
Introduction

Transport phenomena, such as flows of water and 

mud, dispersion of water quality indices, and migration 

of fishes and planktons, are ubiquitous in surface water 

bodies. Transport phenomena in surface water bodies 

are inherently nonlinear and stochastic, and analyzing 

their dynamics can effectively reduce to solving 

appropriate differential equations based on continuum 

and discrete mechanics. Fluid flows in water bodies 

have been described with partial differential equations 

（PDEs） governing spatio-temporal dynamics of mass 

and momentum, such as the Navier-Stokes equations 

equipped with turbulent models （Liu and Jiang 2013; 
Sinha et al. 2012） and their hydrostatic counterparts, 

which are referred to as the shallow water equations 

（SWEs） （Delestre et al. 2013; Szymkiewicz 2010）. 
Transport phenomena of water quality indices, such 

as dissolved oxygen and heat, have effectively been 
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handled with the advection-dispersion equations, which 

are the PDEs based on the mass conservation principles 

considering turbulent nature of the fluid flows （Chatwin 

and Allen 1985 ;  Yoshioka et al.  2012）. Transport 

phenomena of aquatic species have also been handled 

with the advection-dispersion equations; however, the 

dynamics to be considered is far more complicated than 

that of the passive solute because biological, ecological, 

and hydrodynamic factors would complexly intertwine 

（Goodwin et al. 2006; Kohannim and Iwasaki 2013）.
Studying the transport phenomena requires using 

mathematically and physically sophisticated knowledge. 

Numerical analysis assisted by firm mathematics can 

serve as an effective tool for comprehending the transport 

phenomena; however, there exist only a limited number of 

such kinds of approaches in regional environment science 

and related research areas.

The purpose of this paper is to provide a brief summary 

of our previous researches on mathematical and numerical 

modelling of transport phenomena in surface water bodies 

for promoting the use of the modelling techniques. Their 

applicability to the problems in Hii River system, Japan is 

also discussed.

Mathematical models

Pivotal mathematical models serving as a foundation 

of analytically assessing transport phenomena in surface 

water bodies are introduced in this section. Due to 

limitations of pages, their derivation procedures and 

detailed mathematical expressions are not discussed in 

this paper, which are found in the published papers by 

the author and his coworkers provided in the reference 

list. Only their basic concepts and applicability of the 

mathematical models to real problems are provided in this 

section.

Fluid flows

The horizontally 2-D and the longitudinally 1-D SWEs 

are the most widely used mathematical models governing 

fluid flows in surface water bodies. The SWEs describe 

mass and momentum dynamics of incompressible and 

hydrostatic fluids. They are nonlinear PDEs whose 

analytical resolution is possible only under certain 

simplified conditions, such as the problems in straight 

open channels without friction （Szymkiewicz 2010）. 
P rac t i ca l  p rob lems  encountered  in  reg iona l 

environmental science can often be reduced to solving 

the 1-D SWEs in open channel networks, such as river 

and canal networks having a number of junctions and 

bends. A key in reasonably simulating such water 

flows using the 1-D SWEs is mathematical and physical 

treatment of junctions and bends. Yoshioka et al. （2015b） 
presented a consistent mathematical formulation of the 

1-D SWEs defined in open channel networks, which is 

an extension of the conventional counterparts that can 

be applicable only to the flows in single open channels. 

Their equation implicitly satisfies the mass conservation 

law at junctions and bends. Yoshioka et al. （2014a, 2014b） 
demonstrated that different physical assumptions on the 

momentum losses of the flows at junctions and bends 

lead to apparently different flow profiles, some of which 

significantly deviate from the experimental results （Ishida 

et al. 2011; Unami and Alam 2012）.
There exist physically more sophisticated PDEs for 

describing fluid flows in surface water bodies, such as 

the Navier-Stokes equations （Sinha et al. 2012） and the 

Boussinesq equations （Madsen and Sørensen 1992）, 
both of which are strongly nonlinear. These equations 

are free from the hydrostatic pressure assumption and 

can potentially more accurately capture dynamics of 

surface water flows; however, solving these equations are 

computationally far more demanding than solving the 1-D 

and 2-D SWEs, which would become practically possible 

in the near future.

Solute dispersion

The advection-dispersion equations have widely been 

used in practical analysis of solute dispersion （Cox 2003）. 
Mathematical models used in the conventional researches 

are based mainly on some deterministic conservation 

laws of mass and the Fick's laws representing analogies 

to the gradient-type laws of molecular diffusion and 

heat condition; however, stochasticity inherent in the 

transport processes is not properly considered in most of 

such researches. On the other hand, some researchers 

including the author have been investigating transport 

problems by employing essentially different methods. 

Approaches that consider stochasticity contained in 

transport mechanisms using stochastic differential 
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equations, referred to as the SDEs, have demonstrated 

their effectiveness. An SDE can be regarded as a time-

dependent ordinary differential equation governing a 

stochastic process as explained in Øksendal （2000）. The 

Kolmogorov’s forward equation （KFE） and Kolmogorov’s 

backward equation （KBE）, which are the PDEs that 

associate to the SDEs, have also been shown to be useful 

mathematical tools for analyzing randomized phenomena 

in water environments as reviewed in Bodo et al. （1987） 
and Su （2004）.

The authors recently found that the conventional 

Fick's laws are not necessary for the advection-

dispersion phenomena in turbulent water bodies, which 

can alternatively be performed with a probabilistic 

mass conservation law and the linearity of the KFEs 

associated with the SDEs governing Lagrangian particle 

movements in the flows （Yoshioka et al. 2012; Yoshioka 

and Unami 2013）. Another advantage of using the SDEs 

as the governing equations of the advection-dispersion 

phenomena is that the KBEs can quantify the statistical 

natures of the solute particle dynamics, which cannot be 

performed with the conventional deterministic models. 

Spatio-temporal statistical analyses on the transport 

phenomena of solute particles in vegetated open channels 

and freshwater lagoons have already been performed 

（Takagi et al. 2014; Yoshioka et al. 2014c; Yoshioka et al. 

2015e）.
Migration of aquatic species

Migration of aquatic species in surface water bodies 

are subject to inherent stochasticity due to the turbulence 

of the fluid flows and environmental and ecological 

disturbances that are often beyond our knowledge. 

A large number of researches discussed hydraulic 

and hydrological processes in surface water bodies; 

however, significantly smaller number of them focused 

on migrations of aquatic species due to difficulties to find 

their reasonable mathematical expressions.

A significant difference between the transport 

phenomena of solute particles and those of aquatic 

species are their drift mechanisms; the former passively 

move in the flows but the latter in general do not. The 

latter, in particular some migratory fishes, have been 

reported to adaptively swim in the flows based on a 

physiological energy consumption principle during 

their migration processes （Brodersen et al. 2008）. 
One possible way to develop a mathematical model 

that can reasonably represent the adaptive swimming 

strategy considering hydraulic, biological, and ecological 

stochasticity is formulating the problem in the context of 

stochastic optimal control problem suing SDEs （Øksendal 

2000）. Yoshioka et al. （2015c-d） presented a dynamic 

energy minimization principle of migration of individual 

fishes based on SDEs. They derived a nonlinear PDE 

that governs optimal migration velocity of fishes, which 

is referred to as the Hamilton-Jacobi-Bellman equation 

（HJBE）. Unfortunately, the HJBE is strongly nonlinear 

and does not have analytical solutions except for 

simplified cases.

Numerical methods

The governing equations of the transport phenomena, 

such as the SWEs, KFEs, KBEs, and HJBEs have 

to be numerically solved in real applications. This is 

because their coefficients, initial, terminal, and boundary 

conditions can be highly irregular and do not admit 

analytical expressions in general. We have developed 

numerical methods for accurately solving these governing 

equations in open channel network domains, which 

possibly possesses a number of junctions, bends, and 

loops. The developed numerical methods are based on 

appropriately defining the governing equations with 

local integrals, which allow handling the problems in the 

weak sense where the solutions may not be defined in 

the classical sense. Such numerical methods are broadly 

categorized into the two classes, which are referred to as 

the finite volume methods （FVMs） and the finite element 

methods （FEMs）.
The FVMs are suitable for solving the PDEs in the 

conservative forms, such as the SWEs and the advection-

dispersion equations, which describe some physical and 

mathematical conservation laws. The FVMs, which are 

referred to as the Dual-FVMs, have been presented and 

validated through test and real cases, demonstrating their 

sufficiently high accuracy （Yoshioka and Unami 2013; 
Yoshioka et al. 2015b）.

On the other hand, the FEMs are effective for 

solving the PDEs in the non-conservative form, such 
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as the KBEs and the HJBEs, which do not describe 

conservation laws. The FEMs, which are referred to as 

the Conforming Petrov-Galerkin FEMs, were developed 

and their accuracy and stability have been verified from 

both numerical and theoretical point of views （Yoshioka 

et al. 2013, 2014d）. The theoretical analysis is based on 

the concept of discrete Green’s function and functional 

analytic techniques （Miller et al. 2012）, which turned 

out to be powerful mathematical tools for estimating the 

computational errors in particular. The horizontally 2-D 

numerical models, which can potentially be coupled with 

the 1-D counterparts, are being developed （Takagi et al. 

2014; Yoshioka et al. 2014e）.

The problems in the Hii River system

This section makes discussions on applicability of the 

above-presented mathematical models and numerical 

methods for specific problems of the Hii River system, 

Japan. The Hii River system contains the main stream of 

Hii River, its branches, and Lakes Shinji and Nakaumi, 

both of which are brackish lakes. This river system is 

suffering from serious environmental and ecological 

problems, which possibly are causing decrease of the 

total amount of fish catches of resident and migratory 

fishes, such as Yamame （Tribolodon hakonensis） and Ayu 

（Plecoglossus altivelis）.
The mainstream of Hii River has a number of fishways, 

most of which associate with some weirs. Figs. 1 and 

2 show relatively larger fishways installed at the river, 

which are referred to as the Yoshii （Pool and nature-like 

combined type, repaired in 2013） and Hinobori fishways 

（Vertical slot type, completed in 1999）, respectively. 

Heights of the Yoshii and Hinobori weirs are 3 （m） and 

11 （m）, respectively, indicating that the fishes cannot 

ascend up the weirs without using the fishways. 

The previous Yoshii fishway consisted solely of a 

pool type fishway. The downstream part of this fishway 

suffered from severe depositions of fine soil particles, 

which might be due to its geometry that induced 

recirculating flows strongly trapping sediment particles. 

These depositions were considered to be a cause of 

degradation of fluid transport capacity of the fishway, 

which might have further lead to degradation of its 

attraction ability and ascending efficiency. The repair of 

the Yoshii fishway was intended to improve its ascending 

efficiency by additionally installing a nature-like type 

fishway. According to Mr. Yoshii of Hii-river fisheries 

cooperative, it is unclear whether the repair improved 

ascending efficiency of the Yoshii fishway for resident 

Figure 1　Yoshii fishway (taken from the downstream)

Figure 2　Hinobori fishway
　　　　 （taken from the downstream of a turning pool）
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and migratory fishes in the river. Assessment of the 

ascending efficiency of Hinobori fishway, which has been 

considered to be effectively working as a passage through 

the weir, has also not been performed so far. One of the 

most urgent research topics to be addressed is therefore 

assessment of ascending efficiency of the two fishways, 

which would be potentially serving as physical barriers of 

fish migrations in Hii River.

The mathematical and numerical models introduced 

in the previous sections can be used as effective tools for 

assessment of the ascending efficiency of the fishways 

with multiple spatio-temporal scales. Local ascending 

behaviour of the fishways can be assessed using the 

2-D models or their 3-D counterparts with appropriately 

imposing initial and boundary conditions. On the other 

hand, global ascending efficiency of the mainstream of 

the Hii River can be assessed utilizing the 1-D models. 

In these models, fishways and weirs are not explicitly 

considered but specified as implicit internal boundaries 

where values and gradients of hydraulic quantities and 

behaviour of fishes are parameterized. 

Conclusions

Mathematical and numerical approaches previously 

developed by the author and his coworkers for analyzing 

transport phenomena in surface water bodies were briefly 

summarized and their applicability to the problems in the 

Hii River system, Japan was discussed.

The presented mathematical approach, which is based 

mainly on the PDEs and SDEs, is at a germinating stage 

and has to be validated through real applications more 

in detail. Many mathematical theories for rigorously 

analyzing properties of mathematical models, which are 

necessary for their effective operations, are available 

and will continue to progress for addressing unresolved 

problems. The mathematical theories on the weak 

solutions to PDEs, such as the theories on shock and 

rarefaction waves （Li and Wang 2009） and viscosity 

solutions （Fleming and Soner 2006）, would in particular 

serve as indispensable tools for analyzing the transport 

phenomena. The author is currently working with 

mathematical and numerical analyses on the HJBEs of 

fish migration. A part of the results has already been 

presented in Yoshioka et al. （2015a-b）.
The author hopes strongly that as many people as 

possible will be interested in and promote the presented 

research topics.
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