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Introductiom. 

A Iinearly connected space is called locally reductive if both of the torsion 

tensor field and the curvature tensor field are parallel. A symmetric space 

with a canonical connection is such a space of vanishing torsion. On the other 

hand, every Lie group has a left invariant connection (( - ) -connection) with 

parallel torsion and vanishing curvature. From this point of view, the geometry 

of locally reductive spaces has been studied by K. Nomizu in his paper [4] and 

he showed that a locally reductive space is determined, Iocally, by its torsion 

and curvature at a given point 

Observing the tangent algebras of these spaces, K. Yamaguti has introduced 

in [5] an algebraic system, called general Lie triple system, which is a general-

ization of both 0L Lie algebra and Lie triple system, and it has been studied, 

algebraically, by himself [6] and others. 

In the present paper, we shall investigate a correspondence between certain 

Iocally reductive spaces and general Lie triple systems as their tangent algebras. 

In the case 0L connected, simply connected and complete locally reductive 

spaces, which can be regarded as homogeneous spaces '(Theorem 2), a remarka-

ble correspondence will be seen (Theorem 3). We shall also study certain 

subspaces of a locally reductive space and subsystems of its tangent algebra. 

Some results about symmetric spaces will be given as corollaries. 

S I . General Lie triple systems.1) 

l) See C5] and [6]. 



2　　　　　　　　　　　　　　　　　　M1ch1h1ko　KIKKAWA

　Avectorspace卿（o∀erafie1dK）w1thab11m．ear㎜u1tip11cat1ondenoted－by

X7and　a　tr11inear　mu1t1p1icat1on－denoted　by［X，4Z］，for　X，γand　Z1n

汎i…11・d・醐㈹1肋彦妙いツ吻榊（9θ吻け・・）・f・h．f．11．w。。g。。i．m，

are　sat1sf1ed：

（1，1）

（1．2）

（1．3）

（1．4）

（1．5）

（1．6）

X④X＝0

1）（X，X）＝0

6｛（X7）oZ＋にX，γ，Z］｝＝O

e；1）（Xoγ，Z）＝O

D（X，γ）（ZoW）＝（D（X，γ）Z）o豚十Zo（D（X，γ）W

［D（X，y），1二）（σ，γ）］＝D（1））X，γ）σ，γ）十D（σ，D（X，y）γ）

for　any　X，篶4σ，γand　W　in三肌多where　D（X，γ）denotes　the　end－omorph1sm

Z一→1X，篶Z1・f肌，6d…t・・th・・y・1・…㎜w・th…p・・tt．th．th。。。

e1ements　X，γand　Z　and　the　bracket1n（1．6）denotes　the　usua1bracket　of

end－o㎜orph1sms　of　a▽ector　space．The　ax1om（1．5）1mp11es　that，for　X　andγ

i・叫th…d・m・・ph・・mD（X，γ）…d…マ・t・…fth・bi…y皿。1t．p1i。。t。。。

of肌，wh11e　the　axiom（1．6）1皿p11es　that1t1s　a1so　a　deri▽at1on　of　the　temary

one・Th1s　end－o1皿orph1s1m　1）（X，γ）1s　ca11ed　an　z肋θブ　ゐブ〃α勿oπ　of肌。　工n

genera1フan　endomorph1sm　A　of肌1s　ca11ed　a6θブ〃α勿o〃of　the　genera1Lts㎜

ifth・・q・・ti…λ（X0γ）＝（班）7＋則∬）・・d［A，D（X，γ）トD（AX，γ）十

1⊃■（一X，Ay■）areマa1id　for　any　X　and　γin卿。

　A鋤加ツ∫κ刎肌of　a　general　Lts肌is　a1mear　subspace　of㎜c1osed　und－er

the　two　k1nds　of㎜u1tip11cation，that1s，跳0肌and．［睨，肌，珂are　contamed1n

汎Aんo刎o刎oゆ肋㈱of　a　genera1Lts　into　a　general　Lts　is　a■11near　mappmg

which　prese岬es　the　b1na町狐d　the　temary　mu1t1p1lcat1ons回

　REMARKs　If　the　b1nary・operat1on　of　a　genera1L1e　tr1p1e　system　van1shes

id・・ti・・11y・・t・…11・d・肋炉批・ツ吻肌O・・h…h・・h・・d，ifth・・。m。。y

operat1on　of　a　general1Lts∀an1shes，1t　comes　to　a■L1e　a1gebra．。

　PR0PosITI0N　L1）ム助㎜　6θα　gθ〃θブαZムzθ炉ψゐ3ツ3姥肋　αη6ゐ彦　垣ろθαムκ

1）KNo㎜1zu［4］andK．Ya㎜agut1［5］
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鰍肋な扮αφ9正（肌）9θ鮒α姥〃ツαπ伽如励・郷〆卿ヲ励㈱9工（肌）伽・肋

伽〃θ雌扮αげα〃肋ゐ刎・ゆ肋㈱・！卿。丁加π伽扮θ・バ㈱⑧買曇十肌

伽㈱α肋幽扮αω励κ3畑〃・伽ろ舳肋・卿α肋郷6ψ伽6郷〃ゐ螂；

　　（1．7）　　　　　［Xヲ　γ］＝X。γ十一0（X，y）　ノbブX，γ∈≡卿ヲ

　　（1．8）　　［A，X］＝一［X，刈二AX加ブA∈垣α〃X∈狐

α〃

　　（1．9）　　［A，B1＝畑一触加ブ4B∈垣。

　丹ooジ　Smce1）（X，y）1s　a　der1マat1on　of肌，the　bracket［X，y］1s　we11

def1ned－for　X，γ∈肌。The　Jacob1’s1d－ent1ty　is　d－erived　fro皿the　ax1om．s（1．3）

～（1．6）of　genera1Lts．Thus　we　see　that⑥is　a　L1e　a1gebra，㊧1s　a　sub－

a1g・bra・f⑯anda・e1ati・n晦卿1⊂肌ho1ds．

　REMARK．T01mbed　a　genera1LtsΣ肌1nto　a　L1e　a1gebra，we　may　take　a

・・b・1g・b・・g・・…t・dby・11刎鮒d…∀・t・・…f卿フ・n・t・・d・fth・ab・▽・

subalgebra　導。Such　a．n　1n1bedd1ng1s　ca11ed　a功α〃6αブ3z〃必θ6∂z〃9of肌。

　§2，L⑪c紐且且y亙㊥迅砥磁肘㊥s皿劉c㊧盟皿a脆s危a皿ge皿t盟且g㊥b亙盆。

　Let（。叫7）be風d1fferentiab1e皿anifo1d－with　a11near　connection．The　tors1on

t・・…f・・1d・・dth…岬・t…t・・…f・・1d…d…t・dbyT・・dR…p・・t・∀・1皿

They　are　def1ned　by　the　fo11ow1ng　formu1as．

　　（2・1）　T（及γ）i肘寸・X一［名γ1

　　（2・2）　R（X，γ）＝7．7，Z－7，7．Z¶〃〕Z

for　any∀ector　f1e1ds　X1ヲ　y　and　Z　on　〃。

　　　　　The　fouow1ng1dent1t1s　ho1d　on（〃，7）二

　　（2・3）　6｛R（Xフγ）Z｝＝6｛T（T（X，y），Z）十7．T）（KZ）｝

　　（Z4）　6｛（7五R）（γ，Z）一R（T（X，γ）、Z）｝＝O

　　（λ5）伽郷（1フ尾）一t・・…f・・1dK・・〃，

　　　　　　（r乃7・1K）（Z・，Z。，。。，Z危H晦、。K）（4，。。，Z此）

　　　　　　　　　　　　　　　　　　　　　　店　　　　　　　＝R（X，γ）（K（易，。．，Z比））一ΣK（易，。。，R（X，γ）4，。。、Z比）

　　　　　　　　　　　　　　　　　　　　　　乞＝1



4 Michihiko KIKKAWA 
where X Y, Z, Z1?" ' and Zk are vector fields on M and ~5 denotes the cyclic 

sum with respect to X9 Y and Z. The identities (2. 3) aned (2. 4) are known as 

the Bianchi's identities. 

If VT - O and VR = O hold on M, (M; V) is called a locally reductive space. 

The following result will be used later. 

LEMMA. Let (M, V) and (M/2 V/) be locally reductive ~'paces.. Assume M to be 

simply connected and V/ to be complete. If a linear mapping F of a tangent 

space Mx* at a given point xo E M into a tangent space M~6 at xi E Ml 

preserves the curvature and the torsion; then there exists a unique affine mapping, 

f? of (M9 V) into (M/, V/) such that f(xo) ~ xg a~id the tangent linear mapping of 

f at xo coincides with F. 

For the proof see O. Loos [3], Chapter II, S 4. 

PROPOSITION 2.1) Let (M, V) be a locally reductive .'pace and let ~: Mx 

be a tangent space at a given point xo E M. If a bilinear mapping and a 

trilinear mapping on ~t are defined by 

(2. 6) X'Y = Tx~ (Xp Y) 

(2. 7) [X; Y9 Z] = Rx, (X, Y)Z for X, Y and Z in ~J~; 

then ~J~ forms a general Lie triple *"ystem. 

We shall call ~J~ the tangent general Lie triple system of (M, V) at xo' 

Proof. In view of the definitions (2. 1) and･ (2. 2) of T and R, the axioms 

(1. 1) and (1. 2) are clearly satisfied. The remaining axioms follow from the 

Bianchi's identities (2. 3), (22 4) and the identity (2. 5)p under the assumptions ; 

VT = O and VR = O. 

A submanifold, N, of a linearly connected manifold (M, V) is called auto-

parallel2) if? for each tangent vector X E M. at any point x E N and for each 

curve r in N starting from x, the parallel displacement of X along r (with 

respect to V) yields a vector tangent to N. An auto-parallel manifold has a 

linear connection induced naturally from V and the torsion tensor field, the 

curvature tensor field and the covariant derivatives of restricted tensors in N 

1) Ioc, cit. 

2) For the detans, see [2] Chapter Vn (Vol n) 

r
t
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are the restriction of those in M respectively. In particular, an auto-parallel 

submanifold of a locally reductive space is itself locally reductive with respect 

to the induced connection. If M has the zero torsion, a submanifold of M is 

auto-parallel if and only if it is totally geodesic. 

COROLLARY. Let (M9 V) be a connected locally reductive ."pace and, N be an 

auto-parallel subspace of M. Then9 at each point xo of N, the tangent general 

Lie triple system, ~~, of N is a subsystem of the tangent general Lie triple 

system, ~Jt, of M at xo' 

Proof. Since the torsion tensor field and the curvature tensor field of N is 

the restriction to N of those in M; the multiplications in ~t must be the 

restriction of (2. 6) and (2. 7) to ~t. 

PROPOSITION 3. In a connected locally reductive space (M, V ), tangent general 

Lie triple systems ~Jt = Mxo and ~7:/ = Mx6 at any two points xo and x6 of M 

are isomorphic. 

Proof. Let r be a piecewise differentiable curve in M joining xo to x~ and 

denote by r* the parallel displacement of tangent vectors along the curve r. 

Then r* is a linear isomorphism of ~: onto ~~/. Moreover; since VT = O and 

VR O, r* (Tx,(X, Y)) = Tx6(r*(X), r*(Y)) and r*(Rx~(X, Y)Z) - Rx~ (r*(X), 

r* (Y)) r* (Z) are valid for any X, Y and Z in ~J~. Hence, by the definitions 

(2. 6) and (2. 7), it is seen that the linear mapping r* is an isomorphism of 

general Lts. 

From the above proof we have : 

COROLLARY. The holonomy group of a connected locally reductive space is a 

subgroup of the group of automorphisms of the tangent general Lie triple system 

ofM. 

S 3. Reductive homogeneous spaces 

Let M = G/H be a homogeneous space of a connected Lie group G by a 

closed subgroup H. Suppose that the Lie algebra ~~ of G is decomposed into a 

direct sum ~~ ~ ~ + ~ of a Lie algebra ~ of H and a subspace ~~ of ~ . If, 

in addition, ad (H) ~Jt C ~Jt holds, M G/H is called a reductive homogeneous 
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space. A reductive homogeneous space G/H with a fixed direct sum decomp-

osition (~; - ~ + ~D~ has a G-invariant connection, called the canonical connec-

tion of G/Hp Which is characterized by the following property :1) 

(P) For any 1-parameter subgroup g (t) of G generated by an element of 

~J~ and L0r a curve c(t) - g(t)xo in M starting from the origin xo ~ p(H) of 

G/H, the parallel displacement of tangent vectors at xo along the curve c(t) 

is the same as the tangent linear mapping at xo of the diffeomorphism g(t) 

actig on M. 

A reductive homogeneous space with the canonical connection is locally 

reductive and, by identifying the subspace ~~ with the tangent space at the 

ori~in xo; the torsion tensor and the curvature tensor of the canonical connec-

tion are evaluated at xo as follows:2) 

(3. 1) Txo(Xp Y) - - [X; X] 
~? 

(3. 2) Rx,(X, Y) = [X; Y]~ for X, Y E ~D~ 

where [ 1 2)t and [ I ~' means the ~y~_component and the ~ -component of 

the bracket in ~~ respectively. 

From (3. 1) and (3. 2)2 if we apply Proposition 2 to a reductive homogeneous 

space; we have 

PROPOSITION 4. Let M - G/H be a reductive homogeneous space with a 

fixed direct sum decomposition ~~ - ~ + ~D~. Then the subspace ~D~ forms a 

general Lie triple system with multiplications as follows 

(3. 3) X'Y = -[X, Y]2)~ 

(3. 4) [X, Y9 Z] - - [[X2 Y]~~Z] for X, Y2 Z ~ ~J~. 

The converse of the above proposition is also true. That is ; 

THEOREM I . Let ~D~ be a real finite dimensional general Lie triple system. 

There exists a simply connected reductive homogeneous space M - G/H with a 

direct sum decomposition (~~ = ~ + ~J~, where ~ and ~ are Lie algebras of 

G and H respectively. 

1) See atso [4], S10. 

2) toc. cit. 
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Proof. Let ~ = ~ + ~t be an irnbedding of a given general Lts ~~ into a 

Lie algebra ~; constructed in Proposition 1. Since ~) is a subalgebra of the 

Lie algebra g I (~Jt) of endomorphisms of ~Jt2 it must be of finite dimension. 

Let G be a simply connected L/re group with Lie algebra ~ and H be a 

connected subgroup of G generated by ~) . The group H is closed because it 

is the connected component of the group of automorphisms of the general Lts 

~Jt. Thus we have a homogeneous space M - G/H2 which is also simply 

connected. As remarked in the proof of Proposition 1, the direct sum ~ ~ ~ 

+ ~Jt satisfies the condition [ ~) ? ~Jt] C ~Jt. Therefore, a reductive homogeneous 

space, M - G/H, with the desired properties is obtained. 

THEOREM 2. A connectedp simply connected, complete and locally reductive 

space (M2 V) is a reductive homogeneous space with the canonical connection. 

Proof. Let Go be the connected component of the group of affine transforma-

tions of (M, V). Go operates transitively on M.. In fac.t, given any two pomts 

x and y in M, Iet r (t) be a piecewise differentiable curve joining x - r(to) to 

y ~ r(tl) and let F(t) be a linear isomorphism of the tangent space M. onto 

M.(t) defined by a parallel displacement of vectors along r. Since M is simply 

connected and complete, by Lemma in S 2, F(t) can be extended to a unique 

affine transformationp f(t), of M for each value 0L t. Hence, there exists an 

affine transformation, f(tl)' in Cf'o Which sends the. point x to y. 

Let G be a universal covering group of Go' The action of an element of G 

is well defined by the action of its image in Go under the covering map. Given 

a fixed point xo in M, Iet H be an isotropy subgroup of G at xo' Then M 

can be regarded as a homogeneous space G/H. For any tangent vector X at 

xo, Iet T*(t) be the parallel displacement of Mx, onto Mr(t) along a geodesic 

T (t) tangent to X at xo ~ T (O). By extending each T*(t) to an affine transforma-

tion on M, we have a l-parameter subgroup g(t) of G. The mapping of l~4:xo 

into the Lie algebra (~ of G which sends X to ( d ~ is an injective ~ dt g(t)It=0 

linear map whose image we denote by ~t. Since an element of H is an affine 

transformation of M Ieaving xo Lixed, it sends any geodesic starting from xo 

to a geodesic from xo' Moreover, it commutes with the parallel displacements 
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along these geodesics. ThereL0re we have ad(H) ~D~ C ~J~. Thus M G/H is a 

reductive homogeneous space with a direct sum decomposition ~ - ~ + ~~. 

The canonical connection of rJ/H is a G-invariant connection characterized by 

the property (P) mentioned in S 3. Since V has this property, the uniqueness 

of the canonical connection implies that (M, V) is a reductive homogeneous 

space G/H with V as the canonical connection. 

COROLLARY.1) A connected, simply connected and complete locally affine 

symmetric space is globaly symmetric. 

Proof. A Iocally affine symmetric space is, by definition, a linearly connected 

space satisfying the conditions ; T = O and VR O. Thus, the result of the 

corollary follows easily from Theorem 2. 

THEOREM 3. The category of connected, simply connected, complete and locally 

reductive space with base points is equivalent to the category of real finite 

dimensional general Lie triple systems. 

Proof. Let ~ denote the category of connected, simply connected, complete 

and locally reductive spaces, (M, V, x)? as objects and affine mappings as 

morphismsp and let ~f denote the category of real finite dimensional general 

Lts' and general Lts-homomorphisms. We shall construct covariant functors ; 

~? from ~ to ~, and ~r; from ~ to~, respectively2 such that the compo-

site functors ~.~ and a) o~ are equivalences of ~ and y respectively. 

To a given object (M, V, x) of ~, we assign its tange,nt general Lts, ~~ - M., 

at x E M. Let f be an affine mapping of (M, V) into (M/2 V/) which sends x 

to a point x/ in M. Then; since f sends the torsion tensor field, T, and 

the curvature tensor field, R, on M to the torsion tensor field, T/, and 

the curvature tensor field; R/, on M/ respectively, its tangent linear mapping, 

f*, at x satisLies the following relations : 

(3. 5) f*(T.(X. Y )) - T~, (f*(X); f*(Y)) 

(3. 6) f*.R.(X; Y) = R~, (f*(X), f*(Y)).f* 

for X and Y in M.. Hence, by (2. 6) ~nd (2. 7)9 f* is a general Lts homomor 

1) o. Loos, [3], Chapter n, S4 
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phism of the tangent general Lts ~J~ - M. at x into the tangent general Lts 

~D~l = M~, at x/. Let ~ be this assignment of objects and morphisrris of ~ to 

those of ~. Then it is easily seen that ~) is a covariant functor from ~ to 

~~. 

Next, to any finite dimensional general Lie triple system ~Jt, we assign a 

connected and simply connected reductive homogeneous space (M G/H, V, xo) 

with a canonical connection, V, and its origin, xo, which is given in Theorem 1. 

By Lemma in S 2, a homomorphism, F, of a general Lts ~D~ to another 

general Lts ~U~/ can be extended to a global affine mapping, f, of correspond-

ing reductive homogeneous spaces M - G/H and ･M/ _ G//H/. Thus we can 

define a covariant functor, ~r, from ~ to ~ which assigns each object, ~J~, in 

y to a reductive homogeneous space, G/H, and each morphism. F, in ~P to 

an affine mapping, f, respectively as above. 

An object, (M, V, x), in g and its image under the composite functor ~.~) 

has the same tangent general Lts ~J~ - ~) (M, V, x). Hence, as a global exten-

sion of the identity isomorphism of ~~, we have an affine isomorphism from 

(M, V, x) to ~r.~)(M, V, x) - (M/, V/9 x/). On the other hand, since the 

tangent general Lts of given reductive homogeneous space is the general Lts, 

~D?:, obtained from the associated direct sum decomposition, ~ - ~ + ~:, we 

see that the functor ~)'~r' of ~f into itself is an identity 0L ~. Thus the 

pro0L is completed. 

By restricting ourselves to the case of locally symmetric spaces, we have ; 

COROLLARY.1) The category of connected, simply connected and complete 

locally symmetric space with the base points is equivalent to the category of real 

finite dimensional Lie triple systems. 

S 4 . Auto-parallel subspaces and their tangent algebras. 

Now, we shall turn our attention to certain subspaces of a locally reductive 

space. 

THEOREM 4. Let M G/H be a reductive homogeneous space with the origine 

1) O. Loos, Ioc. cit. 
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xo and let ~Jt - Mxo be its tangent general Lie triple system at xo' For any 

given subsystem, ~~; of ~D7;, there exists an auto-parallel subspace, N, of M 

containing xo and such that the tangent general Lie triple system of N at xo 

coincides with ~~;. 

REMARK. The converse of this theorem has been proved earlier in S 2 as a 

corollary to Proposition 2. 

Proof. Let (~ - ~ + ~t be a fixed direct sum decomposition of the Lie 

algebra, ~ ? of G associated with the reductive homogeneous space M G/H. 

Denote by D(~~, ~~) the subalgebra 0L the inner. derivation algebra, D(~:, '~Dr~), 

of ~~ generated by [~~, ~~]~ and set (~ / _ ~~+D(~~, ~t). Then ~5/ is a Lie 

subalgebra of ~~. In Lact, for any X and Y in ~?, LX, Y] - X'Y+ D(X, Y)1) 

belongs to ~~/. Let G/ be a connected subgroup of G with Lie algebra (~ / 

and set H/ = H n G/. Then ~ - Gl/hr is a reductive homogeneous space 

with the Lie algebra decomposition ~~/ _ ~~+D(~~, ~~). 

We shall define a mapping, f, of N/ into M which is an affine imbedding 

with respect to the respective canonical connections. For each point x/ glHl 

we deLine f(x/) = g/H. Let i denote the inclusion mapping of G/ into G and 

let p (resp. p/) denote the projection of G (resp. G/) onto M = G/H(resp. IV -

G//Hv). Then the following diagram 

G/_L>G 

p' p f
 N/ =G'/~->M - G/H 

rs commutative and hence we see that both of the mapping f and its tangent 

linear mapping f* at the origin are injective. Therefore, it is seen that the 

image N - f(1¥r) of f is a submanifold of M, the origin x{ of N/ being sent 

to the origine xo Of M, and that the tangent space Nxo at xo can be identified 

with the subspace ~t. With respect to the canonical connection A of M, any 

geodesic starting from xo and tangent to a vector, X, in Nx ~ ~~ is of the 

form r(t) = exp tX (xo)' Since exp tX, for X E ~~, is contained in G/, this 

1) See (1. 7) 
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geodesic is a curve in N, which is an image of a geodesic exp tX (x~) in Ar 

under the imbedding f. Thus we see that N is totally geodesic in M. By means 

of the map f, we can induce a linear connection V/ on N from the canonical 

connection of N/ _ G/lH/, which has the property (P) mentioned in S 3 for 

the group G/ and the direct sum decomposition (~y - ~7+D(~~;, ~~). From this 

fact, we can easily seen that any V/_geodesic in N is also a V-geodesic and 

that a V/_parallelism of tangent vectors of N along a geodesic in N coincides 

with a V-parallelism in M. Hence, for any vector fields X and Y on N, we 

have VXY V/xY. Therefore, we can conclude that the submanifold N is an 

auto-parallel subspace of M with V/ as an induced linear connection. Moreover, 

the multiplications of the tangent general Lts, Nxo, of (N, V/) is the restriction 

of ones in ~Jt. Thus Nxo can be identified with ~Jt as a subsystem of the 

general Lts ~Jt. 

PROPOSITION 5. Let (M? V) be a connected and silnply comrected locally 

reductive space and let ~Jt be a tangent general Lie triple system of M at a 

given point xo' If sy~ is an ideal of ~Jt, there exists an auto-parallel submanifold 

of M passing through any point x in M, whose tangent general Lie triple 

system at every point is isomorphic to ~7:. 

Proof. We shall glve here an outline of the proof by using the results 

obtained i.n [l]. For the details, see Proposition I and 2 in [1]. 

The definition of the multiplications in the tangent general Lts ~Jt - Mxo 

at xo implies that Txo(~~, ~7:) is contained in ~t and that Rxo(~0~, ~~) Ieaves the 

subspace ~~ invariant (see (2. 6) and (2.7)). Since M is simply connected, we see 

that the holonomy group at xo, whose Lie algebra is the inner derivation 

algebra of ~Dt, also leaves the subspace ~t invariant. Therefore, we are able to 

construct a parallel differential system, ~, on M by means 0L the parallel 

displacements of the subspace sy~ along curves from xo to arbitrary points in 

M. From the above conditions, we see that ~! is completely integrable. Hence, 

there exists a connected integral manifold, N, of ~ passing through an 

arbitrarily given point in M. It is also seen that N is auto-parallel. Since a 

parallel displacement along any curve in M induces an isomorphism of tangent 

general Lts', by the definition of ~, submanifold N has, as a locally reductive 
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subspace of M, a tangent general Lts which is isomorphic to ~~. 

THEOREM 5. Let (M, V) be a connected, simply connected and complete locally 

reductive space. If a tangent general Lie triple system, ~Jt, of M is semi-simple, 

M can be decomposed into an affine product of locally reductive subspaces 

whose tangent general Lts' are ideals appearing in a direct sum decomposition 

(4. l) ~t - ~Jtl+~~2+ " ' +~J~k. 

Proof. Since each ~ti is an ideal of ~~, it is valid that [~Jt, ~~, ~y~i] ~ ~Jti, 

~J~i '~U~i C ~ti and ~J~i '~Utj _ O for i ~ j. Hence from the axiom (1. 3) we have 

l~Jti, ~D~j, ~D?] O for i ~ j. Then on account of the formulas (2. 6) and (2. 7), 

the torsion tensor and the curvature tensor must satisfy the following condi 

tions at xo ; 

(4. 2) Rxo(~J~, ~t) ~ti CI ~J~i 

(4. 3) Txo(~ti, ~Jti) Cl ~?:i 

(4. 4) Rxo(~Jti, ~J~j) - O for i ~ j, 

These conditions imply the conclusion of the theorem according to the follow-

ing lemma obtained in our previous paper. 

LEMMA.1) Let (M, V) be a connected locally reductive space. Suppose that, at a 

point xo of M, the following conditions are satisfied : 

(1) The tangent space Mxo is decomposed into a direct sum of, subs_paces Sx/ 

and S'x', each of which is invariant under the holonomy group at xo' 

(2) Rxo (X, Y) - O for X E Sx/, and Y E S'x/ 

C3) The torsion tensor T is completely inducible at xo, i. e. Txo (Sxo' Sx ) C Sx , 

Tx (S'x/o' S'x'o) C S'x/~ and Tx (Sx ; S'x' ) o = O. Then the poiut xo has a neighbor-

hood which is locally affine isomorphic to an affine product of two locally 

reductive sub.'paces M/ and M'/ tangent to S/x, and S'x/o at xo respectively. 

Moreover, if M is simply connected and complete, it is globally affine isolnor-

phic to the above affine product. 

From Theorem 5, we have 

1) See corollary to Theorem I and Theorem 2 in [1] 
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COROLLARY. Let M be a simply connected symmetric space. If the tangent 

Lie triple system, ~D~, of M is senzisimple, then M is decomposed into a direct 

product of symmetric subspaces tangent to idea Is in a direct sum decomposition 

of ~J~. 
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