A NOTE ON G-VECTOR BUNDLES

By Hiromichi MATSUNAGA (Received September 11, 1973)

In the previous papers, [2], [3], the author has given classification theorems for isomorphism classes of G-vector bundles over a G-manifold in the category of continuous G-vector bundles. The technics used there, are justified only for continuous G-vector bundles. But by a theorem which is given here, the classification theorems make sense in the category of differentiable G-vector bundles. Let G be a compact Lie group and M be a compact G-manifold. We denote by $Vect^{i}_{G}(M)$ and $Vect^{c}_{G}(M)$ the semi-groups of isomorphism classes in the categories of differentiable G-vector bundles and continuous ones, respectively. Any differentiable bundle is also a continuous one, then we have a natural homomorphism $T : Vect^{i}_{G}(M) \longrightarrow Vect^{c}_{G}(M)$. Then we prove

Theorem. T is an isomorphism of semi-groups.

Lemma (An equivariant analogue of 3.12, [4]. Let M be a compact G-manifold and A be its invariant closed subspace. Let N be an invariant compact submanifold of an Euclidean G-space W. Let $f : M \longrightarrow N$ be an equivariant continuous map which is differentiable on A. Then there exists $\overline{f} : M \longrightarrow N$ such that

(1) \overline{f} is differentiable and equivariant

- (2) \overline{f} is equivariantly homotopic to f
- (3) $\overline{f} | A = f | A$.

Proof of the lemma. There exists an invariant neighborhood U of N in Wand an equivariant retraction $\rho: U \to N$. For any $\varepsilon > 0$, there exists a differentiable map $f': M \longrightarrow N$ such that $|f(x)-f'(x)| < \varepsilon$ for all $x \in M$ and $f' \mid A = f \mid A$. Then for each $g \in G$ and $x \in M$,

 $|gf(g^{-1}x)-gf'(g^{-1}x)| < \varepsilon$. Thus

 $|f(x)-\int_{\mathcal{G}}gf'(g^{-1}x)dg| \leq \int_{\mathcal{G}}|gf(g^{-1}x)-gf'(g^{-1}x)dg| < \varepsilon.$

Define $\overline{f}(x)$ to be $\int_{\sigma} gf'(g^{-1}x)dg$, then $\rho(t\overline{f}(x)+(1-t)f(x))$ gives an equivariant homotopy from f to \overline{f} .

Proof of Theorem. By 2, [1], for any *n*-dimensional G-vector bundle $E \rightarrow M$, there exists a Grassmann G-manifold $G_n(V)$, where V is a G-module, and a continuous map $f: M \rightarrow G_n(V)$ such that $E \cong f^*K$, where K is the universal G-vector bundle. By [5], there exists a G-module W and an equi-

Hiromichi MATSUNAGA

variant imbedding $h : G_n(V) \subset M$. Then by the lemma above, we have an equivariant differentiable map $\overline{f} : M \longrightarrow G_n(V)$ such that $f \simeq \overline{f}$, G-homotopic. Thus $f^*K \cong \overline{f}^*K$, which is a smooth G-vector bundle. Hence T is an epimorphism.

Next let E, F be differentiable G-vector bundles and φ be an isomorphism between them as a continuous G-vector bundle. Then φ determines an equivariant continuous section $s(\varphi) : M \longrightarrow Hom(E, F)$. Since M is compact, min $\{|s(x)|; x \in M\}$, say ε , is positive. By Theorem 6.7, [6], we have a differentiable section $s' : M \longrightarrow Hom(E, F)$ such that $|s(\varphi)(x) - s'(x)| < \varepsilon/2$ for all $x \in M$, and so $|gs(\varphi)(g^{-1}x) - gs'(g^{-1}x)| < \varepsilon/2$ for all $g \in G$ and $x \in M$, where we choose a G-invariant Hermitian metric in Hom(E, F). Thus $|s(\varphi)|$ $(x) - \int_G gs'(g^{-1}x) | dg < \varepsilon/2$. Hence $\overline{s}(x) = \int_G gs'((g^{-1}x))dg$ gives an equivariant differentiable section $\overline{s} : M \longrightarrow Hom(E, F)$, then we have an equivariant differentiable isomorphism $\varphi(\overline{s}) : E \longrightarrow F$, which proves that T is a monomorphism.

> Department of Mathematics Shimane University

Refernces

- [1] M. F. Atiyah and G. Segal, Equivariant K-Theory. mimeograph note, Warwick, 1965.
- [2] H. Matsunaga, K_G-groups and invariant vector fields on special G-manifolds. Osaka Jour. of Math. 9(1), (1972), 143-157.
- [3] H. Matsunaga, On G-vector bundles and invariant vector fields, Mem. Fac. Lit. Sci. Shimane Univ. Nat. Sci. 7, (1974)
- [4] J. Milnor, Differential topology, Lecture note, Princeton, 1958.
- [5] R. S. Palais, Imbedding of Compact Differentiable Transformation Groups in Orthogonal Representations, Jour. of Math. and Mech. 6(5), (1957), 673-678.
- [6] N. E. Steenrod, The topology of fibre bundles, Princeton, (195,