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Introduction

The main purpose of this note is to exhibit an isomorphism of semi-groups
between the equivalence classes of G-vector bundles over a G-manifold with
one orbit type and some classes of vector bundles over the orbit space. The
article is a continuation of the author’s preceding paper [4]. In which the
author has proposed a too restrictive condition, i.e. the normalizer of the
isotropy subgroup is the direct product, (C,) in §2 of [4]. For example, in
§ 4 of Chapter 4, [2], SO(n), SU(n)-actions have been investigated. In these
cases, the normalizers are semi-direct products, which are shown in §1 of
this note. In this note we attain to some kind of vector bundles over orbit
spaces, called local H-vector bundles, which behave in a rather different manner
than the usual H-vector bundles. We treat in this note only G-manifolds
with one orbit type for a simplicity. We could reformulate the theorem 2 in
[4] in a semi-direct product case, but the verification is too long, and so we
will omit it. Thus this note is a theory concerning fiber bundles with Lie
group actions of one orbit type.

In §2, we reconstruct the characterization of G-vector bundles along the
line of Part 1, [6]. A pair of transition functions is obtained.

8 3 contains a proof of the continuity of them, and the main theorem is
given.

In §4, we calculate Grothendieck group of local H-vector bundles over
spheres.

As in [4], the invariant fields problem is treated in §5. Tangent bundles
over G-manifolds are typical examples of G-vector bundles. The structure
of them as coordinate bundles is analized, and applied to the investigation of
invariant fields. The Stiefel manifold is a suitable example for a concrete
calculation. In this section we discuss about the total space of a Stiefel
manifold bundle over a Stiefel manifold,
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1. Semi-direct products

Consider the standard imbedding SO(n—k) = I, X SO(n—k) C SO(n), where
I, is the k-th identity matrix. Let N(SO(n—£k)) be the normalizer of SO(n—k)
in SO(n) and I"(SO(n—Fk)) be the quotient group SO(n—k)\N(SO(n—Fk)). We
have the extention SO(n—k)—> N(SO(n—*k))—> I'(SO(n—k)). For a given

(A C) € N(SO(n—F)), where the types of A, B, C, D are kxXk, (n—k)Xk,
EX(n—k), (n—k)X(n—Fk), respectively and for each (0 S) € SO(n—E), there

exists <Ok S’> & SO(n—k) such that (0"' S) (g g) = é g) (1;" .SQ’ .

Then for each S & SO(rn—Fk), SB = B, hence, B = 0. Similarly C = 0. By the
relation <A Oy (64—1])0_1) = tA O) we have A & O(), D& O(n—k),
then N(SO(n—k)) C O(k)x O(n——k). Thus ) .
N({SO(n—Fk)) = (SO(k)XI,,_k).-(I,CXSO(n—-k)) U (SOE) % 1. ) )+ ( 1. )
1
X SO(n—k)). Hence the projection 7 : (64 B) —> A induces an isomorphism

I'(SO(n—k)) = I, X SO(n—E)\N (SO(n—k)) —> O(k). Define a homomorphism
A
det A
s : O(k) — N(SO(n—Fk)) by s(4) = 1 , then we have mos = the

identity map of O(k). Thus we have

Proposition 1. The normalizer N(SO(n—Fk)) is isomorphic to the semi-direct
product (I, X SO(n—Fk))-(O(k) X I,_).

Next, let N(SU(n—k)) be the normalizer of SU(r—k) in SU(n) and I'(SU
(n—Fk)) be the quotient group. Consider the extension SU(n—£k)—> N(SU
(n—k)) —> '(SU (n—k)). As in SO case

NSUm—) = { & OV e UMXUG—H ; (et A)-(det D) = 1}
(det A)~
= {A % L. |iacuw} - axsum-w.
1
The map <64 8) —> A gives an isomorphism 7 : I, XSU(n—k)\N(SU(n—Fk))
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A
(det A)!
—> U(k), and A—> 1 gives a section s : U(k) —> N(SU (n—k)).

Thus we have

Proposition 2. We have the isomorphism
N(ESUn—k) = (I, XSUn—Fk)-(Uk) X I,_:), a semi-direct product.
Remark. The normalizer of O(k) in O(n) is the product N(O(n—~)) = (I, X
O(n—k))-(O(k) X I,_;). [4]. Similarly we have N(Sp(n—k)) = (I, X Sp(n—F))-
(Sp(k) X I,_,), direct product.

2. Transition functions

Suppose G to be a compact Lie group. Let M be a right G-manifold with
one orbit type (H). Put My = {x & M ; G, = H}, then we have isomorphisms
of G-manifolds M = My X ra(H\G) == My X yan G, where N(H) is the norm-
alizer of H in G and ['(H) = H\N(H). For each G-vector bundle E —>
M, the restriction E |My —> My is an N(H)-vector bundle, and we have an
isomorphism of semi-groups

1% Vecta(MuX yayG) = Vectwan(My), §1 in [4].
Since My/I"(H) is a differentiable manifold, there exists an open covering
UieU; = My/I"(H) such that each U; is contractible to a point z; in U, for
each i © I. Thus for the differentiable principal bundle
(1) ... ['E) —> My —> My/I'(HD),
we have ["(H)-equivalenes ¢, : U, XI'(H)= My | U,. For any N(H)-vector
bundle E—> My, we can choose N(H)-vector bundles E,—> U, X ["(H)
with E, = ¢ {E | ¢,(U,XI"(H))}. Using the N(H)-equivariant contraction
UXTI'(H) —> (x)x["(H), we have E, = U;X(E;| {x;} XI'(H)) as N(H)-
vector bundles. Let V; be E,|{z;} X {e}, ¢ is the unit of ['(H), then by G.
Segal E;|{z;} XI'(H) =V (H)XzN as N(H)-vector bundles. Denote by q the
projection N(H)—> I"(H), then each projection p; : V; X zN(H)—> I"(H)
is given by (v,n)—>g(n), and we get an isomorphism of N(H)-vector
bundles
E | (U X I (ED) <2 U (V¢ o N(ED)
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o, 1 (U N U)XV X ygNH)—>(U,; N U)XV ;X zN(H) is an isomorphism
of N(H)-vector bundles. We put (¢;'c¢.)(z, (v, n)) = (x, G(x)(v, n)), where
(v, n) = (vh, h™'n) as an equivalence class for each vE V,, h € H, n & N(H).
Then Gj: U, N U;—> Isoyan (V. X uN(H), V;XzN(H)) is continuous map,
where Isoyun (Vi X gN(H), V;XyzN(H)) is equipped with the compact open
topology. Now we obtain the following

Proposition 1. For each N(H)-vector bundle E—— My, we have an
equivalence E = ;e (U XV X gN(H))/(G;.), where we denote by /(G})
the pasting.
From the commutativity of the middle square of the diagram

(U:NUYXVixgNH) ¢itody =Gu (Ui N UYXV,;XuN(H)

L(pi \ b » b; [ &,

l / (U.NU)XI(H) E|lo{U:NU)XT(H)
b F ®; \ P
o((U; N U)X T (H)) o (U; N UJ)X]—’(H))

we have p;o((7 o) = (97 o.)op;, hence p(Gu(x)(v, n)) = 7:(x)a(n), where (7)
is the set of transition functions of (1).

For another N(H)-vector bundle E' —> My, let ¢ : UiXV,XzN(H)
—> E'| 0. (U, X I'(H)) be local trivialities. Consider an isemorphism of N(H)-
vector bundles over My, f : E—> E’. For isomorphisms

(U N U)X Vix uNH) L5 B . 0 Upx 1) -Ls B i, 0 U %
P U, (1 Uk Vit aNE), put (G770 o, (o, 7)) = (@, Cu@loy #),
then G, : U; N Ur — Isoyany (ViX g N(H), VX zpN(H)) are continuous maps
for each pair (4, £). By definition

*) {ij(x)Gﬁ(x) = @-i(x) on U,NU,N Ui,
G(x)Gifx) = Gy(x) on U; N U, N U,.

Conversely, let G; and G, be transition functions of N(H)-vector bundles
E —> My and E' —> M, respectively, and suppose that there are given (G,))
which fulfill the condition (*). Define

hi; : E D Q,((U; N UiX V;X gNH)) —> ¢i((U; N Uzp) X ViX xN(H))
by hifdiz, (v, n)) = Pi(z, Gifx)(w, n)) on U; N Uy, then on U; N U, N U,

(25 (0, 1)) = iz, Gul2)(v, n)) = Pi(z, Gfx)G x(z)(o, n))
= hif(Y(z, G;; (2)(v, n))).
By the definition, ¢,(z, G;(z)(v, n))= (i(z, (v, n)), hence, hy; = hy;on Uy N U; N
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U,. Further the second term of the above equalities is equal to

i(z, Gui(2) (v, n) = hu(Pi(z, (v, n))),
therefore, i, = h;; on Uy (N U, N U; N U,, and we obtain an isomorphism of
N(H)-vector bundles f : E—> E’, thus we have

Proposition 2. Two N(H)-vector bundles (E, G;) and (E', G,) are N(H)-
equivalent if and only if there exist continuous functions (—G—k,-,) which fulfill the
condition (¥).

To proceed more, we put the following hypothesis

(H) there exist continuous maps ny : U, N U;—> N(H) with q(n;(z)) =
7:(x) and n(x)n,;(x) = n(x), ny(x) = e, the unit.

We call (n;) a lift of y;). For each (z, (v, n)) € (U, N U)X V, X z7N(H), we
have G;(x)(v, n) = (v, n;(x)n) for some v & V, V, is isomorphic to V; as
a vector space, so we can put v’ = gu(x)v and g; : U; N\ U—> ILso (V, V).
Since (Gy;) and (n,;) fulfill the property of transition functions, then the functions
(g;) do except for the continuity. We discuss the continuity in the next section.

Remark. Suppose N(H) to be a semi-direct product H-I'(H), then ['(H)
is a subgroup of N(H), ['(H) == (e)-I'(H) C N(H), then n;(z) = (e)-7(x)
fulfill the hypothesis (), where (7;) is the set of transitions of (1).

3. The continuity of (g;)

In this section, we consider the case, N(H) = H-['(H), a semi-direct product.
Let &, : V,XI'(H) CV,XxH-I"(H) —> VX zH-I'(H) be the composition of
the inclusion and the projection, where V; is a vector space for each i. The
map k; is a continuous injéction and a fiberwise isomorphism of V,-bundles
over ['(H), then it is an isomorphism of bundles. We can define an N(H)-
action on V; X ['(H) by (v, v)(?, v") = (v-I(Y)k, v7"), where (v, v) € V, X I'(H),
(W, y") € H-I'(H) and I(y)h’ denotes yh'y™'. By the relation(v, (I(y)h’'+7")) =
(0-II, v, ki is N(H)-equivariant. Since 1Xg; X7y = (I1Xk) 1 o(1 X Gj)o
(AXEk), gy : U N U —> Iso (V,, V;) is continuous for each (7, j).

For h &€ H, (z, (v, hy)) € (U, N U)XV ;X gH-T"'(H),

7o, (v, hr)) = (z, (ul@)o, T3(@)hr))
= (z, (gu(x)o, I(y u(x)(R)) 7 1(2)7)
= (z, (g:(2)0) I(7 1(x)(R)), 7:(2)7),
diteddz, (v, b)) = ¢7'oddx, (vh, 7)) = (=, gji(x)(vh), 7#(2)7),
then we have
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2) ... gilx)(vh) = {gu(x)()} I(y;(x))(R).
Thus we get

Proposition 1.S. Suppose N(H) to be a semi-direct product H-I"(H), then
Sfor any N(H)-vector bundle E —> My, E = [iléJI U, XV X gH-T'(H)1/(g55 7).
Let (7y) be another set of transition functions of the principal bundle My—>
My/"(H), and (7y4) be the equivalence between (y;) and (sz) For another
N(H)-vector bundle E’ = [U U X VX gH-T'(H)/(gi, Yu)» Gu in §2 can be
represented as (¢~ of °¢)(x ©, k7)) = (x, Zul(2)(v), Tix)hY).
We can check that g : Uy N U,—> Iso (V,, V) is continuous for each %,
i, and the relations
I 2u()(vh) = {gu(x)()} I(Tl2))(R),
(*S){ Zrx)gs(x) = Zu(x),
1 gi(2)gx) = gi(x).
From the proposition 2, we have

Proposition 2.S. Two N(H)-vector bundles (E, g;;, v,) and (E’, gu, Tix)
are equivalent if and only if there exist continuous functions g : U, N\ U;—>
Iso (V,, V) with the property (*S).

Let Vet a7 (My/I"(H)) be the family of vector bundles E with the property
that for any contractible open covering My/['(H) = U U; and transition
functions 7 : U; N U, —> ["'(H) of (1), there are local tr1v1a11t1es (J} E| U=
U, XV, which fulfill the next conditions

(i) each V; is an H-module,

(i) define gy by ¢i'o¢i(z, v) = (z, gu(x)(v)), then gx : U. N U;—> Iso
(V:, V;) is continuous and satisfies the relation g;(zx)(vh) = {g,(z)(v)}
17, A

We call each element of Vect yr (My/I"'(H)) a local H-vector bundle and
denote by (E, g, 7x), or U; U XV, /(gs, T4)e

Definition 1. Two local H-vector bundles (E, g, 71), (E’, g, T1x) are related
if and only if there exist (g.;.) with the property (*S).

We can verify that the relation in the definition is an equivalence relation.

For each local H-vector bundle U,U, X V,/(g;, 7s), define

U XV, X gN(H) 3 (z, (v, n)) = (z, (g:(2)(v)), 7:(x)n) € U;XV ;X zN(H),
then
(z, vh, n) = (z, (gu(x)(vh), 7a(x)n) = (2, 2:(2)(0), I(y(x))(R)* 7 1(2)n)
= (x, 8:(x)(v), 7a(x)hn) = (x, (hn)),
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and so the above = gives an equivalence relation in U, U; X V;XzN(H). The
quotient U; U; X V; X xN(HI)/(gs, Ts) is an N(H)-vector bundle over M, which
we denote by zfﬁ)(E), where E = U, U,x V./ (g 7#). Conversely each N(H)-
vector bundle E = U, U;X V; X g N(H)/(gjs, T#) gives a local H-vector bundle
U: U;x Vi /(gs, Ti), which we denote by 7@(E). By Definition 1 and Pro-
position 2.S, if E is equivalent to E as N(H)-vector bundle, then 7$(E) is
related to T®(E’), also if E is related to E’, then 7%,(E) is equivalent to 7%,
(E"). We denote by Vect zr (My/I"(H)) the semi-group of equivalence classes
of local H-vector bundles. The above consideration yields

Theorem. If N(H) = H-['(H), then
7[:(3) : VeCtN(H) (MH) —> Vect HT (MH/F(H>)
is an isomorphism of semi-groups.

Denoting 7§’ -7¥ by 74, we have

Corollary., If N(H)= H-['(H), then
Ty 2 Vecteg(M) = Vect z (M/G).

4. Local H-vector bundles over spheres

Let v, : St N S?—> '(H) be transition functions of a principal bundle
INH)—> P —> 8", where i, j =1, 2 and S}, S} is the upper, the lower hemi-
sphere respestively. For any local H-vector bundle E € Vect ur (S"), we can
choose H-modules Vi, V, and local trivialities g@i SIXV, —E|S:, =1, 2.
The transition function gy, : St N S = S* ' — Iso (V,, V,) satisfies the relation
g1(z)(vh) = {gu(x)(®)} I (yu(x))(h) for vE V), h € H, see §3. Let yu(x) =
Yo, &u(xo) = g for a base point 2y & S*"'. We can choose 7, g, &%, especially
72(x) = 712(x) 75, to obtain

gix)(vh) = gu(x) g5 (vh) = 81(x) {(gua(x0)(0)) I (ym(2o))}
= {gu(@)gu(x)(0)} I(71(x) Yarla))(h) = {giz(x)('v)} I(ri(x))(h)
gu(x)(vh) = gugn(z)(vh) = go{(gu(x)(v)) I (yu(x))(R)}
= {guga(x)(0)} I (7o ra(2))(R) = (gu(x)(v)) I (yulz))(h),
hence (SI'X Vi, gi, Ti» 3,5 =1, 2) is also a local H-vector bundle, which is
related to the original one. Now yi(x)) = ¢ & I'(H), the unit, gl:(z,) = the
identity map of V, = V; as vector spaces. We denote by A & H, H-actions
on V,i=1,2, then

0B = gu(@)(v-hP) = {gh(z0)(0)} I (7i(z))(h®) = v-h?, hence V=V, as

an H-module, There are two distinct cases,
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Case 7 =>2. 7(S*Y) C I'y the connected component of the unit e of I"(H).
For example, let G = SF(n), H = SF(n—F), as in §1, where F= 0 or U,
then Iy = SF(B)X I,_ C I' = F(k) X I,_+, and the action of I, by the conjugation
is trivial, hence Vect gz (S*) = Vect x(S™).

Case n = 1.

Lemma. Vectyr (S') = H " the semi-group of isomorphism classes of 7i{—1)
invariant H-modules.

Proof. For any local H-vector bundle E € Vect 31 (SY), we can choose a
normal form snch that 7y :S°—> I"(H) satisfies 7(+1) = ¢, 7(—1) =7,
& I'(H), and gu(+1) = the identity map of V, gu(—1)= G & Lo (V, V).
Define S : Vect g (S') —> Hoby S(E) = S(SixV U Six V) = [V] € H", the
isomorphism class of V. For another choice of gi(—1) =G, let

Zu=gun=¢ Zu=G"'G, gu=28n 81=G"'Ggn= !, then(V, g, 7) is
related to (V, g, 7).

Conversely, for any [V] & H o, we have an isomorphism of H-modules G :
V—>Vn, Let g =G, then (V, gu, 72) € Vectyo(S). If A: V—>V" is
an isomorphism of H-modules, then setting gi, = AGA™, (V/, gz T1) is related
to (V, g 712). In fact it is enough to define

gulx) = A, gu(z) = AG, gulx) = A-gn(x), gulz) = A.
Thus the inverse T : H' —> Vect zo(S') is defined and SoT = the identity
map of Hn, ToS = the identity map of Vect zo(S"). Hence we proved the
lemma.

For example, suppose that 71, : S —> O(k) satisfies 71.(+1) = I, the identity

-1
of OB), Tu(—1)=| L |, then
1
[—1 171 17-1 1
1 . 1
1 1 {_1
—1 an * Aok 1
) Ap—r1°° °An—k n—k
1/L i 1
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Fl -
— an Qi T Ain-k
—aQn Axp *°° A n—i

—Qp-p1 Qp-i2 An— n—k | -

j(cos 6, —sin 01>,

\sin 0, cos 06,

cees (COS 0, —sin 01)} is transformed into Diag f ( cos 0, sin 61), cees

sin0, cos0, |\ —sin O; cos 0,

<COS 0, —sin 0‘)}, where n—Fk = 21+1, or 2I. It is well known that

sinf, cos@,
R(T) = Z[aw, aily ..., ai, '], R(SOQ@I+1) = Z[A, ..., A7),
RSOED) = ZIA. .., X7, 2y 21/(~), where o (50007 —8in 07)

sin6; cos0;
—> exp 27:0;, A* = o*[ay, ai’ls. .., au, ;'] is the k-th elementary symmetric

Hence, by the action of y1,(—1), the standard maximal torus Diag

function, and /1_-;: = i) g2 i) s 25(1)...5(z)= +1 a:((%)) e aiéf;, 13, [3]. Since(al)’[’ = 0(1_1,

(ap)o = qy for k=2, ...,1, then (A¥)0 = A, and (A%)0 5% A4, thus for complex
vector bundles the lemma yields

Pl'oposition 3. K(Vectgo(zl)msl) = Z[Al, ooy ;l.l] 7Cf= R(SO(ZZ)).

5. Tangent bundles and invariant vector fields.

At first we give a formula about the tangent bundle of a G-manifold with
one orbit type (), and some propositions. We apply them to investigate the
existence of nowhere vanishing invariant vector fields on these manifolds.

Let M be a right G-manifold with one orbit type (H). Then the principal
bundle of the fiber bundle § : H\G—> M —> M/G is ['(H)—> M, =
{xEM, G,=H} —> M/G, and we have the isomorphism M == My X ra,
(H\G). Choosing a G-invariant Riemannian metric, as a G-vector bundle;
T(M) = 7*(T(M)) D MyX ey T(H\G), where 7* denotes the induced bundle
and T(N) does the tangent bundle of N. The second term of the above right
hand side is the fiber bundle along the fibers

3§ R*—> My X T(H\G) —> My X ran(H\G).
Since My = MyX rany(H\N(H)) C My X ran(H\G), {MpXranT(H\G)} | My X
ran] (H)= My X ranAT(H\G) | I'(H)}, where | denotes the restriction. From
the semi-direct product assumption, /'(H) is a subgroup of N(H). H\G is a
right G-manifold and so a right ['(H)-manifold. For the right N(H)-vector
bundle T(H\G) | I'(H) —> I"'(H), we obtain the equalities
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F: T(H\G) | I'(H) == T»(H\G) X xN(H), [5],
= Ty(H\G) X zH-I"(H),
= Tw(H\G) X I'(H), see k; in §3.

On the other hand, A\G is a left I'(H)-manifold. Consider the composition

of the left /'(H)-action and the isomorphism F above,

I'(H) X AT @ (H\G)} —> T(H\G) | I'(H) —> T sy (H\G) X I'(H),
then each (7, v) € I'(H) X {Tw(H\G)} vyields the unique w & T 5 (H\G)
such that F(y-v) = (w, y). Define f : I'(H) —> Aut {Tu(H\G)} by w =
f(y):v, then f is a representation. In fact

D yv =Mty

@) v = G '7)

@) Yot = FOHI (ol y

@ 'Oy = OOl 'y, by (3),
then from (1),

7o =y Ml = Ul -y = FG)F)ekr'y, by (4)

= {f/1)vr (r'r) by (1),

hence f(y'7) = f(y)f(y). Evidently f(e) = the identity map, thus f is a
representation.

Now we attend to the local H-vector bundle 71*(% | My). Let(y;) be
transition functions of the principal bundle "'(H) —> My —> M/G. We
want to determine transition functions (g;) of My X ran{T(H\G) | I'(H)} —>
My, see §§2 and 3. As a right N(H)-vector bundle over U, X I"(H), we
have isomorphisms

gP 1 Ui X Tyn(H\G) X I'(H) —> {U,; X '(H)} X rry{T(H\G) | I'(H)},
which is obtained from F~' above, explicitly, for the composition
| My) | (UL U, X POHD) S (U0 Uy % TED} X
{T(H\G) | I(H)} U, N U, X Tu(H\G) X I'(H)
=(§ | My) | (U, N U, x I'(H) & (U, N U, X TEDY X reny
(TENG) | ()} &2 U, 0 U, x Tu(H\G) % I'(ED,
{0,087 o gz, v, 1) = @) @5 o0) (z, 1, F(7)v)
= (&), yiulx) 7, F(y)v)
= (&, [ f v, valx)7)
= (=, f (732, v:(2) 7)),
hence g;,(z) = f(y,(x)), thus we obtain

Proposition 4. The ry—image of the tangent bundle along the fibers is given
by U, U; X Tw(H\G)/(f(7i), T5)-
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Definition 2, [4]. Let G be a compact Lie group. A vector field X on a
G-manifold M is called G-invariant if it satisfies the equality
(dg),X, = X, for all x &E M and g & G.
We have already prepared the next propositions in [4].

Proposition 5. A G-manifold M admits a G-invariant vector field without
singularities if and only if the tangent bundle T (M) of M has a G-vector
bundle decomposition T(M) = E @D 0", where E is a G-vector bundle and 0'
is the product G-line bundle over M.

Proposition 6. Let X be a wvector field on a G-manifold M and {p,} be
the one parameter group of transformations generated by X. Then X is a
G-invariant if and only if g-¢, = ¢,*g for each t E R and g & G.

Consider the standard imbedding UIN) C SO(2N), which is given by A+
Bi —> <ﬁ —§> The center of U(N) is Diag (exp 2rwit), which induces a
nowhere vanishing vector field on the sphere S*~' C C?, the complex N-space.

We call this field the canonical field.

Corollary of Proposition 6. The canonical vector field on the sphere S**!
is invariant under an orthogonal action of a compact connectd Lie group if
and only if the action is a complex unitary action.

Proof. Suppose G = (é g) & SO(2N) to commute with each element of
the center € of U(N). Let exp 2rit = a-bi, then

(A B> (Diag a Diag —b>_<aA—|—bB -—bA-{—aB)
C D/\Diag & Diag a/ \aC+b6D —bC+aD)’

(Diaga Diag —b) <A B)_(aA—-bC aB—bD)
Diag b Diag a/\C D bA+aC bB+aD)’

hence B = —bC, —bA = —bD, thus C = —B, D= A, and so G & U(N) C
SO(2N) and the corollary is proved.

Next as an example we choose the real Stiefel manifold SO(n—k)\SO(n) =
V. Denote by V™ * the standard real representation space of SO(n—k),

then we have

Proposition 7.
T(SO(n—k)\SO(n)) = C:D VA X 50— SO(n) @ R*™D X (SO (n—k)\SO(n)).
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Corollary of Propositions 5 and 7, On the SO(n)-manifold SO(n—Fk)\
SO(n), there exist just k(k—1)/2-liniearly independent invariant fields.

Proof of Proposition 7.

Since T(SO(n-E)\SO(n)) == T (socn—1y (SO(n—k) \SO(n)) X son-1,SO(n), it is
sufficient to determine the isotropy representation SO(n—k) —> Aut {7 socn—ry
(SO(n—E)\SO(n))}. It is known that

T, (SO(n)) = IMM*(R, n), skew symmetric » X n-matrices,
=R TOPR?*D... PR = R"“"""? a5 a vector space,
T y(SOn)) == T, (SO(n—k)) D T (501 (SO(n—k)\SO(n)).
Let x;; be a coordinate system of # X n-matrices M,(R) and define T ,,(SO(n))
—> M(R) by X, —> (X,(x;;)). Let g be a variable in a neighborhood of
the unit in SO(n). Since we have concerned with the right action,
(dRX)(z;;) = X.(x; R,) = X(x,/(8:8)) = XY xu(81) tui(g))
= 3 X(za)z:/8),
1

and so for each g = 1 & SO(n—k) C SO(n),the isotropy

Er+n *°° Br+in

8ni e Enn B

representation is given by

0 Yiz Y3 * Y Y+t 0 Y 1

0 yp oo T
0 Y-k Ye-wedr *** Yion 1

0 Yusr Vi 8r+11 °° ° Br+in

0 Yootn

i 0 i gm " & |

which is equal to {((—1)0 @ 0.} D {(k—2)0 D 01-3 D ** + D On—v = {k(k—1)/

2}0 @ k.1, where O is the one dimensional trivial representation and O, is

the standard one. Thus we proved the proposition.
Now since I'(SO(n—k)) = O(k) C N(SO(n—k)) C SO(n), from the principal
bundle O() —> O(k+7r) —> Ok+r)/Ok) = Viirir
we obtain an associated bundle
SO(n—k\SO(n) —> O(k+7) X 0u>[SOn—k)\SO)] % Vitrire
The total space is an SO(n)-manifold with one orbit type (SO(n—£%)), (Proposition
4.1, [2]). We denote by V., , the total space. By Proposition 7, we have
T(Vyr) = O(k+7) X 0y {R*™ X (SO(n—k)\SO(n)} @D
O(k+7) X ogy B V'™ X s00a-1530@)} D p*T(Vieyr,.
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By W. A. Sutherland, [7], V.., is parallelizable whenever » is greater than
1. Thus .., admits at least dim V,,,, = r(r+2k—1)/2-linearly independent
invariant fields. Now we recall the representation f in Proposition 4. Since

yv = {f(y)v}y, then f(y)v = yvy~'. In the case of our example, for A & O(k),

(-5 Semwmn (7 1.)(-5 6@ 1.)-(-54" &)

Thus V,.., admits at least r(r-+2k—1)/2-linearly independent invariant fields.

Remark. The homomorphism T',(SO(n)) —> M, (R) defined above is the
restriction of the isomorphism in § 3 of Chapter 4, [1], which is an isomorphism
between the Lie algebra of GL(n, C) and Em__,,(C), the Lie algebra of all nxXn-

matrices of complex entries.
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