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Introduction.

A linearly connected space is called locally reductive if both of the torsion
tensor field and the curvature tensor field are parallel. A symmetric space
with a canonical connection is such a space of vanishing torsion. On the other
hand, every Lie group has a left invariant connection ((—) -connection) with
parallel torsion and vanishing curvature. From this point of view, the geometry
of locally reductive spaces has been studied by K. Nomizu in his paper [4] and
he showed that a locally reductive space is determined, locally, by its torsion
and curvature at a given point.

Observing the tangent algebras of these spaces, K. Yamaguti has introduced
in [5] an algebraic system, called general Lie triple system, which is a general-
ization of both of Lie algebra and Lie triple system, and it has been studied,
algebraically, by himself [6] and others.

In the present paper, we shall investigate a correspondence between certain
locally reductive spaces and general Lie triple systems as their tangent algebras.
In the case of connected, simply connected and complete locally reductive
spaces, which can be regarded as homogeneous spaces (Theorem 2), a remarka-
ble correspondence will be seen (Theorem 3). We shall also study certain
subspaces of a locally reductive space and subsystems of its tangent algebra.

Some results about symmetric spaces will be given as corollaries.

¢ 1. General Lie triple systems.?

1) See [5] and [6].
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A vector space M (over a field K) with a bilinear multiplication denoted by
X'Y and a trilinear multiplication denoted by [X, Y, Z], for X, Y and Z in
M, is called a general Lie triple system (general Lts) if the following axioms

are satisfied :
1. 1) X'X=0
(1. 2) DX, X)=0
(1. 3) S{X'Y)Z+[X, Y, Z)} =0
1. 4) SDX'Y, Z)=0
1. 95 DX, Y)(Z°W) = (DX, Y)Z)) W+Z*(D(X, Y)W

(1. 6) [DX,Y), DU, V)] = D(D)X, Y)U, V)+D(U, D(X, Y)V)

forany X, Y, Z, U, Vand W in M, where D(X, Y) denotes the endomorphism
Z —>[X,Y,Z] of M, & denotes the cyclic sum with respect to the three
elements X, ¥ and Z and the bracket in (1. 6) denotes the usual bracket of
endomorphisms of a vector space. The axiom (1. 5) implies that, for X and Y
in M, the endomorphism D(X, Y)is a derivation of the binary multiplication
of M, while the axiom (1. 6) implies that it is also a derivation of the ternary
one. This endomorphism D(X, Y)is called an inner derivation of EDE. In
general, an endomorphism A of M is called a derivation of the general Lts I
if the equations A(X'Y) = (AX)'Y+X' (AY)and [4, D(X, Y)] = D(AX, Y)+
D(X, AY) are valid for any X and Y in M.

A subsystem R of a general Lts M is a linear subspace of M closed under
the two kinds of multiplication, that is, "R and [N, N, N] are contained in
N. A homomorphism of a general Lts into a general Lts is a linear mapping
which preserves the binary and the ternary multiplications.

REMARKS. If the binary operation of a general Lie triple system vanishes
identically, it is called a Lie triple system. On the other hand, if the ternary
operation of a general Lts vanishes, it comes to a Lie algebra.

PROPOSITION 1. Let M be a general Lie triple system and let $ be a Lie

1) K. Nomizu [4] and K. Yamaguti [5].
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subalgebra of gl (M) generated by all derivations of M, where 81 (M) denotes
the Lie algebra of all endomorphisms of IN. Then the direct sum & = H +IM

forms a Lie algebra with respect to the bracket operations defined. as follows ;

L7 X Y]=XY+DX,Y) for X, Y C M,

1. 8 [A, X] = —[X, Al = AX for AE @and_XEﬂR
and

1. 9 [A, Bl = AB—BA for A, BEC 9.

Proof. Since D(X,Y) is a derivation of M, the bracket [X, Y] is well
defined for X, Y & M. The Jacobi’s identity is derived from the axioms (1. 3)
~ (1. 6) of general Lts. Thus we see that & is a Lie algebra,  is a sub-
algebra of @ and a relation [ 9, 2] C M holds.

REMARK. To imbed a general Lts I into a Lie algebra, we may take a
subalgebra generated by all inner derivations of I, instead of the above

subalgebra $. Such an imbedding is called a standard imbedding of M.

§ 2. Locally reductive space and its tangent algebra.

Let (M, ) be a differentiable manifold with a linear connection. The torsion
tensor field and the curvature tensor field are denoted by 7" and R respectively.

They are defined by the following formulas :
2. 1) T(X,Y)=psY—pX—[X, Y]
2. 2) RX,Y) =P vZ—VW xZ—Vix. nZ

for any vector fields X, Y and Z on M.
The following identitis hold on (M, ) :

2.3 G{R(X, Y)Z} =S{T(T(X, Y), 2)+r,T) (Y, Z)}
(2. 4) S{r:R (Y, Z)—-R(T(X, Y), Z)} = 0

(2. 5) for any (1, F)-tensor field K on M,
([VX’ VY]K) (Zl, Zz,- o5 Zk)“‘(VcX, YJK) (ZI;- LR Zk)

= R(X, V)(K(Z,.., Z)— £ K(Z,.., RX, Y)Z.., Z)
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where X, Y, Z, Z,,... and Z, are vector fields on M and & denotes the cyclic
sum with respect to X, Y and Z. The identities (2. 3) aned (2. 4) are known as
the Bianchi’s identities. ,

If PT =0 and PR =0 hold on M, (M, |) is called a locally reductive space.
The following result will be used later.

LEMMA. Let (M, V) and (M’, [7') be locally reductive spaces. Assume M to be
simply connected and [’ to be complete. If a linear mapping F of a tangent
space Mz, at a given point xy, & M into a tangent space MYz, at xo & M’
preserves the curvature and the torsion, then there exists a unique affine mapping,
I of (M, ) into (M’, ') such that f(x) = xo and the tangent linear mapping of
f at xz, coincides with F.

A For the proof see 0. Loos [3], Chapter II, § 4.

PROPOSITION 2.0 Let (M, /) be a locally reductive space and let I = My,

be‘ a tangent space at a given point xz, & M. If a bilinear mapping and a

trilinear mapping on M are defined by
(2. 6) XY ="T,(XY)

2.7 [X,Y,Z] = Re (X, Y)Z for X, Y and Z in M,

then M forms a general Lie triple system.
 We shall call M the tangent general Lie triple system of (M, [) at x,.

Proof. In view of the definitions (2. 1) and (2. 2) of T and R, the axioms
(1. 1) and (1. 2) are clearly satisfied. The remaining axioms follow from the
Bianchi’s identities (2. 3), (2, 4) and ‘the identity (2. 5), under the assumptions ;
T =0 and PR = 0. v

A submanifold, N, of a linearly connected manifold (}, J) is called auto-
parallel® if, for each tangent vector X & M, at any point x & N and for each
curve 7 in N starting from z, the parallel displacement of X along 7 (with
respect to ) yields a vector tangent to N. An auto-parallel manifold has a
linear connection induced naturally from [ and the torsion tensor field, the

curvature tensor field and the covariant derivatives of restricted tensors in N

1) loc. cit.
2) For the details, see [2], Chapter VII (Vol. II).
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are the restriction of those in M respectively. In particular, an auto-parallel
submanifold of a locally reductive space is itself locally reductive with respect
to the induced connection. If M has the zero torsion, a submanifold of M is
auto-parallel if and only if it is totally geodesic.

COROLLARY. Let (M, ) be a connected locally reductive space and, N be an
auto-parallel subspace of M. Then, at each point x, of N, the tangent general
Lie triple system, R, of N is a subsystem of the tangent general Lie triple
system, M, of M at x..

Proof. Since the torsion tensor field and the curvature tensor field of N is
the restriction to N of those in M, the multiplications in % must be the
restriction of (2. 6) and (2.7) to .

PROPOSITION 3. In a connected locally reductive space (M, ), tangent general
Lie triple systems M = Mz, and W' = Mz; at any two points x, and x of M
are isomorphic.

Proof. Let 7 be a piecewise differentiable curve in M joining z to x, and
denote by 7* the parallel displacement of tangent vectors along the curve 7.
Then r* is a linear isomorphism of I onto M/, Moreover, since T = 0 and
PR =0, 1*(Tz,(X, V) = Ta;(r*(X), 7*(Y)) and 1%(Rz,(X, Y)Z) = Ra; (r*(X),
*(Y) r*(Z) are valid for any X, Y and Z in 9. Hence, by the definitions
(2. 6) and (2.7), it is seen that the linear mapping r* is an isomorphism of
general Lits.

From the above proof we have :
COROLLARY. The holonomy group of a connected locally reductive space is a

subgroup of the group of automorphisms of the tangent general Lie triple system
of M.

§ 3. Reductive homogeneous spaces.

Let M = G/H be a homogeneous space of a connected Lie group G by a
closed subgroup H. Suppose that the Lie algebra G of G is decomposed into a
direct sum @ = © +IM of a Lie algebra $ of H and a subspace M of @. If,
in addition, ad (H)M C M holds, M = G/H is called a reductive homogeneous
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space. A reductive homogeneous space G/H with a fixed direct sum decomp-
osition @ = 9 +IM has a G-invariant connection, called the canonical connec-
tion of G/H, which is characterized by the following property :
(P) For any 1-parameter subgroup g(#) of G generated by an element of
M and for a curve c() = g(f)z, in M starting from the origin x, = p(H) of
G/H, the parallel displacement of tangent vectors at x, along the curve c()
is the same as the tangent linear mapping at z, of the diffeomorphism g(z)
actig on M,
A reductive homogeneous space with the canonical connection is locally
reductive and, by identifying the subspace M with the tangent space at the
origin z, the torsion tensor and the curvature tensor of the canonical connec-

tion are evaluated at z, as follows:?
@.1) Tz (X, Y)= — [X, X]y,

3. 2) Rz(X, V)= —[X, Y], for X, YEM

where [ ], and [ ] ¢ means the M-component and the $ -component of
the bracket in @ respectively.

From (3. 1) and (3. 2), if we apply Proposition 2 to a reductive homogeneous
space, we have

PROPOSITION 4. Let M = G/H be a reductive homogeneous space with a
fized direct sum decomposition & = © -+ M. Then the subspace M forms a

general Lie triple system with multiplications as Sfollows

3. 3) XY = —[X, Y],
3. 4) [X; Y,Z] = — [[X, Y]@ A for X, Y, Zc M.

The converse of the above proposition is also true. That is;

THEOREM 1. Let M be a real finite dimensional general Lie triple system.
There exists a simply connected reductive homogeneous space M = G/H with a
direct sum decomposition & = D + M, where & and © are Lie algebras of
G and H respectively.

1) See also [4], §10.
2) loc. cit.
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Proof. Let @ =  + M be an imbedding of a given general Lts MM into a
Lie algebra & constructed in Proposition 1. Since © is a subalgebra of the
Lie algebra gI (M)of endomorphisms of M, it must be of finite dimension.
Let G be a simply connected Lie group with Lie algebra & and H be a
connected subgroup of G generated by © . The group H is closed because it
is the connected component of the group of automorphisms of the general Lts
M. Thus we have a homogeneous space M = G/H, which is also simply
connected. As remarked in the proof of Proposition 1, the direct sum & = o
+9 satisfies the condition [, M] C M. Therefore, a reductive homogeneous
space, M = G/H, with the desired properties is obtained.

THEOREM 2. A connected, simply connected, complete and locally reductive
space (M, [7) is a reductive homogeneous space with the canonical connection.

Proof. Let G, be the connected component of the group of affine transforma-
tions of (M, ). G, operates transitively on M. In fact, given any two points
z and y in M, let 7 () be a piecewise differentiable curve joining x = 7(t) to
y = r(t,) and let F(z) be a linear isomorphism of the tangent space M, onto
M., defined by a parallel displacement of vectors along 7. Since M is simply
connected and complete, by Lemma in §2, F(f) can be extended to a unique
affine transformation, f{z), of M for each value of z Hence, there exists an
affine transformation, f(#), in G, which sends the point x to y.

Let G be a universal covering group of G,. The action of an element of G
is well defined by the action of its image in G, under the covering map. Given
a fixed point x, in M, let H be an isotropy subgroup of G at z,. Then M
can be regarded as a homogeneous space G/H. For any tangent vector X at
xu, let 7*(2) be the parallel displacement of Mz, onto M, along a geodesic
v(#) tangent to X at 2, = 7(0). By extending each 7*(¢) to an affine transforma-

tion on M, we have a l-parameter subgroup g() of G. The mapping of Mz,
into the Lie algebra @& of G which sends X to (-%g(t))ho is an injective
linear map whose image we denote by M. Since an element of H is an affine

transformation of M leaving z, fixed, it sends any geodesic starting from z,

to a geodesic from z,. Moreover, it commutes with the parallel displacements
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along these geodesics. Therefore we have ad(H )M C M, Thus M = G/H is a
reductive homogeneous space with a direct sum decomposition @& =  + M.
The canonicai connection of G/H is a G-invariant connection characterized by
the property (P) mentioned in §3. Since [” has this property, the uniqueness
of the canonical connection implies that (M, 7)is a reductive homogeneous
space G/H with [/ as the canonical connection.

COROLLARY.” A connected, simply connected and complete locally affine
symmetric space is globaly symmetric.

Proof. A locally affine symmetric space is, by definition, a linearly connected
space satisfying the conditions; 7= 0 and R = 0. Thus, the result of the
corollary follows easily from Theorem 2.

THEOREM 3. The category of connected, simply connected, complete and locally
reductive space with base points is equivalent to the category of real finite
dimensional general Lie triple systems.

Proof. Let 2 denote the category of connected, simply connected, complete
and locally reductive spaces, (M, [, z), as objects and affine mappings as
morphisms, and let & denote the category of real finite dimensional general
Lts’ and general Lts-homomorphisms. We shall construct covariant functors ;
@, from Z# to &, and ¥, from & to.7, respectively, such that the compo-
site functors ¥o@ and Qo¥ are equivalences of 7 and & respectively.

To a given object (M, 7, ) of #, we assign its tangent general Lts, M = M,,
at z & M. Let f be an affine mapping of (M, ) into (M, P’) which sends z=
to a point z’ in M. Then, since f sends the torsion tensor field, 7, and
the curvature tensor field, R, on M to the torsion tensor field, 77, and
the curvature tensor field, R/, on M’ respectively, its tangent linear mapping,

J*, at x satisfies the following relations :
(3. 5) THTLX, Y) = T (FXX), f4Y))
(3. 6) F*eR(X, Y) = R} (f¥X), f¥Y))of*

for X and Y in M,. Hence, by (2. 6) dnd (2. 7), f* is a general Lts-homomor-

1) O. Loos, [3], Chapter II, §4.
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phism of the tangent general Lts 9 = M, at z into the tangent general Lts
M = M, at x’. Let @ be this assignment of objects and morphisms of <2 to
those of <. Then it is easily seen that @ is a covariant functor from <2 to
Z.

Next, to any finite dimensional general Lie triple system MM, we assign a
connected and simply connected reductive homogeneous space (M = G/H, [, z,)
with a canonical connection, [, and its origin, ,, which is given in Theorem 1.
By Lemma in §2, a homomorphism, F, of a general Lts M to another
general Lts N’ can be extended to a global affine mapping, f, of correspond-
ing reductive homogeneous spaces M = G/H and M’ = G’/H’. Thus we can
define a covariant functor, ¥, from & to & which assigns each object, M, in
< to a reductive homogeneous space, G/H, and each morphism, F, in & to
an affine mapping, f, respectively as above.

An object, (M, [/, x), in &2 and its image under the composite functor ¥ o®
has the same tangent general Lts M = @ (M, [, z). Hence, as a global exten-
sion of the identity isomorphism of M, we have an affine isomorphism from
(M, 7, ) to ¥o® (M, I, ) =(M, [/, ). On the other hand, since the
tangent general Lts of given reductive homogeneous space is the general Lts,
M, obtained from the associated direct sum decomposition, &= S +M, we
see that the functor @o¥" of & into itself is an identity of <. Thus the

proof is completed.
By restricting ourselves to the case of locally symmetric spaces, we have ;

COROLLARY.” The category of connected, simply connected and complete
locally symmetric space with the base points is equivalent to the category of real

Sfinite dimensional Lie triple systems.

$4. Auto-parallel subspaces and their tangent algebras.

Now, we shall turn our attention to certain subspaces of a locally reductive
space.

THEOREM 4. Let M = G/H be a reductive homogeneous space with the origine

1) O. Loos, loc. cit.



10 Michihiko KIKKAWA

xy and let M = Mz, be its tangent general Lie triple system at x,. For any
given subsystem, N, of M, there exists an auto-parallel subspace, N, of M
containing x, and such that the tangent general Lie triple system of N at z,
coincides with N,

REMARK. The converse of this theorem has been proved earlier in §2 as a
corollary to Proposition 2.

Proof. Let & = $+MM be a fixed direct sum decomposition of the Lie
algebra, @, of G associated with the reductive homogeneous space M = G/H.
Denote by D(J, N) the subalgebra of the inner. derivation algebra, D, M,
of M generated by [N, N], and set @’ = N+DN, N). Then G’ is a Lie
subalgebra of @. In fact, for any X and Y in R, [X, Y] = X'Y+DX, Y)P
belongs to @’. Let G’ be a connected subgroup of G with Lie algebra @&’
and set H' = H(\ G’. Then N’ =G’/H’ is a reductive homogeneous space
with the Lie algebra decomposition @’ = 9t+D(R, N).

We shall define a mapping, f, of N’ into M which is an affine imbedding
with respect to the respective canonical connections. For each point ' = g’H’
we define f(2') = ¢’H. Let i denote the inclusion mapping of G’ into G and
let p (resp. p’) denote the projection of G (resp. G’) onto M = G/H (resp. N’ =
G’/H’). Then the following diagram

G’ —Z——eG
? b
S
N =G'/H—M = G/H
is commutative and hence we see that both of the mapping f and its tangent
linear mapping f* at the origin are injective. Therefore, it is seen that the
image N = f(N') of f is a submanifold of M, the origin z; of N’ being sent
to the origine z, of M, and that the tangent space N, at x, can be identified
with the subspace . With respect to the canonical connection 4 of M, any

geodesic starting from z, and tangent to a vector, X, in Ny= N is of the

form 7(t) = exp tX(x). Since exp tX, for X E N, is contained in G’ , this

1) See (1. 7)
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geodesic is a curve in N, which is an image of a geodesic exp tX (zo) in N’
under the imbedding f. Thus we see that N is totally geodesic in M. By means
of the map f, we can induce a linear connection /’ on N from the canonical
connection of N’ = G’/H’, which has the property (P) mentioned in §3 for
the group G’ and the direct sum decomposition & = -+DR, N). From this
fact, we can easily seen that any [’-geodesic in N is also a [7-geodesic and
that a [/-parallelism of tangent vectors of N along a geodesic in N coincides
with a [-parallelism in M. Hence, for any vector fields X and Y on N, we
have /1Y = [7’+Y. Therefore, we can conclude that the submanifold N is an
auto-parallel subspace of M with [’/ as an induced linear connection. Moreover,
the multiplications of the tangent general Lts, Nz, of (N, [7’) is the restriction
of ones in M. Thus Nz, can be identified with N as a subsystem of the
general Lts M,

PROPOSITION 5. Let (M, [7) be a connected and simply connected locally
reductive space and let W be a tangent general Lie triple system of M at a
given point xo. If W is an ideal of WM, there exists an auto-parallel submanifold
of M passing through any point x in M, whose tangent general Lie triple
system at every point is isomorphic to N.

Proof. We shall give here an outline of the proof by using the results
obtained in [1]. For the details, see Proposition 1 and 2 in [1].

The definition of the multiplications in the tangent general Lts I = My,
at x, implies that T'z(N, N) is contained in N and that Rz, (M, M) leaves the
subspace M invariant (see (2. 6) and (2.7)). Since M is simply connected, we see
that the holonomy group at z, whose Lie algebra is the inner derivation
algebra of I, also leaves the subspace M invariant. Therefore, we are able to
construct a parallel differential system, Y, on M by means of the parallel
displacements of the subspace M along curves from x, to arbitrary points in
M. From the above conditions, we see that Y is completely integrable. Hence,
there exists a connected integral manifold, N, of Y passing through an
arbitrarily given point in M. It is also seen that N is auto-parallel. Since a
parallel displacement along any curve in M induces an isomorphism of tangent

general Lts’, by the definition of Y, submanifold N has, as a locally reductive
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subspace of M, a tangent general Lts which is isomorphic to .

THEOREM O. Let (M, ) be a connected, simply connected and complete locally
reductive space. 1f a tangent general Lie triple system, M, of M is semi-simple,
M can be decomposed into an affine product of locally reductive subspaces

whose tangent general Lts' are ideals appearing in a direct sum decomposition
(4. 1) M = m1+m2+"'+mko
Proof. Since each M; is an ideal of M, it is valid that [, W, M] C M,
MM, C M, and WM,"IN; = 0 for i 5~ j. Hence from the axiom (1. 3) we have
[%, M, M] = 0 for i 7 j. Then on account of the formulas (2. 6)and (2. 7),

the torsion tensor and the curvature tensor must satisfy the following condi-

tions at x, ;

4. 2) Rz, (IR, M) M, C M,
4. 3) Tz (M, W) C M,
4. 4 Rzy(M;, M) =0 for i3,

These conditions imply the conclusion of the theorem according to the follow-
ing lemma obtained in our previous paper.

LEMMA.” Let (M, 7) be a connected locally reductive space. Suppose that, at a
point x, of M, the following conditions are satisfied :

(1) The tangent space Mz is decomposed into a direct sum of subspaces Si,
and S%, each of which is invariant under the holonomy group at x..

(2) Rz,(X, Y)=0 for X E S%, and Y € S%,.

(3) The torsion tensor T is completely inducible at x., i. e. Txz,(S%, Sk,) C S%os
Tz,(8%,, S%,) C S%, and Txz,(Sz, Sz,) = 0. Then the poitt z, has a neighbor-
hood which is locally affine isomorphic to an affine product of two locally
reductive subspaces M’ and M” tangent to Sz, and S%, at z, respectively.
Moreover, if M is simply connected and complete, it is globélly affine isomor-
phic to the above affine product.

From Theorem 5, we have

1) See corollary to Theorem 1 and Theorem 2 in [1].
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COROLLARY. Let M be a simply connected symmetric space. 1f the tangent
Lie triple system, M, of M is semisimple, then M is decomposed into a direct

product of symmetric subspaces tangent to ideals in a direct sum decomposition

of M,
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