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Introduction.

In the preceding paper [4], we treated the characterization of the family of
potential theoretic measures G* (). Generally considering the characterization
of the family G*(¢), we defined a concept “T-kernel” and proved that
Newtonian kernel @, and the kernel @y associated with the heat equation
are T-kernels. The present paper deals with two remarks on potential theoretic
kernels which have continuous potentials ; the first is concerned with T-kernel
and the second is done with the domination principles for @y-potential. In
the first section we shall remark that a-kernel and Green kernel are also
T-kernels. In the second section we shall introduce a definition of C-domination
principle and we shall prove that the kernel @, does not satisfy the ordinary

domination principle but it satisfies the C-domination principle.

1. Preliminary.

Let © be a locally compact Hausdorff space and ¢(x, y) a measurable
function in 2x Q. A kernel 225(3:, y) defined by o (x, y) = ¢(y, x) is called the
adjoint kernel to ¢ (z,y). We denote ¢* (x,y) = sup (¢p(z,¥),0) and ¢~ (x,y) =
—inf (p(x,¥),0). Then ¢(x,y) is equal to ¢* (z,y) —¢~ (x,¥). The ¢-potential
of a positive Radon measure 4 in &£ is defined by ¢u (x) = f * ¢ (x, v) du (),
provided that ¢*u () and ¢~ u () are not infinity at the same time. A kernel
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¢ (z,y) is called S-kernel if there exists at least such a positive measure A that
the support S; is compact and the potentials ¢*A(z) and ¢~ (z) are continuous in

L. In case that ¢ (x,y) is S-kernel, we define the following classes of measures,
Fr@)=1{1: 2=0, S, compact, $*) and ¢~ continuous in 2},
G @ =tu: n20, [*Grud and [* - pd <+oo for any X € F* ()},

A kernel ¢ (x, y) is called T-kernel if ¢(x,y) is a non-negative S-kernel and
for any compact set K there exist such a point x, in 2, a relatively compact
open set Ux containing K, and a positive constant My depending on xx and
Uy that (7)(1‘, y) < My ¢(zg, v) for any x of K and any y of 2\Ug, where
2\Uyg denotes the complementary st of Uy. For a T-kernel ¢ and a compact
set K, we shall denote by E. the set of all poinis xx with the above properties.
And in [4], we obtained the following result.

Theorem 1. Suppose that ¢ (x,v) is a T-kernel in Q.

If a non-negative measure U s such a measure that, for any compact set K
is 8, there exists a point xx in Ex that g\i,u (xx) < + oo, then (1 is an element
of G.(¢). If for any compact set K, E, contains some open set, and there
exists a positive measure ) of F*(¢), of which the support S, is contained by
E,, then the converse holds.

2. a-kernel and Green kernel are T-kernels

1

a-kernel @*(z,y) in R" is defined by @ (z,y) = Jz—y[

V<a<n).

In [4], applying the axiomatic theory of harmonic function, we proved that
Oy and @y are T-kernels, but for @° we can not apply axiomatic method.
Therefore we must consider directly behaviour of the kernel @ in the
neighborhood of the Alexandroff point w of the space R™. Now, let 2 be
the compactification of @, adding the Alexandroff point w of £.

Lemma. Let ¢(x,y) be a positive S-kernel in Q. If for any compact set

K, there exists such a point xx in Q that limsup g%(x, ¥) /b (xx ) ds uniformly
yow
bounded with respect to all points x of K, then the kernel ¢ (x, ) is a T-kernel,

Proof. According to the assumption, we have the finite supremum M=

sup limsup gvb(x, ¥)/d(xky), and M is a finite positive eonstant. Therefore,
xeK y-o
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for any € > 0 there exists such a neighborhood V, of the Alexandroff point
w, that the inequality ‘(]IS(x, y) /é (xx, ¥) < M+e holds for any point x of the
compact set K and for any point ¥ of the neighborhood V,. Since the
complementary set of V, is compact, there exists a relatively open set Ux
which contains the compact set (2\V,) UK and of which the closure is contained
by £. Then the complementary set £\Ux is contained by the neighborhood
V.. If we substitute My for M+e, we have that ¢(x, y) /0 (xxy) < My for
any point y of 2\Uy and for any point .z of K,

Theorem 2. a-kernel ¢ (0 < o <n) satisfies the conditions of the above
lemma. Therefore a-kernel ©(0<a < n) is a T-kernel and Ey is identified

with R* for any compact set K contained in R".

Proof. It is clear that a-kernel @* (0 <a <#) s a positive symmetric
S-kernel. The function ¢*(r) =1/ ( >0,0<a < n) is monotonously

decreasing with respect to . For any point x; of R", we set

R, = sup;{ |z—zk| for given compact set K, and
xE

Br, zx= {x: |x—2xx| {r for r> Ryi}.

We have the following inequalities
0< |zx—y|—|z—2x| < |x—2].
for any point x of K and for any point y of R"\Br, ZK .

According to the monotonous decrease of the function ¢° we have the

following inequalities

o (lz—yl]) < o*(lzx—y| — |z —2k])

and L@y _ ¢(z—yl) ¢ (zx—y|—|2—2])
O (xxy) ¢ (lzx—y]) o (|zx—y1)

= (lxx—yl—lx—-xxl T (1 lx xk
|zx—v| y— :cK

for any point x of K and for any point y of R"\Br, K.

From the symmetricity of the a-kernel @° the inequality
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v ‘
limsupm < 1 holds for any point z of K,
7o 0% (xgy)
Consequently, by the lemma the kernel @ is a T-kernel. Since we can take
an arbitrary point of R" as xy, then Ex is identified with R" for any compact
set K.
In succession, we shall prove that Green kernel is a T-kernel.
Let £ be a harmonic space satisfying BRELOT-BAUER ’s axiom, and let function
1 be harmonic in £. Now we define Green kernel in domain D C by the
function G (z,y) with the following properties ;

(1) G(x,y) is positive in Dx D,

(2) G(x,y) is continuous in DD for x5y,

3) lim G(x, y) = 0 for any y of D, where o is Alexandroff point of D,

4) x(—;»uz;’e y) is superharmonic in D with respect to x, and G (x, y) is harmonic
in any subdomain V of D with respect to x, when V does not contain

Y.

Theorem 3. The Green kernel G(x,y) is a T-kernel and Ey is identified
with the domain D for any compact subset K of D.

Proof. Tor any compact subset K of D and for any point xx of D, there
exists such a relatively compact open set U, which contains the compact set

K and the point x4, and of which the closure is contained in D.

We set o .—vfzelﬁ ot G(a: y), and B = mf G(:r:,‘, y). Since U, and K
are compact, G (x, y) and G(x,‘ y) are posmve by property (1) and G(x, y) is
continuous for x =y in D by property (2), then both values a and (3 are
finite and positive. Therefore —~ 3 G(a:K, y) — G(x, y) = 0 is valid for any point
z of K and for any point y of the boundary /K.

By the property (3), the equality

lim (%G (24, 9) =G (,9)) = lim -2 G(y, z) —lim G(y,x) = 0
Yy [J) yoow ,6) y2o

holds for any point x of K.

It is well known that if the function 1 is harmonic, we have the following
minimum principle.
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Minimum Principle. If u is a superharmonic function in the domain D,
D C D C 8, and satisfies liminf u(x)=0 for any y of 0D, then u is non-

xeD x>y
negative in D,

v v
By the property (4) G(x,y) and G(x.y) are harmonic with respect to y in

the domain D\UK, because D\UK does not contain the points x and zy.
a X p 4 . . . .

ThenF G (xg,y) —G(x, y) is superharmonic with respect to y in D\UK.

Therefore by the minimum principle we obtain the following inequality

a

B

Setting M, =i, we have the following inequality

é(xx, ) -G (x,¥) = 0 for any point x of K and for any point y of D\UK .

é(x, y) < M, (v}(:cK, y) for any point x of K and for any point y of D\UK.
Since x, is an arbitrary point of D, then E, is identified with D for any

compact set K.

3. Domination Principles. In this section we use the following definition

concerning with domination principles

Definition. We say that S-kernel ¢ satisfies the domination principle (resp.
C-domination principle), if for any positive measure A (resp. of F* (¢)) with
compact support S, and for any positive measure (L, the inequality oA (x) < du(x)
in the whole space follows from the same inequality ¢A(x) < ¢u(x) on the
support S,.

It is well known that a-kernel @ satisfies the domination principle, but we

have the following theorem concerning with the kernel @y .

Theorem 4, The kernel @y does not satisfy the domination principle, but

it satisfies the C-domination principle.

Proof. We use a compact subset K = {x = (z1,...,2,) : &; < x; < b, (i =
1,2,...,n—1), x, = ¢ for constants a;, b;, (a; <b;) and ¢} and a domain D =
{r=(x,...,z,) : £, <c}. Let A be a positive measure placed on K and
[ a positive measure with compact support in D. Then @y (x) and Oy’ (x,)
are finite for an arbitrary point x, of R”\l_). The potential @A’ (x) vanishes
on K and @uu(x) is positive on K. Consequently, we have the inequality
Oyl () < Oyp(x) on S,. Both values of @Oyu(xy) and Oy’ (x,) are positive
and finite, Then we can take such a positive number M that M @y (x,) >
Oup(x). If we set A = M)/, we have the following inequalities,

OwA(x) < Opu(x) on S; and Dyl (x) > Dy (x).
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This shows that @, does not satisfy the domination principle.

Now, we show that @ satisfies the C-domination principle. Let A be a
measure of F*(Q®y), 4 a positive measure and suppose that we have the
inequality @yl (x) < @pu(x) on S, In order to show that @y satisfies the
C-domination principle, it is sufficient to prove that the inequality @pd(x) <
D pt () holds in R"\SR. The function @yt {x) — @yl (x)is lower semi-continuous

and we have the following inequalities
izzfz'nf {@wit(y) =D (y)} = Oy (x) — OpA(z) =0,

where 2 is a boundary point of S; and y is a point of R"\Sl. On the other
hand, by the property of the kernel @y, @wA(x) is an element of the class C,,
where C, denotes the set of all continuous functions tending to zero at the
Alexandroff point . Since the function @pu () —@yl(x) is a superharmonic
function in R"\S,, by the minimum principle, we have immediately the desired

inequalty.
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