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Topology on the Dual Semigroups of Locally
Compact Semigroups.

Takuo Miwa

(Received September 30, 1972)

In this paper we give some sufficient conditions for the dual semigroup of a commutative
locally compact semigroup to be locally compact, and some relevant matters.

§ 1. Preliminaries.

In this section, we shall present some definitions and a lemma.

Definition 1. A topological semigroup is an ordered triple consisting of a
nonempty set S, a function (z,y) > xy from SXS into S and a Hausdorff
topology on S such that

(a) x(yz) = (xy)z for all x,y,2 € S
(b) (x,y) > xy is continuous.

If a topological semigroup S is (locally) compact as a topological space, S is
called a' (locally) compact semigroup.

Definition 2. Let S be a commutative topological semigroup. By a semicha-
racter of S we mean a continuous homomorphism of S into the complex unit
disc D with the ordinary multiplication, i.e., a complex-valued continuous
function X on S such that

(@ X@)| <1 forallzE S
(b) X(zxy) = X(x)X(y) for z,y &S

The set S of all semicharacters of S constitutes a commutative semigroup
under the ordinary pointwise product Xy (x) = X(x)¥(x).

The unit semicharacter X' (i.e. X'(x) = 1) and the zero semicharacter X° (i.
e. X°(x) = 0) are the identity and the zero of S, respectively. They are called
trivial semicharacters. ‘I'hroughout this paper we shall use the notations X'
and X' as the unit and zero semicharacter, respectively.

Definition 3. Let S be a commutative topological semigroup, and X & S.
Let C be a compact subset of S, ¢ >0, and define
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UC, e, X) = ES: |¢x)—X(x)| < e for all z & C}

We now define a topology on S by requiring that all the sets U(C, e, X) be
an open basis. We call this topology the compact open topology.

Then it is clear that S with this topology is a commutative topological semi-
group. S is called the dual semigroup of S.

The following lemma is useful in the later sections.

Lemma. Let X be a topological space and Y a uniform space. Let C(X,Y)
be the family of all continuwous mappings of X into Y and F a subfamily of
C(X,Y). Consider the following two conditions,

(a) F is equicontinuous and F (z) is compact for each x & X where F(x) is
closure of F(x), and

(b) the closure of F in C(X,Y) under the compact open topology is compact.

Then (a) implies (b).

For this, see e.g. [1] 0. 4. 11.

§ 2. The dual semigroups of compact semigroups.

In this section, we give a sufficient condition for the dual semigroup of a
commutative compact semigroup to be locally compact. The following Theorem
has been proved by A. Pol in [3].

Theorem [A.Pol]. Let S be a commutative compact semigroup with identity e
and zero element 0, such that

(a) e has a basis of open connected neighborhoods,

(b) for every open set U C S and every x © S, 0, the set Uzx is also
open. '

Then the dual semigroup S is locally compact.

However, we need not the condition (a), and the theorem can be established
under the more general situation of locally compact semigroups. Indeed we
shall show the next theorem.

Theorem 1. Let S be a commutative compact semigroup with identity e and
zero element 0, such that

(*) for every open set U C S and every x &S, x>0, the set Ux is also
open.

Then the dual semigroup S is locally compact.

Proof. We shall show the fact that S is closed in C(S, D), and S has an
equicontinuous neighborhood of each ¥ & S. If this fact is shown, our Theorem

1 is a consequence of the above lemma and the fact that D is compact.
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First we shall prove that S is closed in C(S.D). For z &S, let f, be a
mapping from C(S, D) into D such that f,(¢) = {(x), then f, is a continuous
mapping. If we define f, f, for z,y & Sas usual (G.e. f,f, () = F.0) f,(D)),
f.f, is also a continuous mapping of C(S, D) into D. So the set Sz, y) =
{p ECS, D): fuld) =1 f,(d)} is closed in C(S,D). Since S = S(z» ),
3 is closed in C(S, D).

Next we shall prove that S has an equicontinuous neighborhood of each X
€ 5. We shall note that X° and X' are isolated points in S. In fact,

U, 5, X) =1 ES: [Pa)] <} xS S = {x%
since () = X° implies ((e) = 1, and
UGS, 3 x)={0ES: [P@)—1| <L zE S = {x}

since ¢ =¢ X' implies ¢(0) = 0. So, let ¥ & S, x 2 X% X x' We shall show
that the set U, = U{S, {, X) is an equicontinuous, i.e.,

) Ve>0, Vo &S, dVia), VP E U, Ve Viw), [Pa)—¢ @) <e
where V(x,) denotes an open neighborhood of z, In order to prove (**), we
distinguish three cases; (I) o, =0, (II) z, = ¢, (III) z,=x 0, 2, = e.

(D 2,=0.Let W= {xES: |X(z)| <i}. Then W is an open neighborhood
of 0 in S. For every ¢ & U, and for every x & W, |¢(zx)| < |Y(x)—X(x)]|+
| X(x)| < 4. For any >0, there exists a natural number n such that ($)" < e.
Let V=W"= WW..,.W. By the given condition (*¥), V is an open neighbo-
rhood of 0. If x & V then x is of the form xwx,...x, with 2, & W, z =1, 2,
...,n), and for every ¢ & U, we have

@) = [dlz). . . dx)| <G <e.

This means that (**) is satisfied.

(II) zy =e. For any € >0, we select the natural number # such that
if e D, l2*—1|<%k=1,2,...,n), then |z—1| <e. Then V={xES:
[ X(x)—11 <3, (k=1,2,...,m)} becomes a neighborhood of e. Since X(e) =
¢le) = 1, for every ¢ & U, and for every x &V,

[P@)—1] < [9(@®)—x (@) + 1 X(@)—1] <34, (k=1,2,...,0).

Therefore, we have |{(x)—¢le)| < e by the way of determination of n. Thus,
(**) is satisfied.
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(III) z, =0, 2, =% e. For any ¢ >0, by part (II) there exists a neighborhood
W of e such that |¢(x)—1|<e for all ¢ & U, and all x & W. Let V = Wx,.
By using (*), V is an open neighborhood of zo. If x &V, then x = yx, with
y & W and

(@)= d(xo) | = [dlaxo) - [N —1] Z g —11 <e

Thus, (**) is satisfied.

This concludes the proof of the Theorem 1. The proof of the parts (I)
and (III) is essentially same to that of Theorem 1 in [3].

The condition (¥*) is essential in our Theorem 1 and it cannot be removed
as the follwing example shows.

Example 1. Let X = [1, o), X* be the one-point compactification of X, Y
= [1, o0), Y* the one-point compactification of Y, and D the complex unit
disc. Then X and Y are the additive semigroups. We extend the addition to
X* and Y* respectively by 7+ co =co 4+ r =00 forall r & X or rE Y and
cot oo = cQ,

Let S be the set X* U Y* U D in which co of X* oo of Y* and 0 of D
are identified. In S, we take the sets U.(0) U(X—C)U (X—C’) as the neighb-
orhoods of 0, where each U.(0) is an usual e-neighborhood in D, each Cis a
compact subset of X and each C’ is a compact subset of Y, and as the
neighborhoods of the other point x of S we take the ordinary neighborhoods
of z in X, Y or D. By this topology, S becomes a compact space. Let S* =
S U {e} be the adjunction of e to S.

Next we define multiplication on S* as follows :

(a) for (x), (z') £ X* : (x)o(2') = (2)o(x) = (x+2') € X*

(b) for [yl [y'1 € Y*: [yloly’] = [y']ely] = [y+y' 1 € Y*

(c) for re”, r'e” & D : re’or’e” = r'e” ore’ = rr'e’*"? & D

@ for (@) E X[ €Y : @oly] = blo(@) = e € D where 2, 1>

0 and linearly independent irrationals,

(e) for () E X, re” E D : (x)ore? = re'o(x) = e *re” & D

(f) for [y] EY,re” & D : [y]ore” = re’o[y] = e e & D

(g) for sE S,e: eos =soe =135 and ece = e.

By this multiplication, S* becomes a commutative compact semigroup with

zero element 0 and identity e. However, the condition (*) in Theorem 1 is

not satisfied.

Let ¢ E8* be ¢ X, X
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By (a) ¢((x)) = (ae”™)” where a = (0,1), « € T (1-dim. torus).
By (b) ¢([y]) = (be’™)" where & € (0,1), 3 € T
By (c) ¢(re’) = rt*e* where ¢ >0, r & T, k & Z (integers).
By (d) ¢((@)d([y]) = ¢(e= @),
a=e"* b=e",
hence, (h) { a=—ar, 3 = —ur, (mod. 1)
By (e) similarly,
a=-¢e™*
@) { a = —Ar (mod. 1)
k : arbitrary integer.

By (f) similarly

b=¢e*
) { B = —ur (mod. 1)
k : arbitrary integer.
By (h), (i), (j), we have
(a,b,e) = (e™*, e, e): this is a curve,
(a,B,7) =(—Ar, —pur, 7) : this is a dense curve in 3-dimensional torus, %
is an arbitrary integer.

Thus, S* is not locally compact.

&3. The dual semigroups of locally compact semigroups.

In this section, we show that Theorem 1 is valid in the case where S is
locally compact, and give some relevant matters.

Theorem 2. Let S be a commutative locally compact semigroup with identity
e and zero element 0, such that the condition (*) of Theorem 1 is satisfied.

Then the dual semigroup S is locally compact.

Proof. That S is closed in C (S, D) is shown by the same way in the proof
of Theorem 1. Hence it is sufficient that we prove the fact that S has an
equicontinuous neighborhood of each ¥ & S

First we note that X° and X' are isolated points in S. In fact, we can select
the neighborhoods W, and W, of 0 and e respectively such that W, and W,

are compact. Then,
U<WF9 %, XO) = j)(u}'
since ¢ == X° implies ¢(e) = 1, and
UWo, %, X") = {X'}
since ¢ 2 X' implies ¢(0) = 0. Therefore, let X 8, ¥ 2= X% X = x'. We
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shall show that the set Uy=UW,J W.,, L, ¥), where W, and W, are the
above neighborhoods, is an equicontinuous, i. e., the condition (**)is satisfied.
To prove (**), we distinguish three cases; (I) 2, =0, (II) z, = ¢, (III) x, =0,
Zo =F e.

D z=0 Let Vi=W, N{x &8: |X()| <i}. Then V: is an open
neighborhood of 0 in S. For any ¢ >0, there exists a natural number z such
that (3)"<e. By the continuity of the multiplication, there exists a neigh-
borhood V, of 0 such that(V,)" C W, The set V;=V, [ V, is a neighborhood
of 0. Let V=(V,)". By the given condition (*), V is a neighborhood of 0. For
every ¢ & U, and for every x &V, since x EW,, |Y(x)| < |Plx)—X(x)| + | X
()] <% If x&V, then z is of the form xux,...x,with 2; € V;, and for
every ¢ & Uy, we have

@) = [d). .. dz) ] < @) <e.

Thus, (**) is satisfied.

(II) 2o = e. For any € >0, we select the natural number # such that if =
€ D, -1 <% (k=1,2,...n), then |2—1| <&. By the continuity of the
multiplication, there exists a neighborhood V; of e such that (V)" C W,. Let V
=ViN{zES: | XaH—1] <% (k=1,2...,n)}. Then V is a neighborhood
of e. For every ¢ & U, and for every x &V, since 2* E W, (k =1,2,...,n),

[Pa)—1] =< [¢=) =X () [+ | X (@) =11 <3 (k= 1,2,...,2).

Therefore, we have |J(x)—1| < e. Thus, (*¥) is satisfied.

(IID) z, =0, 2y e. In this case, (**) is proved by the same way as (III)
of the proof of Theorem 1.

This concludes the proof of Theorem 2.

We shall give the following example in which without the condition (¥),
Theorem 2 does not hold any longer.

Example 2. Let X, Y and D be the same sets of Example 1. Let S= X U
Y U D. We define the topology on S by the ordinary topologies in X, Y and
D. By this topology, S becomes locally compact. Let S* = S U {e} be the
adjunction of e to S.

Next we define multiplication in S* by the same way as Example 1. By
this multiplication, S* becomes a commutative locally compact semigroup with
zero element 0 and identity e. But the condition (*) is not satisfied. By the

same way as Example 1, S* is not locally compact.
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