data are sufficiently small.
The condition py(s) < p was improved to s/2 < p for 2 < s < 4 in [17], which seems to
be natural since py(s) is discontinuous at s = 4 and by the property of the Schrédinger
equation (one time derivative corresponds to two spatial derivatives). However, the
methods in [13] and [17] are not applicable to time global solutions for the critical case
p = p(s) by the technical conditions on the Strichartz estimates there. Especially, the
interpolation argument to construct the Strichartz estimates prevent us from treating
the critical point p(s) in its application to (1.1). In this paper, we improve the Strichartz
estimates in [13] and [17] using the auxiliary space ¢*L(R, L"(R™)) defined by (1.5)
below, and we show the time global solutions for p = p(s).

To state the main results in this paper, we prepare several function spaces. Let

[e.o]

{ej j=_o be the Littlewood-Paley decomposition of the unity on R. Namely, let ¢



be a function whose Fourier transform @ is a non-negative function which satisfies
supp @ C {7 € R; 1/2 < || < 2} and Z],_OO@(T/W) =1 for 7 # 0. We define
¢ and ¢; for j € N by 9;(-) = @(-/27), O = > j<o®j- We define y; : Zj_j 1 Pk
for j > 1, x0 i= ¥+ p1. We put ¥(z) = FZD(I¢]) and pj(2) = FG (€] for
z € R"and £ € R". For s € R and 1 < r,a < oo, the Besov space is defined by
Bl (R") = {u € ' (R"); ||ulls,,(rn) < oo}, where .#(R") is the space of tempered

distributions on R",

1/a
ST (29 o ull @)t p i @< oo,
ull s , ey == ¥ *a wllr@n) + j>1
iz

where *, denotes the convolution in the variables in R"™. We prepare the Besov space
of vector-valued functions (see [1], [14]). For functions u = u(t,z) and v = v(t,x),
we denote their convolutions in ¢ and x variables by w *; v and u %, v, respectively.
For 1 < ¢,/ < o and a Banach space V, we denote the Lebesgue space for func-
tions on R to V by LI(R,V) and the Lorentz space by L%*(R,V). We define the
Sobolev space WH(R, V) = {u € LI(R,V); dyu € LY(R,V)} and the Besov space
B (R, V) = {u e L' (R,V); Ilullgs . wv) < oo} where

1/a

lullBs vy == ¥ =t ullLar,vy + Z (2% 05 #¢ UHL‘I(R,\/))a
i>1

if v < oo with trivial modification if & = oco. We define the space ¢(*L9(R, L"(R")) :=
{ue Li (R, L"(R™)); [|ullo a(r,1r(®n)) < 00}, where
1/a

[ullea Lar,Lr®n)) = 1Y *¢ ull Lar,Lr@n)) + Z 5 *a uHLq(R L7 (R™)) (1.5)
j>1

if o < oo with trivial modification if a = co. We also define £*L%*(R, L" (R™)) similarly.
We recall the Strichartz estimate. For 1 < r < oo, we put 6(r) := n(1/2 —1/r).

We say that the pair (g, r) is admissible if 2 < ¢, < oo and 2/q = §(r) with (¢, 7, n) #

(2,00,2). For 1 <r < oo, r' denotes its conjugate number defined by 1/r + 1/r" = 1.

Lemma 1.1. (See, e.g., [8], [11] and the references therein.) Let s € R, and let (q,r)
and (7, p) be admissible pairs. Then the solution u of
{ du+iAu=f on RxR"
U(Oa ) = ’LL()()



satisfies

letll oo e @epnLar B o)) < Clltollars ey + Cl Nl @5, @)y
where the constant C' > 0 is independent of u, f and ug. Moreover, u € C(R, H*(R™)).

Lemma 1.2. (/13, Proposition 2.5/, [17, Lemma 2.3]) Let s > 0, and let (q,r) be an
admissible pair with 2 < q < co. Then the solution u of the problem

Ou+iAu=0 on R xR"
u(0,-) = uo(-)
satisfies
HUHB;,/;(R,LT(R")) S CHUO||HS(R"L)7
where the constant C > 0 is independent of u and wug.

In this paper, we firstly show the following Strichartz estimate for the inhomoge-

neous problem.

Theorem 1.3. Letn>1,0<60 <1,2<a<oo. Let (q,r) and (v, p) be admissible
pairs. Assume p < oo when a < co. Let 1 < q,7 < oo satisfy 2/q — 6(7) = 2(1 — 6).

For any fized function f, let us consider the problem

Ou+iAu=f on RxR", (1.6)
u(0,-) = 0.
Then there exists a constant C' > 0 which is independent of u and f such that
(1) HuHBgya(]R,LT(R”)) < CHfHBg, L®LF (R T CIl fllee La(r,L7(rr))- (1.7)
Moreover, if max{a, q} < q, then
(2) lullzew B2e, @) < C||f|\33/ LRI @) T Cll flleoLar, L7 ®mny)- (1.8)

In addition, uw € C(R, H*(R™)) if o = 2.

Remark 1.4. Theorem 1.3 is a refinement of the following inequality previously ob-
tained by Pecher [13, Propositions 2.6 and 2.7], Uchizono and Wada [17, Lemma 2.5].

lell s, Lr (o)) Es v, B22, (R7)) < CHfHBg,’Q(R,LT’(R”)) + O max || fllpas g 17+ gn)), (19)

where 1/q+ = (1—0F¢)/¢d + (0 £¢e)/q and 1/Fx = (1 — 0 Fe)/r" + (0 £¢)/r with

sufficiently small € > 0. The most important advantage of our new estimates (1.7) and
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(1.8) is that they are scale invariant. Namely, if we consider the scaling ug(t,z) =
R™?2=20y(R%, Rx), fr(t,x) = RY**2=20f(R%t, Rx) for any R > 0, (1.6) is invariant
under this transform, and (the homogeneous counterparts of) the both sides of (1.7)
and (1.8) are also invariant under this transform. On the other hand, the last term
in the right-hand side of (1.9) is not scale-invariant because of the presence of € in
the definition of G+,7+. This is why we cannot treat the critical nonlinear problem as
long as we rely on (1.9). Moreover, in our estimates, we can choose the pairs (q,r),
(v, p) and (q,7) independently, whereas in (1.9), we have to choose (v,p) = (q,r) and
(G+,T+) satisfying the above formulas. This can be an advantage when we consider not

only pure power but also more complicated nonlinear terms.

As an application of Theorem 1.3, we show the global well-posedness of the problem
(1.1) for small initial data under the condition (1.3). For any function f from C to C,
we denote the derivatives 0f/0z and 0f/0z by f’, where z is the complex conjugate
of z. For 1 < p < oo, we say that f satisfies N(p) if f € C'(C,C) in the sense of the
derivatives by z and z, f(0) = f’(0) = 0, and

C max |wP™2z — 2| if p>2,
[f'(21) = f'(22)] < WL (1.10)
Clzy — zo|P~ 1 if 1<p<?2
for any z1, z2 € C. We note that f(z) = \|z[P"!z and f(z) = \|z|P with A\ € C satisfy
N(p) (see [7, Remark 2.3]). For s > 0, an admissible pair (¢,r) and 1 < a < o0, we

define a function space Xg, , by

s o S n 1 s—2 n 0o s n 1,00 s—2 n
Xq,na T C(Rv H (R )) nc (Rv H (R )) nL (R7 H (R )) nw (Ra H (R ))
N By (R L (R™) N LI(R, B}o(R") N WHI(R, Bi*(R™))

with the metric in L>®(R, L2(R"))N LY(R, L"(R™)), where we remove C*(R, H*~2(R")),
WLeo(R, H5~2(R™)) and W4(R, Biz2(R™)) when s < 2.

Theorem 1.5. Let n > 8. Let 1 < s < 4 with s # 2, and let s/2 < p =p(s) <s. If
s >3 with p < 2, or equivalently if 3 < s < (n —4)/2, we further assume either of the
following:

(i) n=11;0r (ii) n =12 and T— V15 (= 3.12---) < 5 <5 — /3 (=3.26---). (1.11)

Let f satisfy N(p). Then, there exists an admissible pair (q,r) such that if ug € H*(R")
is sufficiently small, then the Cauchy problem (1.1) has a unique global solution u in

Xgra- Moreover, the solutions depend on the initial data continuously, namely, the



flow mapping uo — w is continuous from H*(R™) to X7, .. Here, we put a := 2 for
s <3, and a:=q for 3 < s.
Remark 1.6. The assumption n > 8 is natural since the condition p(s) < s holds if

and only if

S1 =

o /In—2)2_32 21 /(n—2)2_32
nt (Z o382 o, o2 (Z -3 (1.12)

and n > 8 is required for (n —2)? —32 > 0. We see that s; < 2 whenn > 8, 53 = 3
whenn =8, sg = (11 4++/17)/4=3.78 -+ whenn =9, and so > 4 when n > 10.

Remark 1.7. Let s/2 < p(s) < 2 with 3 < s < 4. The inequality p(s) < 2 implies
s < (n—4)/2. If n <11, then s/2 < p(s) holds; on the other hand, if n > 12, the
inequality s/2 < p(s) implies s < s3 1= (n+4—/(n+4)(n —12))/4. (If n < 11, we
put s3 = 00.) Therefore, we have 3 < s < min{(n —4)/2,s3}, so that 11 <n < 13 and

7/2 when n =11,
3<s<<K4 when n =12, (1.13)
(17— V17)/4(=3.21---) when n = 13.

However, in Theorem 1.5, we further assume (1.11). Namely, we can treat all the range
of s when n = 11, while there are open ranges of s to be filled when n > 12, possibly by
the technical reason (see §4.3).

Combining the known results with Theorem 1.5, we obtain the following corollary.

Corollary 1.8. Letn > 1, 0 < s < min{n/2,4}, s/2 < p = p(s). When s > 3 with
p < 2, assume (1.11). Let f satisfy N(p). The Cauchy problem (1.1) is well-posed
time-globally in C(R, H*(R™)) NY for small initial data in H*(R™), where Y is some

auziliary function space.

Proof. The case s = 2 has been shown in [3, Theorem 1.4]. Thecasen > 1,0 < s < n/2,
s < p = p(s) has been shown in [4, 12]. The remaining case is proved by Theorem
1.5. O

Throughout the paper, we denote by A < B the inequality A < CB for some
constant C' > 0 which is not essential in our argument. For any function f = f(¢) or
f = f(x), its Fourier transform is denoted by J? For any function f = f(t,x), fand
f denote its Fourier transform by x and (¢, ) variables, respectively. We abbreviate
L"(R™) by L™, LY(R, L"(R™)) by LIL", ¢*L4(R, L"(R™)) by ¢“LIL" as long as no fear of
confusion. We use the homogeneous Sobolev space H*(R") and Besov space B;’q(]R")

(see [2] for the definitions and properties).



2 Preliminaries

We prepare several lemmas which are required in this paper.

Lemma 2.1. Let 1 < p < o0, 0 < s < min{2,p}, 1 < rg,r1,p,a < 0. Let f satisfy
N(p). Let 1)ro = (p—1)/p+ 1/r1. Then we have

—1

for any v € LP(R™) N B2, (R™).

1,00
Proof. The case a = 2 has been proved in [4, Lemma 3.4]. The case a # 2 follows from

its straightforward modification. O

Lemma 2.2. Let s € R, 0 < 0 < 1,1 < qo,q1 < 00,1 < a < oo. Putl/q:=
(1—=0)/q0 +0/q1. Let V, Vi, Vi be Banach spaces which satisfy Vo N Vi C V and
llullv < HUH%/O_GHUH%I for any uw € Vo N V4. Then the inequality

1-6 0
lallgor, vy S Mol g Nl

holds for any u € BY (R, Vo) N BS (R, V7).

40,00 q1,x

Proof. By the inequality ||¢ * ully S || * uH%/;eHC k¢ uH%l for ¢ = 1, ¢j, we have

1-6
||1/f *¢ UHL‘I(R,V) 5 H"(/f *t UHLQQ(RVO)HIZJ *¢ u”%rn (R,V1)? and

0/
4 /0
Z (2‘9‘” i *t uHLQ(RV))
=1
0/a
9 j o
s 21;11) ok *¢ u||1qu(R,V0) Z (2%”9% *t UHL‘“(R»VI))

j>1

when a # oco. So that, we have the required estimate when a # co. The case a = oo

also follows by trivial modification. O

Lemma 2.3. Let s e R, 1 < r,a < oo. The norm defined by

oy = || (27 (906) ) 5],
(S (2 (o2 @) ], )} 7 0

supjo1 297 | (7 (BUeR/2) ) e if a=oo

_l’_

for any function u is equivalent to the norm ||ul|gs (&n)-
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Proof. First, we show [[ul|gs ®n) < llullzs (rn)- We use the identity
2 .
Y Bl =1

k=—-2

on the support of $(|£]/27), and the Young inequality to have

s o ullreny = || (F00€1/29)) %

i

Z H(’/E ( (€] /22J+k))> *”‘u‘ Lr(®n)
k=-2
Then we have
1/a Ve
{Z (2915 %2 M(Rn))a} ~ {Z <2SJ/2 |(7 @Ue/27))) = U(Rn) }
j=>1 Jj=>1
+ H( (#(l¢] ))> ‘ Lr(Rn)
The last term in the right hand side is bounded by
(7 (906)) e oy + [ (7 @) v,
since ¥(|€]2) + 3(|€|2/2) = 1 on the support of 3(|€|?). Similarly, by
v(l) 22: (I€[*/27) =
on the support of 12)\(|£\), we have
et < || (2 (2067) ) %], o Z |(7" @) wa, o

So that, we obtain [lul|ps (rn) < HuHBS (rn)- Next, we show the opposite inequality.
Since S"3__, §(€|/2/3+F) =1 on the support of B(|€[2/27) for j > 1, we have

[CCTEDRE D o [CACTEE)

LT (R™)



for j > 1 by the Young inequality. Then we have

1/«

S (22 (o ) venl )

i>1
1/a
< S oS (el ) e,
k=—1 (=1
S llull g ey +Z |(Z (2el/2)) e, - D)
where we have used
25Mmp(|€|/2mFF) for j=2m, m=1,2,---,

9s57/25 ¢ oli/2l+ky —
90(| |/ ) 25/2.25m@(|§|/2m+k) for j=2m+1, m=0,1,2,---
for the last inequality. The last term in (2.1) is bounded by |||/, (&) since (|¢]) +

BJ€1/2) = 1 on the supports of B(J¢]/2~") and B(]). Similarly, since B(1&))+F(1€]/2) =
1 on the support of ¢ (|¢[2), we have

|(Zt (B06™)) #2 ]| < g oy

Therefore, we have obtained Hu||BS (&™) S llullss , @n)- O

Lemma 2.4. (1) Let V be a Banach space. Let 1 < q < p < oo, and put 6 :=
1/¢ —1/p. Let 1 < a < oo. Then the embedding Bg}a(R, V) — LPY(R,V) holds,
namely, |[ullpr.om vy S ||u||Bg,a(R,V) holds for any u € Bgva(R, V).

(2) Let n > 1,1 <r <rg<oo, and put s/n:=1/r —1/rg. Let 1 < a < oco. Then
the embedding By ,(R") — L™%(R") holds, namely, ||ul|pro.0®n) S |lullps,rn) holds
for any v € B} ,(R™). Especially, B; ,(R™) — L™(R") holds if o < .

Proof. (1) For sufficiently small € > 0, we define py by 1/py :=1/p Fe. We have

[e.e]

lull s vy < N0 ullprs @y + Y log = ullpos @),
j=1

9 * ullpre vy S Y *ullawyy, e *ullpre@yvy S 2(0£€) |, % ullLa(r,v)

by ¥ =¥ * (V¥ + 1), o = @; * Z/lg:_1 @j+k and the Young inequality. So that, we

obtain

<
el os vy S Mol o vy



By the real interpolation (LP+,LP-) /5, = LP* and (BgJ{a,Be /20 = Bg’a, we

obtain the required result. The proof of (2) follows analogously. We put 1/ry :=
1/r—(s£e)/n = 1/roF¢&/n for sufficiently small e > 0. We have BﬁfE(R”) — L™(R").

By the interpolation (L"*,L" )19, = L™ and (BfJ{E,BS “)i/2.0 = By, we have
B} o (R") < L™%(R™). By the identity L™ = L™ and the embedding B; , — B},
for o < rg, we obtain the last result. ]

We note the embedding ||ul|se(ram zr®n))) < Hu||Lq(R7BRa(R7L)) if ¢ < a by the
Minkowski inequality, so that, |lulls(ram,cr@ny)) S lullam,or@ny) if ¢ < aand 1 <
r<2<abyllulp, I ||u||Bo < ul|zr (see [2, Theorem 6.4.4]).

Lemma 2.5. Letn > 1, 0< 0 < 1,1 < ro,7,q, 0,7 <00, 1 < qop < 00, and let
2/G—0(T) = 2/q0 — 0(rg) = 2(1 —6), 2/v = d(p). Let max{2,p',v'} < a < co. Let
p < oo if a < oo. Let rg satisfy pl < 1o <T or7 <rg<p. Then the inequality

HUHEQL‘IOW(R,LTO(R" N ||UHgan R,L7(R") HUHBG (R,LP’(Rn))
holds for any u, where 0 < k <1 is the number defined by 1/ro = (1 —k)/F +k/p'.

Proof. Since ¢; defined by 1/q1 := 1/qo + k6 satisfies 1/q1 = (1 — k)/q+ k/7/, we have
1 < q1 < qo < 0o. We consider only the case o < 0o since the case a = oo follows by

its straightforward modification. By Lemmas 2.2 and 2.4, we have

HQDJ' *z UHL‘?O’OOLTO s ”90]' *r “HBZ;{’,OOLTO
—k k
/S ||90J * quBQ LFH(:DJ *fEuHBﬂ L'
q,00 'y/,oo
which yields
1/ (1-k)/c k/a

ZHSOJ' *g || Tao .0 Lo S ZH‘P]‘ *quangU ZHSOJ *quBe L
j>1 §>1 ’ §>1

For the last term, by the definition of the Besov space, we have

1/a 1/a
ZII%*MHBe N7 SAD w9 5wl
i>1 i>1
1/
Om @
| X (@lem s e ull) |
jm>1

10



where we have used Bf;,’a — B,QY,,OO. By the assumption v < «, the first term in the

right hand side is bounded by [[¢) % ul|, go . and the second term is bounded by
pla

ay 1/a
(Zm21 <29m||$0m *y uHL”'ng a> > . So that, we have

1/a
>l eoull, | S g, oy,
J>
Therefore, we obtained
1/
k
Slgsseullfnern | S Nuliaky polullys, o - (2.2)
j>1 e
Since we have
¢ #¢ ul[Laoeero S HUHgQBo pellelfo o (2.3)
v pla

by the similar argument, we have obtained
ulles oo o S llullge o Alulo o
~ By L 1TIB, B,
By the embeddings L7 — Bgm and L# — Bg’, o+ We obtain the required result, where

we have used 2 < p < oo by 2/7 =d(p), and p < 00 if @ < o0 for LP — Bg,ﬂ. O

3 Proof of Theorem 1.3

Throughout this section we put U(t) = exp(—itA). The solution u to (1.6) is written

u(t) :/0 Ut —t)f(t)dt.

We prepare several claims to prove the theorem. We define a function vy by

0o(§) :==p.v. /OO Mdr.

Claim 3.1 llullng e S 1F50, pr + ool

Proof. Since u is written as u(t,§) = fot el=EP F( €)dt!, we have

wr _ zt|§|2
tgpv/ For %M_m st e (3.1)

11



So that, we have

o~ @531 — P (1612
pj*eu(t, ) = p.v./_ f(r,6)C SOJ(QZF)i(T@_'g’;P)J(\SI ) ir
Sy itT _ o ~
B p'V'/_ m@(f)ﬂﬂf)dne“‘ﬂ Zi(lEP)d0(8),

where we have used ; *; €7 = €7 (1) and ¢; *; eitiel” = eit|§|2@(|§]2). By the fact

00 eitT J itle |2 00 eitu J 1 it 39
V. ————-dT = V. = —sign(t .
ov- [ et ey = [ gt = 0, 62)

we have

o0

©j *¢ u(t,z) = ;/ sign(t — YUt —t')(pj *¢ ), x)dt’
~u) (7 @) 50 w0) (@),

By Lemma 1.1, we obtain

s # ullzare S s e Fll o + || (ZE @51EP) ) + w0

Lz’

Similarly, we also have

6 %t ullzae S 106 %t Fll o + | (2 (B061))) %o ol

Lz

So that, we obtain the required estimate by the definition of the Besov space and
Lemma 2.3. O

Claim 3.2. For any real numbers qo and ro with
1<qgo<oo, 1<7r9<2, 2/q0—d(ro) =2(1-0), (3.3)
the following estimate holds;

lvollgge, S Wfllge, 2o+ Fllewpaooero. (3.4)
Proof. The definition of vg gives the equation
VA ) * (€PN (M) (7€)
S G e

G (1 - G GUER . €)
*[m ami(r — |E2) "
= Vi + Vo,

dr

12



where we have put the two terms in the right hand side as V7 and V5;. The term Vy;

is estimated by

Vi = FEP) o 7 (W)\

= % 23 (1€]%) 7 / " sign(—t)U () (s % ) (¢, €)d’

—00
where we have used (3.2) for the second equation. The term Vb; is estimated by

W = 5 [ R OTE T o
= 9?*(EXnaixm%fh£01ﬁo

= 7 (K nee (27 (G0 e 1) |

=0

where we have put

— mﬂx% €1%) (1 = X(7))
Ko(t,z) = 2m) n+1 //RIM (r — [€]) drdg,

Kj(t,x) = 2”3/2K0(23t,2j/2x)

for j > 1. By the dual of Lemma 1.1, we have ||Vi;|z2 S |Ixj *¢ fll v per- Let 1 <
go, 7o < oo be the numbers defined by 1 =1/qo + 1/qo, 3/2 = 1/79 + 1/ro, where such
ro exists by 1 < rg < 2. We have

||V2j||L2 < ||KjHL50«1L?O

(7 (GUER) ) % 1]

by the Holder and Young inequalities. By scaling, we have

L90:>° L0

HKJHL%JLFO = 2_0j’|K0HL5071L70'

Since Ky satisfies |Ko(t,z)| < (14 |t| + |z|)~¢ for any £ > 1 by the integration by parts,

the term || Kol| ;30,177 is finite. So that, we have obtained

1Bz S 106G %t Fllppor +27% | (F2 (GUEP)) ) 2 /]

L90:°°L70
Similarly, we also have
18P @)z S o e Flrpw + | (F (GUED)) #e ]
Therefore we obtain the required result under the condition (3.3). O
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Claim 3.3. Let a < q. For any real numbers q1 and r1 with

1<qgi<q, 1<m<r, 2/ —40(rm)=2(1-90),

the following estimate holds;
Julzoas, S 171, gor + 1 Flensoern + ol g (3.6)

Proof. We use (3.1) to have

et e 33(16) e v
Gt = v [ B Fr e — (O

=1 U; — Uy,

where we have put the terms in the right hand side as Uy; and Usj. The term Uy; is

estimated by

0y = v [ BT

- —oo 2mi(T = [£]?)
th/\ 17/\,7_ /'; 2\
e FillE 715(7 _><|J£<|2;>x U€%) 5. era
- o (e (50 ) o)

+ 7, (K 4t (Z (GUED) ) % ) -
Then we have

(7 @50)) 0 ut,a)
-/ Z sign(t — U~ 0) (2 GEP)) %0 x5 %0 f) (¢ )
Kt (F (GUER)) w0 £ =00 (7 @1EP) ) 50 v0) (@),

2
where we have used (3.2) for the first term in the right hand side. By Lemma 1.1, we

have

|(7c @) =
+ |55 e (7 (R )*me

HL arr ™ H( ’€| ))> o Xj *t f‘ LY L
+ (2 @) 2o,

=: Ij —i—IIj —|—I[Ij.

Let 1 < q1,71 < oo be the numbers defined by 1/¢ = 1/¢ + 1/q1 — 1, 1/r = 1/71 +
1/r1 — 1, where such q; and 77 exist by 1 < ¢; < g and 1 <r; <r. By the Young and

generalized Young inequalities, we have

L S WG *e fll e et

14



(7 (GUER) ) 5 1]

Since | Kjl|aapm = 27%||Kollzs.1z7 by scaling, and || Kol|; 41,7 < o0, we have

< Al
IIJ ~ HKJHL’JIJLH L1

Sl Sl +2 % | (Z (G0ED) 5o 1] e

S [Ca G R

|(7 @e)) w o

LaL™

L2
Similarly, we also have
—1(71¢12
(7 (360 vl 5 e s+ (5 Gat60)
+ (2 (B0eP))) wa wo| -
So that, by Lemma 2.3, we obtain
s "|(# ) <o
ot (50 @) el 5 ) o
5 ||f||Bf/, aLp/ + ||f”€aLf11’O°LT1 + ||U0||B§f)a7
where we have used a < ¢ for the first inequality. O

Claim 3.4. Let 2 < a < 00. Let p < 0o when a < oco. Then the following estimate
holds;

loollzs S lge, g + I llemsorr.

Proof. The required estimate follows from Claim 3.2 with (qo,70) = (g,7) if 7 < 2.
When 7 > 2, we put g := 2 and 1/qp := 1 — 6. Then we have p’ < ry < 7, and we
apply Lemma 2.5 to the last term in (3.4). Then we obtain the required result. O

We prove the theorem. The result (1) follows from Claim 3.1 and Claim 3.4. The
result (2) follows from Claim 3.3 with (g1,71) = (¢,7) and Claim 3.4 if # < r. When
7 >r, weput r; := 2 and 1/q; := 1 — 6. Then we have p/ < r; < 7, and we apply
Lemma 2.5 to the second term in (3.6). And we obtain the required result.

Finally, we prove that u € C(R, H*(R")) if « = 2. We put uny = i*zlﬁLngN D)%z
u, which satisfies (1.6) with f replaced by fy = @D*foijSN ©j*, f. By Lemma 1.1, we
see that uy € C(R, H*(R™)). Moreover, by the estimate (2) in the present theorem, uy
tends to u in L (R, H*(R™)) since fx tends to f in Bg,ya(R, LP' (R™) N0 LI(R, LT (R™)).
Therefore u € C(R, H*(R")).

15



4 Proof of Theorem 1.5

We regard the solution of the Cauchy problem (1.1) as the fixed point of the integral

equation given by

t
u(t) = ®(u)(t) == U(t)ug + /0 Ut — ) f(u(t))dt’

for t € R, where u(t) := u(t,-). Let n, s, p satisfy the assumption in the theorem. For
any given 2 <y < 0o, we define p, ¢ and r by

.2 2
=py, Z-5(p)=Z=-6(r)=0.
= (p) . ()

We note that (v, p) and (¢, r) form admissible pairs if 2 < g < oco. We put

1 1
=--2x0, (4.1)
m(r,s)  r n

where the last inequality holds since 1/m(r,s) = 2(p/(p — 1) — 1/4")/np > 0 by the

assumption p = 1 +4/(n — 2s). Moreover, m(r, s) satisfies

1 p-1

4L (4.2)

o m(r,s) 7

For any 2 < a < oo, we put X := X7, , and X(R) := {u € X; u(0) = uo, |lullx < R}
for R > 0. We show that ® is a contraction mapping on X (R) for some R > 0. We
separate the proof of the theorem into three cases 1 < s < 2,2 < s <3 and 3 < s < 4.
We prove the continuous dependence of the solutions to the initial data only for the
case 1 < s < 2 since the case 2 < s < 4 follows analogously. In the following, after we
put a = 2 for the case 1 < s < 3, we still continue to use a since we would like to use

the proof for the case 1 < s < 3 to prove the case 3 < s < 4.

4.1 Thecasel <s<?2

We put 6 := s/2, v :=2(n+2)/n, o := 2. Then p =2(n+2)/n, 2 < ¢ < oo, where
2 < ¢ holds since it is rewritten as n — 2s < 2(n+ 2) by p = 1+4/(n — 2s). So that,
2 <r <2n/(n—2). We start from the basic estimate.

Claim 4.1. The following estimates hold;

N

-1
1@l r2apar < luollze + lullzeps — lullzazr,
r,m(r,s)

d(®(u), ®(v))

N

p—1
ggﬁ} HwHLqBim(T’S)d(Uav)

for any u and v.
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Proof. By Lemma 1.1, we have

()l Lo 2nzarr S lluollLz + [ (@l v 1o

By (4.2), we have

L) e o S Nl iy Nl 2oz S HUIILqu iy Iellzozr (4.3)
by the Holder inequality and Lemma 2.4. So that, we obtain the first inequality. We
also obtain the second inequality similarly by

1 (u) = @)oo L2nparr S [1f(w) = F(0)l 2 o S max IIwHLqu iy &= Vllzarr- O
We put g :=+'. We define 7 by the equation 2/q — §(7) = 2(1 — ). Since p < oo,

1<g<a<gqg and 1 <7 < oo, we use Lemmas 1.1, 1.2, and Theorem 1.3 to have

1®()llx < lluollas +1Flips, ror +If@llerozr. (4.4)
We estimate the second and third terms in the right hand side, respectively.

Claim 4.2. | f(u)llewzozr < 1)l g < lullfop, -

Proof. We have ||f(u)||garars < Hf(“)”m’Bga by ¢ =7 < a. Let € > 0 be a sufficiently
small number. By the Sobolev embedding7 Bfn(ﬁ_am — Bfa, Lemma 2.1 with the
equation 1/m(7,—¢) = (p — 1)/m(r,s) + 1/m(r,s — €), and the embedding By, —
L) B

m(r,s—e),a by a < ’m(T, 8), we have

I @)llpe, SIF)llsz,, o S Nl lulls: S lullss -

€) m(r,s—e),a
Since ¢ = v’ = q/p, we obtain the required inequality. ]
. 1
Claim 4.3. HfH30 L ||uHLqB7s«’aHUHBgyaLT~

Proof. We use the equivalent norm (see [14] and [17, (2.3)])

1/a

1 @llgs, = 1)l g + { /0 T (@) ~ F A ) d}

The first term in the right hand side is bounded by HU‘|I£;]13;aH“HLqLT by (4.3). The

second term is bounded by ||uHLqBé HUHBgaU by the inequality

(@) = flal-+ DS (ul)]+ ul+ 7)) al) =l + 7). -
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By the above claims, we have obtained

1@ ()| x < Clluo|lzs + Cllul% < Clluollgs + CRP,
d(®(u), ®(v)) < C max |w|% "d(u,v) < CRP~ d(u,v)

for any u,v € X (R) for some constant C' > 0. Taking R such that CRP~! < 1/2 and

R > 2C||ug|| = for sufficiently small ug, ¢ becomes a contraction mapping on Xg.
The last part of the theorem, the continuous dependence of the solutions to the

initial data, follows easily. Indeed, for any solutions u and v € X for initial data wug

and vy € H*(R™), respectively, we have
-1
d(u, ) 5 |luo — vollz2 + 1 f(w) = F ()| o S lluo — vollz2 + max [lw]i " d(u, v)
by the similar argument for Claim 4.1. So that, the flow mapping ug — wu is continuous
from H*(R"™) to X.

4.2 The case 2 <s< 3

Weput 0 :=s/2—1,y:=2,and a:= 2. Thenwehave 1/p =1/2—1/n,2 < ¢ < 00,2 <
r < 2n/(n—2), where 2 < ¢q holds by ¢ = 2p and p > 1. Claim 4.1 holds by the similar
argument. By ||®(u) g = [|[A®(u)|| 5s—» and the equation A®(u) =i (0P(u) — f(u)),

we have
1@ ()l zoerrs S NPl Loz + 1 (W] oo gr2o + 10:@ ()] oo pr20- (4.5)
Similarly, we also have

[0, S 190 rir + 1FW) | ogan, + 108 ogan.  (46)
The second terms in the right hand side in (4.5) and (4.6) are estimated as follows.

Proof. Since we have 1/2 = (p—1)/m(2,s) +1/m(2,2), 2 < m(2,2) < oo, and 26 < p,
we apply Lemma 2.1 to f(u) and we obtain

-1
1 @l S Nl bl S Nl (4.7)

where we have used the embedding Hs — [™2:3) N Bfrf@ 2,2 for the last inequality. We

obtain the required result taking L°° norm in time. O
. -1
Claim 4.5 [|f(w)ll 00 < lull?- M0l o -

18



Proof. We have 1/r = (p—1)/m(2,s)+1/m(r,2), r < m(r,2) < oo, and 20 < p, where
m(r,2) < oo holds by m(r,2) < m(r,s) and (4.1). By Lemma 2.1, we have

—1 —1
1@z, S Nl b iz S Tl

where we have used the embeddings H® < L"™2#%) and Bﬁ:a — Bfne for the last

(r,2),a
inequality. The required result follows from the Holder inequality in time. O

Next, we estimate the third terms in (4.5) and (4.6). Since 0;®(u) satisfies
(O +1iA) 0, @(u) = 0 f (u), (4.8)

we have

() (t) = U(tyur + /O Ut — #)(00f () (#)dt,

where uy := —iAug + f(ug). We put 71 := p’ and ¢ := ', and we define q; and 75 by
the equations
2
— —0(r5)=2(1-0) for j=1,2. (4.9)
qj
Then we have 1/¢1 = 1/ — 60 = (3—35)/2,2 < q1 < o0, 1/Fa =1/p' — (s —2)/n =
1/24+(3—5s)/n, 1 <79 <2. Since p < 00, 1 < g2 < a < g, we use Lemmas 1.1, 1.2 and

Theorem 1.3 to have

10 @(W)llpoepzze < Nlallzrze +10ef (o, 1o+ 100f (W) l@pmpn. (4.10)
10 @)l apze, S Nuallzze +10:f (g, o + 100 f (Wlleorazprs. (4.11)

By (4.7), we have
luallzrze < Nluollms + [1f (wo)ll e < lluollers + [luollys- (4.12)

The second terms in the right hand sides in (4.10) and (4.11) are bounded by || f(u)]| go+1
v,2

since o > 2.

. -1 -1
Claim 4.6, [|£(w)lgoss 0 S Nl el S Nl el o

Proof. We use the equivalent norm
1F )l oo = If @l v o
A

1/2

+ {/000 (7’7071|’f(u(')) =2f(u(-+ 7)) + flu(-+ 27))HL7/L9,>2 Cij—} (4.13)
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(see [14, p22, Remark 1, p27, Theorem 3]). The first term in the right hand side is

-1
bounded by [[ul; ...

term, we put v(-) := u(- + 7) and w(-) := u(- + 27). We use the inequality

() = 2f(0) + F)] S (jul + ol + [w]) u = 20+ w
+{uu—m+w—ww

(ful + o] + [wh)?P~2(Ju = v| + Jv —w])? if p>2

to have

—1
Hf(u) - 2f(’l)) + f(w)HLW/LP, S; HuHiqu(r,s) HU - 2'0 + 'IUHLqLT

+{nu—M@MW

—2
||u||iqu(r,s)

llu||Larr by the same argument in (4.3). To estimate the second

if p<2,

if p<2,

lu—vllFqpr if p>2,

where 2/7* := 1/m(r,s)+1/r. So that, the second term in the right hand side in (4.13)

is bounded by

-1
HuH][),qu('r,s) ‘|u|’32:‘51L7- +

By Lemma 2.2, we have

el g v/

lull oz .

where we have used LY — Bg}oo. Therefore, by B

obtain the required result.

[l

[l

<

~

S

p
B;Qz)l)/prp/
2

—2
iqu(r,s) ”uH

1-1/p
Larm(r,s)

1/p

i [l

1/2 1/2

[l

S
r,m(r,s)

Claim 4.7. [0 f (W)llzrapre SN (W)l g per-
AR

Proof. By the Sobolev embeddings Bg,72 — LT and LF — Bg,’Q, we have

if p<2,

0+1 9
quz LT

Lafm(rs) HuHBg-IQ—ILT7

if p>2.

< L™(%) in Lemma 2.4, we

O

10uf (Wllezor 1 S N0 S (Wl o, o S 10 (Wl ge, o, S INF Wl pos1pe (414)
’ ’ ’ v

as required.

Claim 4.8. The following estimate holds;

10 f (w)|] gor a2 .7

<

~

N

—1
”uHiqu(r,s) HatUHLfoG

—1
[ull7e e [0rull o g2
r,m(r,s) T

20

sm(r,26)

6
»m(r,20)

O



Proof. Since 1 < 75 < 2 and o > 2, we have L™ — BY _ (see [2, Theorem 6.4.4]). By

r2,0

Qo = '7/ < aq, 1/F2 = (p - 1)/m(T’ S) + l/m(r, 20)7 we have

18 f (Wllee L2 Lre S N0ef (W)l a2 o, S 1100f (W) a2 L2

-1 -1
S/ HUHI;qu(T,s) ”atUHLqu(r,20) SJ HuHiqu(r,s) ||atu"Lfo?m(T729)7

where we note 2 < r < m(r,20) < m(r,s) < co. By the embedding B? (rs) Lm(rs)

m(r,s)

in Lemma 2.4, we obtain the required result. O

By the above claims, (4.12), and o < m(r,20) < m(r, s), we obtain

19 (w)l|x
d(®(u), &(v))

luollzs + [luollFrs + llull -

/AR AN

max [lulfyd(u, v)

wW=u,v

for any u and v € X. So that, ® is a contraction mapping on X (R) for some R > 0 if
luol| zrs is sufficiently small.

4.3 The case 3<s<4

We put 6 :=s/2 — 1. We note § > 1/2 by s > 3. Let v be any number which satisfies

(n—2s+4)p
2(n+2)

p(p—1)

1
< = 5
_’)// 2

IN

1
0<—I<min{1, B}, and
Y

: (4.15)

where the last condition 1/4" < p(p —1)/2 is required only for the case p < 2. We note
that there exists v which satisfies (4.15). Indeed, § < min{1,p/2} holds by s < 4 and
s —2 < s/2 < p. Let us consider the case p > 2. Since 1 < p/2, it suffices to check
(n —2s+4)p/2(n + 2) < 1, which is equivalent to

(n—6)(n 1 2)
2

14+ Y38 —387... it n=9, (4.16)

} 1+v5=323--- if n=28,
4 if n> 10,

3§S<min{4, 1+

and the condition (4.16) is satisfied since so < 1+ /(n —6)(n +2)/2. Here, sy is
defined by (1.12). Therefore, if p > 2, then there exists v which satisfies (4.15). Let
us next consider the case p < 2, so that p(p —1)/2 < p/2 < 1. In this case, we should
check (n—2s+4)p/2(n+2) < p(p—1)/2 and 0 < p(p—1)/2. By Remark 1.7, it suffices
to consider the case 11 < n < 13. The inequality (n —2s+4)p/2(n+2) < p(p —1)/2
holds if 3 < s <4forn=11,7—15(=3.12---)<s<4forn=12,and 7/2 < s < 4
for n = 13. The inequality § < p(p — 1)/2 holds if 3 < s < 4 for n = 11, and
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3<s5<5—+3(=326---) for n = 12; this inequality fails if 3 < s < 4 for n = 13. So
that, there exists the above v under the condition (1.11).

We put @ := ¢ = g2. We have 2 < p < 2n/(n—2) by 1/2 < 1/9' < 1. We also
have 2 < ¢ < 0o by 0 < 1/4' < p/2. So that, 2 < r < co. We put 71 := p/, and we
define @ and 75 by (4.9). We have 2 < §; < oo since ¢y is written as 1/q1 = 1/7" — 6
and 1/ < 1,1/2 <60 < 1/4'. We also have 1 < 73 < oo by g2 = ¢ and the equation
(4.9). Claim 4.1, and Claims 4.4, 4.5, 4.6, 4.7 hold in this setting by the analogous
arguments. In the case 2 < s < 3, we have put 1/r2 = 1/24 (3 —s)/n by (4.9), and the
property 1 < 75 < 2 has been used in the proof of Claim 4.8. Since the definition of 79
in this subsection does not always satisfy this condition, we need to modify Claim 4.8

as follows.

Claim 4.9. The following estimate holds;

190 @)oo S Tllf =g Nl o

< BY

7,00 We have

Proof. By a > @2 and the Sobolev embedding B¢

m(F2,—¢),a

10:f Wlleepo b2 S NOef (Wl Loz, -

By r < m(r,20) < m(r,s) < oo, the equation 1/m(7y,—¢) = (p — 1)/m(2,s) +

1/m(r,20 — €) and the embedding B,%e Bf?ﬂ(i 29—y We have
10uf ()| oo S Nulle 19l s, (4.17)

We put 1/m* := (2+¢)/n. By the equation 1/m(7y, —¢) = (p—1)/m(2, s)+1/m(r, 20—

€), we have

100f ) g

(F2,—€),a

N

o L P P CO1 P o (2 ey

—1
(el + 15 @)l ) vl g,

where, for the last inequality, we have used the embeddings H < L) Bfga —

Bfn(r 20—¢),a B 20— Bf(in(r 20) L™"29) - Here, we note that a < m(r,20) follows

from (n —2s+ 4)p/2(n +2) <1/4 for Bfoa — BE’%(TQO). By the equivalent norm, the

N

assumption (1.10), and the equation 1/m* = (p — 1)/m(2, s) + ¢/n, we have

oo e - 1/a
Hf/(U)HBTan*ﬂ S {/0 (T—s sup ||f/(“(x+y))—f/(U(x))IILm*> dT}

lyl<T
hally ool e, i 22,
~ Hul!’;e/p , if p<2,
m*(p—1),a(p—1)
S
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A B/

where we have used the embeddings H® < L"(25) ﬁBfn(Q s—2),0 1B (p—1).a(p—1

) Here,
we note that, when p < 2, the inequalities m*(p — 1) > 1 and a(p — 1) > 2 follow from
the equation 1/m*(p—1) = 1/2—s/n+¢e/n(p—1) and the condition 1/7" < p(p—1)/2,

respectively. So that, we obtain

-1

0 )l Sl el g, (4.18)
By (4.17), (4.18), and G2 = ¢, we have [0y f(u)|Le2pe S ||U||§;1H5Hatu||m3,%?a-
Therefore, we have obtained the required estimate. O

By Claim 4.9 instead of Claim 4.8, we are able to show that ® is a contraction
mapping analogously to the case 2 < s < 3. We note that we have to put @« = ¢ = ¢
since we need o < ¢ for (4.11) by Theorem 1.3, and « > ¢2 = ¢ to prove Claim 4.9.
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