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In 1961, A. T. James[1]introduced the zonal polynomial of real positive definite
matrix and he described some properties and a method of calculation of it.
Lately, he [2] also showed that it is-an eigenfunction of the Laplace-Beltrami
operator. The zonal polynomial plays significant roles in distribution problems
of eigenvalues related to the normal multivariate distribution [3]. In the
present paper, we will describe a representation of the group GL (k; R) and
its spherical functions guided by N. J. Vilenkin [4]. Our assumptions 1 and 2
in the following may be satisfied with Zonal polynomials, We also give a
definition of (zonal) spherical function of the group GL (%; R) guided by K.
Maurin [5] and we show that our zonal spherical function is in agreement with
the latter definition.

§ 1. Definition of spherical functions and some properties related to the
representation A, (g) of the group GL(%: R)

Let {{g}“}”, g © GL(k; R) be a representation of the group GL(k; R)
on the space V, of homogeneous polynomials of degree f of the matrix
S 2 S, where &} is the space of real positive definite matrices of order A.
Owing to Thrall [6]-Hua [7] ’s result, the representation space space V, is
completely decomposable into irreducible invariant subspaces Vi, on which
representation A(2f,...,2%) (), g © GL (% ; R), acts,

V= ® Vi
%)

where (f) = (f}, ..., i) ’s are partitions of f into % parts such that f; >
foz...>f>0and fitfot...+fi =F
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On the irreducible invariant space V(, we have the representation
Aep@X(S) = A@fi.... 20 (@X(S) = X(g7'Sg™), )

where g & GL{k; R), g™' is the inverse of g and g™ is the transposed
of the inverse of g and X(S)is a vector of V,.

The dimension of the space Vi, is

N(2f)= N(2fy, ..., 2f)=DQ2A+E-1,2/+k—2,...,2f.)/Dk—1,...,0,
where D(., ..., .)is the difference product.

The infinitesimal operator of the representation Ag,(g), ¢ & GL(k; R), is given
by

0

Af,’)= -2 f_: Sia 3 (1 <1<k)7
a=1 asi,,
A(f)__ Z o g A<idi<k-i=j.

Let X3(S), ..., X{®(S) be a basis of the space Vi, and X(S) be a vector of

V; then we have the unique representation

Xi8) = )i:vzlai X&B(S), where N = N(2f) and a;(1 <i<N) are complex

numbers.

In particular,

N

Aaplg) XB(S) = L X XB(S) 1<i<N). 2

In the following we construct an scalar product for which the representation
Aup(g), g € 0(k), is unitary. Let X(S) = Z Qi X&(S) and Y(S) = Z B: X3 b
vectors of V,, and we define (X(S), Y(S)) = ;}1 B, Bi’s are complex conju-
gate of 3;’s, and

(X(S), Y(S) = f (Aap(R)X(S), Aep(R)Y (S) AV(R), 6

0Ck)
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where dV () is the normalized Haar measure on the group 0(%. We easily
find that the expression (3) defines a scalar product in the space Vi, and
moreover it has a property

(Aap(h)X(S), Aen(W) Y (S)) = <X(S), Y(SP, 4)
for any b € 0(%).

Whence we have a proposition

Proposition 1

The representation Aqp(h), h © 0(k) is a unitarv representation of ihe group
0°'k) with respect to the scalar product (3) and it is a completely reducible

representation.
We will describe explicit evaluation of the scalar product (3). Since

Acp (@) X(S) = Z a; A(Zf)(g)X(f) (S)

N N
= 1 (X aXiP(e)X$ (9)

j=1 i=1
we have an expression

X(S), YS) = & 32 aff aufB,

i=1 j=

-

where

XL W) XP AV () 1< i< N)

uMz

() —
=[5
(%)

The number aff ’s are evaluated in the following way ;

aip = f lﬁl XP R XPR)AV (B)

[U¢]

= | Z 2 TP mav )

S0Ck)

f g: (f)( ) (f) (h)dV(k)

0 (k)
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, where S0 k) is the special orthogonal group and 0~ %, is the improper
part of the group O(%).

In the integral over 07(%), let h = Jh, where J, is the special improper
orthogonal involution such that

. ’ ,
Xy = X192 = L1y e 0oy Xy — — XLy

and h E S0k ; since dV(h)is the normalized Haar measure on a compact

group 0(k), we have the following result,

let X (k) = (XSPRY)= [XP(R), ..., XPR)], XP(R)* be the conjugate transposed
of X{P(h), and X, (h)* be the adjoint matrix of the matrix X(»(A);

1
(7 P D (]\% DT\ Y, D) dh
a;; = 3\ 701 \O (k)) .!:() X] (h) [EN X (Jk) X (JL)] X i (h) d 5 (5)

where Vol(0(%)) is the total volume of the group 0.£), dh is the Haar
measure on the group 0(2) and E, is the unit matrix of order N.

To see effects of linear transformation of basis, let Y{3(S)’s (1<Ti<CTN) be

another basis in the space V¢, and let

YRS = SrPXRS)  A<i<N) ©®)
1) Let
A @YHIS) = EIL@YRS)  A<i<N)

and define miatrices I = (y%) and X’(g) = (X{(g)),

then we have the relation

j(’<f)(g) =[—-1'<r) X(f)(g)l"(f)’

-1
where I'? is the inverse matrix of /7.
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2) Let
CYER(S), YRHR(S) =2 and AP, A" be the matrices (at), (@)

respectively, then we have the relation
A — o A0 o

where 7 is the conjugate matrix, /'¢” is the transposed matrix of

", respectively.

From these results, we have a proposition -

Proposition 2
The scalar product (3) is invariant under the linear transformation of basis.

Now let X3(S)’s (1 <i<N) be an orthonormal basis of the space V¢,
with respect to the scalar product (3) and be meeting the relation (2), then

we have following results :
<A("r)(g) Y(f)(S A(Zf) )X<r)(S)>
N
Z X$Plg) XP(g) for any g & GL{k; R)

and since Agp(h), h & 0'%) is a unitary representation,

XPWXPHh) =0, 1<ij<<N) for any 2 € 0(k).

M=

~
[
-

In this case, we have also results

X(S), YS) = T, aufo

-_ N

(Aen(@)X(S), Aep(@Y(S) = 1 ;.' aiB; 1 Xid(e) XPle)

for any g & GL(k; R).

In the following we assume

Assumption 1
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In the space V., there exists a vector X(S)=¢ 0 such that
Aep(WX(S) = X(S) for any h € 0(k) (8)

Under the assumption 1, let X{3(S) in a basis be the above vector X(S),
then we see that X{P(h) =1, XPM) =02 <<i<N) for any A& 0(k) and

192]

aff = 1. Under the assumption 1, we see that our representation (1) is a

representation of class one with respect to the subgroup 0 £)[4]. Let X&(S)’s
(1<<i<N) be a basis of the space Vi, such that X{3(S) satisfies the expre-
ssion (8).

We define spherical functions, zonal spherical function, and associate spherical

function of this representation ;

(a) The spherical function is defined by

X(g) = (Aeng)X(S), XB(S), g E GL(k; R) ©)
for any vector X(S) & V.
We note that it has a property X(hg) = X(g) for any h & 0(k), that is, it
may be considered a function on the left coset space 0(k)/GL(k; R). It must

be a function of g’¢ from results of the invariant theory, where g’ is the

transposed of g. In .the explicit expression, we heve
N N N )
X(g)= 2 2 a.af XPlg)  for the vector X(S) = Z,'lazXf}g(S,‘-
i=1j=1 i=

(b) The zonal spherical function is the function

X3B(g) = (Aap(@) XF(S), XFH(S))

— j% X9(g), ¢ €GL(k;R) (10)

We note -that it has a property

XPhghs) = X3 (g) for any h, h. € 0(k),
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whence it must be a symmetric function of eigenvalues of g’g and it may be
considered a function constant-valued on the sphere Algg’) R/, h & 0(k), with
center E,(the unit matrix of order k) passing through the real positive definite

matrix gg’' € &5,

(c) Associate spherical functions are functions

{Aan(g)XH(S), XRS)> (1

=5 A xPe)  (2<i<N)
J=1

These may be considered functions on the right coset space GL(%; R)/0 (%)
and must be functions of gg’.

Since we have a result &} = GL (k; R)/0(k), zonal spherical function and
associate spherical functions are functions on the space &;.

In particular, with respect to the above defined unitary basis, we have the

following expression of these:
(a’) The spherical function

Xig) = 2, a, X{0(g). @)

(b’) The zonal spherical function

XBg) = xil(g). (107

(¢") Associate spherical functions
{Aep@XP(S), XH(S)> = XiPlg) 2<i<N). (11)

To see effects of linear transformation of a basis on these definitions let

YE3(S), ..., YP(S) be another basis such that Y{}(S) satisfies the expression
(8) and the transformation is given by the expression (6) ; we have following
results,



On a Representation of The Group GL(%; R) and Its Spherical Funcfions 17

(a) The spherical function

Xlg) = (Aap(g)X(S), YR(S)>

= [["P*AY” XP(@adaw » (12)

N N ~ .
where X(S)= Z=,'1 o, XEB(S) = ; a;YP(S) and [ - Jan
is the (1,1) element of matrix[ -], a’ = (a1, ..., @x)

is the transposed of a vector a.

(b) The zonal spherical function

Y3(g) = {Aep(@)YB(S), YH(S)>

= [0 AD X P(g) [Py, (13)

(c) Associate spherical functions

{Aap'e) YR(S), YRS)) (14)
= [ AP xD(g) [ D], 1y,
where [ * Ju.1y is the (i, 1) element of matrix [ - ],

2<i<N)

In the following, in addition to the assumption 1, we assume

Assumption 2

In the space Vi, there exists only one normalized wvector satisfyiug

assumption 1.

Let X&(S), Y(S) (1<i<N) be two unitary bases of the space Vi, such
that X{3(S) = Y{3(S) satisfies the expression (8). In this case, the transform-

ation matrix /', must be of the form
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1 0

0=
0 I

] , where = U(N—1), since '’ & U(N).

Thus, we have following relations ;

(a) The spherical function

X(g) = X" (g alay = X(g). (12)
(b) The zonal spherical function

Y(g) = X9 (13"
(c) Associate spherical functions

N
{Aep(@)XB(S), YRS = ;‘2 TuXP(e) (14"

2<i<N)

From these results we have a proposition

Proposition 3

With respect to two wunitary bases constructed as the above, spherical
Sunctions and the zonal spherical function of the representation (1) of the

group GL(k; R) are invariant under the linear transformation of basis.

Example
For partition (2f) = (2f, 0°), k= 2n or k = 2n+1, we have
2y = @2fY +{2f-2+...+ 20— + ...+ {0},
where {2f} is the character of representation A2f, 0°7%) (g) of the
group GL(k; R) and {2f}’ and so on, are characters of represent

ation <P, (2f, 0"")> of the group 0(k) and so on.

Thus, in this case, our assumptions 1 and 2 are satisfied.



On a Representation of The Group GL(%k; R) and Its Spherical Functions 19

We give -an explicit result for the case k=2, f=1. Let X{3(S) = &(S)
X& = 512({1, 2) element ot the matrix S) and X{3(S) =52 (2, 2) element of the
matrix S) be a basis of V(,. At first we construct a unitary basis of V,

from these vectors. We have matrices

1 0 0
XPJ) =10 -1 0|, and
0 0 1

1 -sin 20/2 sin® 0
XPh)=XPO)=|0 cos 20 -sin 20
0 sin 20 cos 20

cosO -sin0

for h = h(0) = [ ] € SO(2).

sin@ cos0

Whence using the formula (5), we have the matrix

1 0 1/2
AP =| 0 5/8 0
1/2 0 3/4

Thus, X&(S) = #r:5), XBIS)= 1 8%/5, X8=1"2 (sua—tr(S)/2) is a

unitary basis of V., Using this unitary basis, we have following results ;

(1) The spherical function

Let X(S) = Zs 2 X @(S), where ¢;(i = 1, 2, 3) are complex numbers, then
i=1

we have the corresponding spherical function
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X(g)=c trig™ g™")/2+c, ~/~— (g he+al(— (g7 g™

21/2

—(g7'g")"), g € GL(2; R), where (- ), is the (1, 2)

element of the matrix( - ), and so on.

(2) The zonal spherical function

XB(g) = trig™Vg™)/2, g € GL(2; R).

(3) Associate spherical functions
<Aczn(g)X( (S), X?,)’(S)> =1'5/2 (g,

CAaple) XBLS), XBS) = — 1/1—_2 (Vg —(g g ).

Put gg'' = T' € &, then we have also

X&) = tr(T)/2,
(Aap@XB(S), XBSD = /2~ 1

{an@) X3 (S), XEWSpY = — 1/2— (t11— t20),

where #, is the (1, 2) element of the matrix 7 and so on.

§2. Zonal spherical functions on the group GL (: R)

Let G be the group GL (k; R) and K be the subgroup 0(%). In this section,
at first we prove that the pair (G, K) is a Gelfand pair, that is, C, (K\G/K),
the set of continuous functions defined on K\G/K with compact supports, is
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a commutative Banach algebra and after K. Maurin [5] we give an definition
of zonal spherical function on the group G = GL(k; R) and we prove that our
zonal spherical function defined in § 1 satisfies this definition.

Let C,(G) be the set of continuous functions defined on G with compact
supports ; for fi, S © C,(G), we define a product f,f; by the convolution
Si*fy

(Ff)le) = @) = [Fleg™ file)de, & € G,

where dg, is the bi-invariant measure on the group G.

Let f & C(K\G/K), the set of continuous functions on K\G/K ;
Sfllg) = flghk) = flligk:) = flg) for any ¢ € GL(k; R), ki, k. & O(k),

whence owing to results in invariant theory, the function f{g) must be a

symmetric function of eigenvalues of gg’ and also it must be a symmetric

function of eigenvalues of g’g, that is, C(K\G/K) is the set of symmetric

continuous functions of eigenvalues of real positive definite symmetric matrices.
Now let functions fi, f; be elements of C(K\G/K), we have

(L) gk = [ filkigka™ fig) de.
— [Aeker)fig) de.

= [Aeg filer) ity = [ fitea™ sile) de
= (fif)) (), b, ,, EK and g, € G.

Thus, when fi, . € C,(K\G/K), fif: & C,(K\G/K). Using the above remark,
we see also that for fi, f; € C,(K\G/K),
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(£f) (@) = f flge™) filg)de
- f fleng e Ve (g 2) de,

= f filg's) folg g g7 e dg = (fuf) (&), & € G.

Thus we have a proposition

Proposition 4
The pair (GL( ; R), Ok) is a Gelfand pair.

Now we define the zonal spherical spherical function and spherical functions
on the group G as follows(cf. [5], pp. 227);

Definition 1

A-complex valued function w(g) on the group G is called a zona] spherical
Sunction if

(1) w € CK\G/K); that is, w(g) is a symmetric continous function of

eigenvalues of matriz S € &,

(2) w defines a homomorphism between Cy(K\G/K) and the complex number
field C by

b: f= 0N =< 0> = [Few@de, fECGKNG/K); that is,

w satisfies

D) &(afi+Bf) = ab(f)+R6(f), a, 8 € C and £, f; € C(K\G/K),
BUSo) = Of) O(f)

2) when fi=fill = [ 1fi-fildg >0,

|& (f)— ()] = 0.
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K. Maurin ([5], Proposition 3, p. 230) proved that a function w € C(K\G/K)

is a zonal spherical function iff (1) w(e) = 1, e-is the unit Qf G and
(2) for any f & C)(K\G/K), the convolution equaton’
(f*w)e) = ANw(g), AHEC

is satisfied.
A. T. James [3] mentioned that his zonal polynomial C,(S)/C¢»(E,), SE &},

E, is the unit matrix of order %, belonging to V,, has a property
fc(f)(S kT k/)/ C(f)(E;.-)d Vik) = C(p(S)/ C(r,(Ek)’Cm(T)/ C(f)(Elc)9 where S,
K

T & &,

Thus we have a proposition
Proposition 5

The function C(S)/C(Ei) is a zonal. spherical function on the group
GL(k;R) and it satisfies the above convolution equation for any f & C{K\G/K).

Definition 2

A function ¢ & C(K\G) is a spherical function if for any f = C{K\G/K)

it satisfies the convolution equation

(F*0)(g) = A Flolg), Af) = C.

A function v & C(G/K) is a left spherical function if for any f & C,
(K\G/K) it satisfies the convolution equation

(¥ )le) = AN, A EC.

We note that these zonal spherical functions and left spherical functions are

functions on the space &;.
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In the following, we prove that our zonal spherical function X§)(g) =
{Agp (@)XE(S), XE(S)> defined in § 1 satisfies those requirements in definition
1. Under our assumptions 1 and 2, X{3(S) is the vector satisfying these
assumptions. The space V. is a unitary space and Agp(g), £ € GL(k; R) is
a continuos representation of the group GL(k; R) and ||Auy(@XB3S) is
bounded on compact subset of the group G.

(1) For any k&, k & 0(k), g = GL(k ; R), we have X{}(kigk,) = X{3(g), whence
XB(g) € C(K\G/K).

(2) X((B_ Jf N XP(g)dg for f & C(K\G/K). Then we have results

a) for any fi, f: € C(K\G/K) and a, 5 E C,

XB@fi+Bf) = aXBA)+BXBA),
b) for any f,, f» & C(K\G/K),
PRARS GIEAIEY [fl X Be)dg f Heg X B(de|
< !Ifl(g‘l)—fz(g“)l | X$3(e) | de
<M f |l —File™) | de
M f | Alg)—filg) | de,

where sup {|[Aq,@)XRWE; & € Car( 1) U Car)(f2)y < M.

Thus, X B, f € C(K\G/K), is al| - | ~continuous function.
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c) for any f, f, € C(K\G/K), we have
XQhx ) = f (f* £ X Ble)de
= f jf (g7 ™) fig) X&) (g)dg dg
= f ffl(g ) fog) X (g 'g)dgdg
— [ | e Aenstte g dend
= [ [ A5 5 10 @) 10 @) dede
= 3 [ e x @de [ fig) 10 e
= 5 | 1 i wds [ e e a0
since f & C(K\G/K), we have
| Hie xe0 @ids = [ £ 2 ik,
= [feda [ [ 0 gk avie) aviey

0Ck) 0(k)

= 0a ff (&™) XY (g)dg., whence
G

we get the relation X(f*,) = X8 (F) X8 (f).

Summarizing these results, we have
Proposition 6

Under the assumptions 1 and 2, the function X&) (g) is a zonal spherical

Sfunction in the sense of Definition 1.
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