ON G-VECTOR BUNDLES AND INVARIANT VECTOR FIELDS

Hiromichi MATSUNAGA

(Received September 11, 1973)

Introduction

The main purpose of this note is to exhibit an isomorphism of semi-groups between the equivalence classes of G-vector bundles over a G-manifold with one orbit type and some classes of vector bundles over the orbit space. The article is a continuation of the author's preceding paper [4]. In which the author has proposed a too restrictive condition, i. e. the normalizer of the isotropy subgroup is the direct product, (C_2) in §2 of [4]. For example, in §4 of Chapter 4, [2], SO(n), SU(n)-actions have been investigated. In these cases, the normalizers are semi-direct products, which are shown in §1 of this note. In this note we attain to some kind of vector bundles over orbit spaces, called *local H-vector bundles*, which behave in a rather different manner than the usual *H*-vector bundles. We treat in this note only *G*-manifolds with one orbit type for a simplicity. We could reformulate the theorem 2 in [4] in a semi-direct product case, but the verification is too long, and so we will omit it. Thus this note is a theory concerning fiber bundles with Lie group actions of one orbit type.

In §2, we reconstruct the characterization of G-vector bundles along the line of Part 1, [6]. A pair of transition functions is obtained.

 \S 3 contains a proof of the continuity of them, and the main theorem is given.

In § 4, we calculate Grothendieck group of local H-vector bundles over spheres.

As in [4], the invariant fields problem is treated in § 5. Tangent bundles over G-manifolds are typical examples of G-vector bundles. The structure of them as coordinate bundles is analized, and applied to the investigation of invariant fields. The Stiefel manifold is a suitable example for a concrete calculation. In this section we discuss about the total space of a Stiefel manifold bundle over a Stiefel manifold,

1. Semi-direct products

Consider the standard imbedding $SO(n-k) = I_k \times SO(n-k) \subset SO(n)$, where I_k is the k-th identity matrix. Let N(SO(n-k)) be the normalizer of SO(n-k) in SO(n) and $\Gamma(SO(n-k))$ be the quotient group $SO(n-k) \setminus N(SO(n-k))$. We have the extention $SO(n-k) \longrightarrow N(SO(n-k)) \longrightarrow \Gamma(SO(n-k))$. For a given $\begin{pmatrix} A & C \\ B & D \end{pmatrix} \in N(SO(n-k))$, where the types of A, B, C, D are $k \times k, (n-k) \times k, k \times (n-k), (n-k) \times (n-k)$, respectively and for each $\begin{pmatrix} I_k & 0 \\ 0 & S \end{pmatrix} \in SO(n-k)$, there exists $\begin{pmatrix} I_k & 0 \\ 0 & S' \end{pmatrix} \in SO(n-k)$ such that $\begin{pmatrix} I_k & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix} = \begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} I_k & 0 \\ 0 & S' \end{pmatrix}$. Then for each $S \in SO(n-k)$, SB = B, hence, B = 0. Similarly C = 0. By the relation $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ 0 & D^{-1} \end{pmatrix} = \begin{pmatrix} {}^{*}A & 0 \\ 0 & {}^{*}D \end{pmatrix}$, we have $A \in O(k), D \in O(n-k)$, then $N(SO(n-k)) \subset O(k) \times O(n-k)$. Thus

$$N(SO(n-k)) = (SO(k) \times I_{n-k}) \cdot (I_k \times SO(n-k)) \cup (SO(k) \times \begin{bmatrix} -1 \\ 1 \\ \cdot \\ 1 \end{bmatrix}) \cdot (\begin{bmatrix} -1 \\ 1 \\ \cdot \\ 1 \end{bmatrix})$$

 $\times SO(n-k)). \text{ Hence the projection } \pi : \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \longrightarrow A \text{ induces an isomorphism}$ $\Gamma(SO(n-k)) = I_k \times SO(n-k) \setminus N(SO(n-k)) \longrightarrow O(k). \text{ Define a homomorphism}$ $s : O(k) \longrightarrow N(SO(n-k)) \text{ by } s(A) = \begin{bmatrix} A \\ \det & A \\ & 1 \\ & \ddots \\ & 1 \end{bmatrix}, \text{ then we have } \pi \circ s = \text{the}$

identity map of O(k). Thus we have

Proposition 1. The normalizer N(SO(n-k)) is isomorphic to the semi-direct product $(I_k \times SO(n-k)) \cdot (O(k) \times I_{n-k})$.

Next, let N(SU(n-k)) be the normalizer of SU(n-k) in SU(n) and $\Gamma(SU(n-k))$ be the quotient group. Consider the extension $SU(n-k) \longrightarrow N(SU(n-k)) \longrightarrow \Gamma'(SU(n-k))$. As in SO case

$$N(SU(n-k)) = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in U(k) \times U(n-k) ; (\det A) \cdot (\det D) = 1 \right\}$$
$$= \left\{ A \times \begin{bmatrix} (\det A)^{-1} \\ 1 \\ \ddots \\ 1 \end{bmatrix} ; A \in U(k) \right\} \cdot (I_k \times SU(n-k)).$$

The map $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \longrightarrow A$ gives an isomorphism $\pi : I_k \times SU(n-k) \setminus N(SU(n-k))$

$$\longrightarrow U(k), \text{ and } A \longrightarrow \begin{bmatrix} A \\ (\det A)^{-1} \\ 1 \\ \ddots \\ 1 \end{bmatrix} \text{ gives a section } s : U(k) \longrightarrow N(SU(n-k)).$$

Thus we have

Proposition 2. We have the isomorphism

 $N(SU(n-k)) \cong (I_k \times SU(n-k)) \cdot (U(k) \times I_{n-k}), a \text{ semi-direct product.}$ Remark. The normalizer of O(k) in O(n) is the product $N(O(n-k)) \cong (I_k \times O(n-k)) \cdot (O(k) \times I_{n-k})$. [4]. Similarly we have $N(Sp(n-k)) \cong (I_k \times Sp(n-k)) \cdot (Sp(k) \times I_{n-k}),$ direct product.

2. Transition functions

Suppose G to be a compact Lie group. Let M be a right G-manifold with one orbit type (H). Put $M_H = \{x \in M ; G_x = H\}$, then we have isomorphisms of G-manifolds $M \cong M_H \times_{\Gamma(H)} (H \setminus G) \cong M_H \times_{N(H)} G$, where N(H) is the normalizer of H in G and $\Gamma(H) = H \setminus N(H)$. For each G-vector bundle $E \longrightarrow M$, the restriction $E \mid M_H \longrightarrow M_H$ is an N(H)-vector bundle, and we have an isomorphism of semi-groups

$$\pi^{(1)}_*: Vect_G(M_H \times_{N(H)} G) \cong Vect_{N(H)}(M_H), \S 1 \text{ in } [4].$$

Since $M_{H}/\Gamma(H)$ is a differentiable manifold, there exists an open covering $\bigcup_{i \in I} U_i = M_{H}/\Gamma(H)$ such that each U_i is contractible to a point x_i in U_i for each $i \in I$. Thus for the differentiable principal bundle

(1) ... $\Gamma(H) \longrightarrow M_H \longrightarrow M_H/\Gamma(H)$,

we have $\Gamma(H)$ -equivalenes $\varphi_i : U_i \times \Gamma(H) \cong M_H \mid U_i$. For any N(H)-vector bundle $E \longrightarrow M_H$, we can choose N(H)-vector bundles $E_i \longrightarrow U_i \times \Gamma(H)$ with $E_i \cong \varphi_i^* \{E \mid \varphi_i(U_i \times \Gamma(H))\}$. Using the N(H)-equivariant contraction $U_i \times \Gamma(H) \longrightarrow (x_i) \times \Gamma(H)$, we have $E_i \cong U_i \times (E_i) \mid \{x_i\} \times \Gamma(H)$) as N(H)vector bundles. Let V_i be $E_i \mid \{x_i\} \times \{e\}$, e is the unit of $\Gamma(H)$, then by G. Segal $E_i \mid \{x_i\} \times \Gamma(H) \cong V_i(H) \times_H N$ as N(H)-vector bundles. Denote by q the projection $N(H) \longrightarrow \Gamma(H)$, then each projection $p_i : V_i \times_H N(H) \longrightarrow \Gamma(H)$ is given by $(v, n) \longrightarrow q(n)$, and we get an isomorphism of N(H)-vector bundles

 $\psi_j^{-1} \circ \psi_i : (U_i \cap U_j) \times V_i \times_H N(H) \longrightarrow (U_i \cap U_j) \times V_j \times_H N(H)$ is an isomorphism of N(H)-vector bundles. We put $(\psi_j^{-1} \circ \psi_i)(x, (v, n)) = (x, G_{ji}(x)(v, n))$, where $(v, n) = (vh, h^{-1}n)$ as an equivalence class for each $v \in V_i$, $h \in H$, $n \in N(H)$. Then $G_{ji} : U_i \cap U_j \longrightarrow \text{Iso}_{N(H)}(V_i \times_H N(H), V_j \times_H N(H))$ is continuous map, where $Iso_{N(H)}(V_i \times_H N(H), V_j \times_H N(H))$ is equipped with the compact open topology. Now we obtain the following

Proposition 1. For each N(H)-vector bundle $E \longrightarrow M_H$, we have an equivalence $E \cong \bigcup_{i \in I} (U_i \times V_i \times_H N(H))/(G_{j_i})$, where we denote by $/(G_{j_i})$ the pasting.

From the commutativity of the middle square of the diagram

we have $p_j \circ (\psi_j^{-1} \circ \psi_i) = (\varphi_j^{-1} \circ \varphi_i) \circ p_i$, hence $p_j(G_{ji}(x)(v, n)) = \gamma_{ji}(x)q(n)$, where (γ_{ji}) is the set of transition functions of (1).

For another N(H)-vector bundle $E' \longrightarrow M_H$, let $\psi'_k : U'_k \times V_k \times_H N(H)$ $\longrightarrow E' | \varphi'_k(U'_k \times \Gamma(H))$ be local trivialities. Consider an isomorphism of N(H)-vector bundles over M_H , $f : E \longrightarrow E'$. For isomorphisms

 $(U_{i} \cap U'_{k}) \times V_{k} \times_{H} N(H) \xrightarrow{\psi_{i}} E \mid \varphi_{i}((U_{i} \cap U'_{k}) \times \Gamma(H) \xrightarrow{f} E \mid \varphi'_{k}((U_{i} \cap U'_{k}) \times \Gamma(H) \xrightarrow{\psi'_{k}} (U_{i} \cap U'_{k} \times V'_{k} \times_{H} N(H), \text{ put } (\psi'_{k}^{-1} \circ f \circ \psi_{i})(x, (v, n)) = (x, \overline{G}_{ki}(x)(v, n)),$ then $\overline{G}_{ki} : U_{i} \cap U'_{k} \longrightarrow Iso_{N(H)}(V_{i} \times_{H} N(H), V'_{k} \times_{H} N(H))$ are continuous maps for each pair (i, k). By definition

$$(*) egin{array}{c} ar{G}_{kj}(x)G_{ji}(x) = ar{G}_{ki}(x) ext{ on } U_i \cap U_j \cap U_k', \ G_{ik}'(x)G_{kj}(x) = ar{G}_{lj}(x) ext{ on } U_j \cap U_k' \cap U_i'. \end{array}$$

Conversely, let G_{ji} and G'_{lk} be transition functions of N(H)-vector bundles $E \longrightarrow M_H$ and $E' \longrightarrow M_H$ respectively, and suppose that there are given (\overline{G}_{kj}) which fulfill the condition (*). Define

$$\begin{split} h_{kj}: & E \supset \psi_j((U_i \cap U'_k \times V_j \times_H N(H)) \longrightarrow \psi'_k((U_j \cap U'_k) \times V'_k \times_H N(H)) \\ \text{by } h_{kj}(\psi_j(x, (v, n))) = \psi'_k(x, \, \overline{G}_{kj}(x)(v, n)) \text{ on } U_j \cap U'_k, \text{ then on } U_i \cap U_j \cap U'_k, \\ h_{ki}(\psi_i(x, (v, n))) = \psi'_k(x, \, \overline{G}_{ki}(x)(v, n)) = \psi'_k(x, \, \overline{G}_{kj}(x)G_{ji}(x)(v, n)) \\ &= h_{kj}(\psi_j(x, \, G_{ij}(x)(v, n))). \end{split}$$

By the definition, $\psi_i(x, G_{ji}(x)(v, n)) = \psi_i(x, (v, n))$, hence, $h_{ki} = h_{kj}$ on $U'_k \cap U_i \cap$

U_{j} . Further the second term of the above equalities is equal to $\psi'_{i}(x, \overline{G}_{ii}(x)(v, n)) = h_{ii}(\psi_{i}(x, (v, n))),$

therefore, $h_{ki} = h_{lj}$ on $U'_k \cap U'_l \cap U_i \cap U_j$, and we obtain an isomorphism of N(H)-vector bundles $f: E \longrightarrow E'$, thus we have

Proposition 2. Two N(H)-vector bundles (E, G_{ji}) and (E', G'_{ik}) are N(H)-equivalent if and only if there exist continuous functions (\overline{G}_{ki}) which fulfill the condition (*).

To proceed more, we put the following hypothesis

(H) there exist continuous maps n_{ji} : $U_i \cap U_j \longrightarrow N(H)$ with $q(n_{ji}(x)) = \gamma_{ji}(x)$ and $n_{kj}(x)n_{ji}(x) = n_{ki}(x)$, $n_{ii}(x) = e$, the unit.

We call (n_{ji}) a lift of γ_{ji}). For each $(x, (v, n)) \in (U_i \cap U_j) \times V_i \times_H N(H)$, we have $G_{ji}(x)(v, n) = (v', n_{ji}(x)n)$ for some $v' \in V_j$. V_i is isomorphic to V_j as a vector space, so we can put $v' = g_{ji}(x)v$ and $g_{ji} : U_i \cap U_j \longrightarrow Iso(V_i, V_j)$. Since (G_{kj}) and (n_{kj}) fulfill the property of transition functions, then the functions (g_{ji}) do except for the continuity. We discuss the continuity in the next section.

Remark. Suppose N(H) to be a semi-direct product $H \cdot \Gamma(H)$, then $\Gamma(H)$ is a subgroup of N(H), $\Gamma(H) \approx (e) \cdot \Gamma(H) \subset N(H)$, then $n_{ji}(x) = (e) \cdot \gamma_{ji}(x)$ fulfill the hypothesis (H), where (γ_{ji}) is the set of transitions of (1).

3. The continuity of (g_{ii})

In this section, we consider the case, $N(H) = H \cdot \Gamma(H)$, a semi-direct product. Let $k_i : V_i \times \Gamma(H) \subset V_i \times H \cdot \Gamma(H) \longrightarrow V_i \times_B H \cdot \Gamma(H)$ be the composition of the inclusion and the projection, where V_i is a vector space for each *i*. The map k_i is a continuous injection and a fiberwise isomorphism of V_i -bundles over $\Gamma(H)$, then it is an isomorphism of bundles. We can define an N(H)action on $V_i \times \Gamma(H)$ by $(v, \gamma)(h', \gamma') = (v \cdot I(\gamma)h', \gamma\gamma')$, where $(v, \gamma) \in V_i \times \Gamma(H)$, $(h', \gamma') \in H \cdot \Gamma(H)$ and $I(\gamma)h'$ denotes $\gamma h'\gamma^{-1}$. By the relation $(v, (I(\gamma)h' \cdot \gamma')) =$ $(v \cdot I(\gamma)h', \gamma')$, k_i is N(H)-equivariant. Since $1 \times g_{j_i} \times \gamma_{j_i} = (1 \times k_j)^{-1} \circ (1 \times G_{j_i}) \circ$ $(1 \times k_i), g_{j_i} : U_i \cap U_j \longrightarrow Iso (V_i, V_j)$ is continuous for each (i, j). For $h \in H$, $(x, (v, h\gamma)) \in (U_i \cap U_j) \times V_i \times_H H \cdot \Gamma(H)$,

$$\begin{split} \psi_{j}^{-1} \circ \psi_{i}(x,(v,h\gamma)) &= (x,(g_{ji}(x)v,\gamma_{ji}(x)h\gamma)) \\ &= (x,(g_{ji}(x)v,I(\gamma_{ji}(x)(h))\cdot\gamma_{ji}(x)\gamma) \\ &= (x,(g_{ji}(x)v)\cdot I(\gamma_{ji}(x)(h)),\gamma_{ji}(x)\gamma), \\ \psi_{j}^{-1} \circ \psi_{i}(x,(v,h\gamma)) &= \psi_{j}^{-1} \circ \psi_{i}(x,(v,h\gamma)) = (x,(x,h\gamma)) \\ &= (x,(x,h\gamma)) = (x,(x,h\gamma)) (x,$$

 $\psi_j^{-1}\circ\psi_i(x,(v,h\gamma))=\psi_j^{-1}\circ\psi_i(x,(vh,\gamma))=(x,g_{ji}(x)(vh),\gamma_{ji}(x)\gamma),$ then we have

(2) ...
$$g_{ji}(x)(vh) = \{g_{ji}(x)(v)\}I(\gamma_{ji}(x))(h).$$

Thus we get

Proposition 1.S. Suppose N(H) to be a semi-direct product $H \cdot \Gamma(H)$, then for any N(H)-vector bundle $E \longrightarrow M_H$, $E \cong [\bigcup_{i \in I} U_i \times V_i \times_H H \cdot \Gamma(H)]/(g_{ji}, \gamma_{ji})$.

Let (γ'_{ik}) be another set of transition functions of the principal bundle $M_H \longrightarrow M_H/\Gamma(H)$, and $(\overline{\gamma}_{ik})$ be the equivalence between (γ_{ii}) and (γ'_{ik}) . For another N(H)-vector bundle $E' \cong [\bigcup_{k \in K} U'_k \times V'_k \times_H H \cdot \Gamma(H)/(g'_{ik}, \gamma'_{ik}), \overline{G}_{ii}$ in §2 can be represented as $(\psi'_k) \cdot (\tau, (v, h\gamma)) = (x, \overline{g}_{ki}(x)(v), \overline{\gamma}_{ki}(x)h\gamma)$.

We can check that $\overline{g}_{ki} : U'_k \cap U_i \longrightarrow Iso (V_i, V'_k)$ is continuous for each k, *i*, and the relations

$$(*S) egin{array}{ll} & egin{array}{ll} egin{array}{l$$

From the proposition 2, we have

Proposition 2.S. Two N(H)-vector bundles (E, g_{ji}, γ_{ji}) and $(E', g'_{ik}, \gamma'_{ik})$ are equivalent if and only if there exist continuous functions $\overline{g}_{ki} : U'_k \cap U_i \longrightarrow$ Iso (V_i, V'_k) with the property (*S).

Let $Vect_{H^{T}}(M_{H}/\Gamma(H))$ be the family of vector bundles \hat{E} with the property that for any contractible open covering $M_{H}/\Gamma(H) = \bigcup_{i \in I} U_{i}$ and transition functions $\gamma_{ji}: U_{i} \cap U_{j} \longrightarrow \Gamma(H)$ of (1), there are local trivialities $\hat{\psi}_{i}: \hat{E} \mid U_{i} \cong U_{i} \times V_{i}$ which fulfill the next conditions

- (i) each V_i is an *H*-module,
- (ii) define g_{ji} by $\hat{\psi}_j^{-1} \circ \psi_i(x, v) = (x, g_{ji}(x)(v))$, then $g_{ji} : U_i \cap U_j \longrightarrow Iso$ (V_i, V_j) is continuous and satisfies the relation $g_{ji}(x)(vh) = \{g_{ji}(x)(v)\}$ $I(\gamma_{ji}(x))(h)$.

We call each element of $V_{ect}^{\uparrow}(M_H/\Gamma(H))$ a local H-vector bundle and denote by (E, g_{ji}, γ_{ji}) , or $\bigcup_i U_i \times V_i/(g_{ji}, \gamma_{ji})$.

Definition 1. Two local *H*-vector bundles (E, g_{ji}, γ_{ji}) , $(E', g'_{ik}, \gamma'_{ik})$ are related if and only if there exist (\overline{g}_{ki}) with the property (*S).

We can verify that the relation in the definition is an equivalence relation. For each local *H*-vector bundle $\bigcup_i U_i \times V_i / (g_{ji}, \gamma_{ji})$, define

 $U_i \times V_i \times_{H} N(H) \supseteq (x, (v, n)) \equiv (x, (g_{ji}(x)(v)), \gamma_{ji}(x)n) \subseteq U_j \times V_j \times_{H} N(H),$ then

$$(x, vh, n) \equiv (x, (g_{ji}(x)(vh), \gamma_{ji}(x)n)) = (x, g_{ji}(x)(v), I(\gamma_{ji}(x))(h) \cdot \gamma_{ji}(x)n) = (x, g_{ji}(x)(v), \gamma_{ji}(x)hn) \equiv (x, (hn)),$$

48

and so the above \equiv gives an equivalence relation in $\bigcup_i U_i \times V_i \times_H N(H)$. The quotient $\bigcup_i U_i \times V_i \times_H N(H) / (g_{ji}, \gamma_{ji})$ is an N(H)-vector bundle over M_H which we denote by $\pi^*_{(2)}(\hat{E})$, where $\hat{E} = \bigcup_i U_i \times V_i / (g_{ji}, \gamma_{ji})$. Conversely each N(H)vector bundle $E = \bigcup_i U_i \times V_i \times_H N(H) / (g_{ji}, \gamma_{ji})$ gives a local H-vector bundle $\bigcup_i U_i \times V_i / (g_{ji}, \gamma_{ji})$, which we denote by $\pi^{(2)}_{(2)}(E)$. By Definition 1 and Proposition 2. S, if E is equivalent to E as N(H)-vector bundle, then $\pi^{(2)}_{(2)}(E)$ is related to $\pi^{(2)}_{(2)}(E')$, also if \hat{E} is related to \hat{E}' , then $\pi^*_{(2)}(E)$ is equivalent to $\pi^*_{(2)}(E')$. We denote by $Vect_{H^T}(M_H/\Gamma(H))$ the semi-group of equivalence classes of local H-vector bundles. The above consideration yields

Theorem. If $N(H) = H \cdot \Gamma(H)$, then $\pi_*^{(2)} : Vect_{N(H)}(M_H) \longrightarrow Vect_{H^T}(M_H/\Gamma(H))$ is an isomorphism of semi-groups.

Denoting $\pi^{\scriptscriptstyle(1)}_* \cdot \pi^{\scriptscriptstyle(2)}_*$ by π_* , we have

Corollary. If $N(H) = H \cdot \Gamma(H)$, then $\pi_* : Vect_G(M) \cong Vect_{H^T}(M/G)$.

4. Local *H*-vector bundles over spheres

Let $\gamma_{ji} : S_i^n \cap S_j^n \longrightarrow \Gamma(H)$ be transition functions of a principal bundle $\Gamma(H) \longrightarrow P \longrightarrow S^n$, where i, j = 1, 2 and S_1^n, S_2^n is the upper, the lower hemisphere respectively. For any local *H*-vector bundle $\hat{E} \in Vect_{H^r}(S^n)$, we can choose *H*-modules V_1 , V_2 and local trivialities $\hat{\psi}_i : S_i^n \times V_i \longrightarrow E | S_i^n, i = 1, 2$. The transition function $g_{12} : S_1^n \cap S_2^n = S^{n-1} \longrightarrow Iso(V_1, V_2)$ satisfies the relation $g_{12}(x)(vh) = \{g_{12}(x)(v)\} I(\gamma_{12}(x))(h)$ for $v \in V_1$, $h \in H$, see § 3. Let $\gamma_{12}(x_0) = \gamma_0, g_{12}(x_0) = g_0$ for a base point $x_0 \in S^{n-1}$. We can choose $\tilde{\gamma}_{ji}, \bar{g}_{ji}, g'_{ji}$, especially $\gamma'_{12}(x) = \gamma_{12}(x) \gamma_0^{-1}$, to obtain

$$\begin{split} g_{12}'(x)(vh) &= g_{12}(x) g_0^{-1}(vh) = g_{12}(x) \{ (g_{21}(x_0)(v)) I(\gamma_{21}(x_0)) \} \\ &= \{ g_{12}(x) g_{21}(x_0)(v) \} I(\gamma_{12}(x) \gamma_{21}(x_0))(h) = \{ g_{12}'(x)(v) \} I(\gamma_{12}'(x))(h) \} \\ g_{21}'(x)(vh) &= g_0 g_{21}(x)(vh) = g_0 \{ (g_{21}(x)(v)) I(\gamma_{21}(x))(h) \} \\ &= \{ g_0 g_{21}(x)(v) \} I(\gamma_0 \gamma_{21}(x))(h) = (g_{21}'(x)(v)) I(\gamma_{21}'(x))(h), \end{split}$$

hence $(S_i^n \times V_i, g'_{ji}, \gamma'_{ji}, i, j = 1, 2)$ is also a local *H*-vector bundle, which is related to the original one. Now $\gamma'_{12}(x_0) = e \in \Gamma(H)$, the unit, $g'_{12}(x_0) =$ the identity map of $V_1 = V_2$ as vector spaces. We denote by $h^{(i)} \in H$, *H*-actions on V_i , i = 1, 2, then

 $v \cdot h^{(1)} = g'_{12}(x_0)(v \cdot h^{(1)}) = \{g'_{12}(x_0)(v)\} I(\gamma'_{12}(x_0))(h^{(2)}) = v \cdot h^{(2)}, \text{ hence } V_1 = V_2 \text{ as an } H\text{-module.}$ There are two distinct cases.

Case $n \ge 2$. $\gamma_{12}(S^{n-1}) \subset \Gamma_0$, the connected component of the unit e of $\Gamma(H)$. For example, let G = SF(n), H = SF(n-k), as in § 1, where F = O or U, then $\Gamma_0 = SF(k) \times I_{n-k} \subset \Gamma = F(k) \times I_{n-k}$, and the action of Γ_0 by the conjugation is trivial, hence $Vect_{H^T}(S^n) = Vect_H(S^n)$.

Case n = 1.

Lemma. Vect_{H^T} $(S^1) = \hat{H}^{\dagger}$, the semi-group of isomorphism classes of $\gamma_{12}(-1)$ invariant H-modules.

Proof. For any local *H*-vector bundle $\hat{E} \in Vect_{H^{T}}(S^{1})$, we can choose a normal form such that $\gamma_{12}: S^{0} \longrightarrow \Gamma(H)$ satisfies $\gamma_{12}(+1) = e, \gamma_{12}(-1) = \gamma_{0}$ $\in \Gamma(H)$, and $g_{12}(+1) =$ the identity map of *V*, $g_{12}(-1) = G \in Iso(V, V)$. Define $S: Vect_{H^{T}}(S^{1}) \longrightarrow \hat{H}^{r_{0}}$ by $S(E) = S(S_{1}^{1} \times V \cup S_{2}^{1} \times V) = [V] \in H^{r_{0}}$, the isomorphism class of *V*. For another choice of $g'_{12}(-1) = G'$, let

 $\overline{g}_{11} = g_{11} = e, \ \overline{g}_{22} = G'^{-1}G, \ \overline{g}_{12} = g_{12}, \ \overline{g}_{21} = G'^{-1}Gg_{21} = G'^{-1}, \ \text{then}(V, g', \gamma) \text{ is related to } (V, g, \gamma).$

Conversely, for any $[V] \in \hat{H}^{r_0}$, we have an isomorphism of *H*-modules $G: V \longrightarrow V^{r_0}$. Let $g_{12} = G$, then $(V, g_{12}, \gamma_{12}) \in Vect_{H^{r_0}}(S^1)$. If $A: V \longrightarrow V'$ is an isomorphism of *H*-modules, then setting $g'_{12} = AGA^{-1}$, $(V', g'_{12}, \gamma_{12})$ is related to (V, g_{12}, γ_{12}) . In fact it is enough to define

 $\overline{g}_{11}(x) = A, \ \overline{g}_{12}(x) = AG, \ \overline{g}_{21}(x) = A \cdot g_{21}(x), \ \overline{g}_{22}(x) = A.$

Thus the inverse $T: \hat{H}^{\tau} \longrightarrow Vect_{H^{\tau_0}}(S^1)$ is defined and $S \circ T =$ the identity map of \hat{H}^{τ_0} , $T \circ S =$ the identity map of $Vect_{H^{\tau_0}}(S^1)$. Hence we proved the lemma.

For example, suppose that $\gamma_{12}: S^0 \longrightarrow O(k)$ satisfies $\gamma_{12}(+1) = I_k$, the identity

of
$$O(k)$$
, $\gamma_{12}(-1) = \begin{bmatrix} -1 \\ 1 \\ \cdot \\ 1 \end{bmatrix}$, then
$$\begin{bmatrix} -1 \\ 1 \\ \cdot \\ 1 \\ -1 \\ \cdot \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ \cdot \\ 1 \\ a_{11} \cdots a_{1 n-k} \\ a_{n-k 1} \cdots a_{n-k n-k} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ \cdot \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

50

Hence, by the action of $\gamma_{12}(-1)$, the standard maximal torus $\operatorname{Diag}\left\{\begin{pmatrix} \cos\theta_1 & -\sin\theta_1\\ \sin\theta_1 & \cos\theta_1 \end{pmatrix}\right\}$ is transformed into $\operatorname{Diag}\left\{\begin{pmatrix} \cos\theta_1 & \sin\theta_1\\ -\sin\theta_1 & \cos\theta_1 \end{pmatrix}\right\}$, ..., $\begin{pmatrix} \cos\theta_l & -\sin\theta_l\\ \sin\theta_l & \cos\theta_l \end{pmatrix}$, where n-k=2l+1, or 2l. It is well known that $R(T) = Z[\alpha_1, \alpha_1^{-1}, \ldots, \alpha_l, \alpha_l^{-1}], R(SO(2l+1) = Z[\lambda^1, \ldots, \lambda^{-1}],$ $R(SO(2l)) = Z[\lambda^1, \ldots, \lambda^{l-1}, \lambda_{\pm}^l, \lambda_{\pm}^l]/(\sim)$, where $\alpha_j : \begin{pmatrix} \cos\theta_j & -\sin\theta_j\\ \sin\theta_j & \cos\theta_j \end{pmatrix}$ $\longrightarrow \exp 2\pi i \theta_j, \lambda^k = \sigma^k [\alpha_1, \alpha_1^{-1}, \ldots, \alpha_l, \alpha_l^{-1}]$ is the *k*-th elementary symmetric function, and $\lambda_{\pm} = {}_{i(1) \leq \cdots \leq i(l)}, \sum_{e(1) \dots e(l) = \pm 1} \alpha_{i(1)}^{e(1)} \cdots \alpha_{i(l)}^{e(l)}, 13, [3]. \operatorname{Since}(\alpha_1)^{r_0} = \alpha_1^{-1},$ $(\alpha_k)^{r_0} = \alpha_k$ for $k = 2, \ldots, l$, then $(\lambda^k)^{r_0} = \lambda_k$ and $(\lambda_{\pm}^l)^{r_0} \neq \lambda_{\pm}^l$, thus for complex vector bundles the lemma yields

Proposition 3. $K(Vect^{C}_{SO(2l)^{r_0}}S^1) = Z[\lambda^1, \ldots, \lambda^{l}] \stackrel{\subseteq}{=} R(SO(2l)).$

5. Tangent bundles and invariant vector fields.

At first we give a formula about the tangent bundle of a G-manifold with one orbit type (H), and some propositions. We apply them to investigate the existence of nowhere vanishing invariant vector fields on these manifolds.

Let M be a right G-manifold with one orbit type (H). Then the principal bundle of the fiber bundle $\mathfrak{F}: H \setminus G \longrightarrow M \longrightarrow M/G$ is $\Gamma(H) \longrightarrow M_H =$ $\{x \in M, G_x = H\} \longrightarrow M/G$, and we have the isomorphism $M \cong M_H \times_{\Gamma(H)}$ $(H \setminus G)$. Choosing a G-invariant Riemannian metric, as a G-vector bundle; $T(M) \cong \pi^*(T(M)) \oplus M_H \times_{\Gamma(H)} T(H \setminus G)$, where π^* denotes the induced bundle and T(N) does the tangent bundle of N. The second term of the above right hand side is the fiber bundle along the fibers

 $\widehat{\mathfrak{F}}: \mathbb{R}^n \longrightarrow M_H \times_{\Gamma(H)} T(H \setminus G) \longrightarrow M_H \times_{\Gamma(H)} (H \setminus G).$ Since $M_H = M_H \times_{\Gamma(H)} (H \setminus N(H)) \subset M_H \times_{\Gamma(H)} (H \setminus G), \quad \{M_H \times_{\Gamma(H)} T(H \setminus G)\} \mid M_H \times_{\Gamma(H)} \Gamma(H) = M_H \times_{\Gamma(H)} \{T(H \setminus G) \mid \Gamma(H)\}, \text{ where } \mid \text{ denotes the restriction. From the semi-direct product assumption, } \Gamma(H) \text{ is a subgroup of } N(H). H \setminus G \text{ is a right } G\text{-manifold and so a right } \Gamma(H)\text{-manifold. For the right } N(H)\text{-vector bundle } T(H \setminus G) \mid \Gamma(H) \longrightarrow \Gamma(H), \text{ we obtain the equalities}$

$$F: T(H\backslash G) \mid \Gamma(H) \cong T_{\{H\}}(H\backslash G) \times_{H} N(H), [5],$$

= $T_{\{H\}}(H\backslash G) \times_{H} H \cdot \Gamma(H),$
= $T_{\{H\}}(H\backslash G) \times \Gamma(H),$ see k_i in §3.

On the other hand, $H \setminus G$ is a left $\Gamma(H)$ -manifold. Consider the composition of the left $\Gamma(H)$ -action and the isomorphism F above,

 $\Gamma(H) \times \{T_{(H)}(H \backslash G)\} \longrightarrow T(H \backslash G) \mid \Gamma(H) \longrightarrow T_{(H)}(H \backslash G) \times \Gamma(H),$

then each $(\gamma, v) \in \Gamma(H) \times \{T_{(H)}(H \setminus G)\}$ yields the unique $w \in T_{(H)}(H \setminus G)$ such that $F(\gamma \cdot v) = (w, \gamma)$. Define $f : \Gamma(H) \longrightarrow \operatorname{Aut} \{T_{(H)}(H \setminus G)\}$ by $w = f(\gamma) \cdot v$, then f is a representation. In fact

- (1) $\gamma v = \{f(\gamma)v\}\gamma$
- (2) $(\gamma'\gamma)v = \{f(\gamma'\gamma)v\} (\gamma'\gamma)$
- (3) $\gamma' \{ f(\gamma)v \} = \{ f(\gamma')[f(\gamma)v] \} \gamma'$

(4) $\{\gamma'[f(\gamma)v]\}\gamma = \{f(\gamma')[f(\gamma)v]\}\gamma'\gamma$, by (3),

then from (1),

$$\begin{aligned} \gamma'\gamma v &= \gamma' \left\{ \left[f(\gamma)v \right] \cdot \gamma \right\} = \left\{ \gamma' \left[f(\gamma)v \right] \right\} \cdot \gamma &= \left\{ f(\gamma')f(\gamma)v \right\} \gamma'\gamma, \text{ by } (4) \\ &= \left\{ f(\gamma'\gamma)v \right\} (\gamma'\gamma) \text{ by } (1), \end{aligned}$$

hence $f(\gamma'\gamma) = f(\gamma')f(\gamma)$. Evidently f(e) = the identity map, thus f is a representation.

Now we attend to the local *H*-vector bundle $\pi_*(\widehat{\mathfrak{F}} \mid M_H)$. Let (γ_{ji}) be transition functions of the principal bundle $\Gamma(H) \longrightarrow M_H \longrightarrow M/G$. We want to determine transition functions (g_{ji}) of $M_H \times_{\Gamma(H)} \{T(H \setminus G) \mid \Gamma(H)\} \longrightarrow M_H$, see §§2 and 3. As a right N(H)-vector bundle over $U_i \times \Gamma(H)$, we have isomorphisms

 $g^{(i)}: U_i \times T_{(H)}(H \setminus G) \times \Gamma(H) \longrightarrow \{U_i \times \Gamma(H)\} \times {}_{\Gamma(H)}\{T(H \setminus G) \mid \Gamma(H)\},\$ which is obtained from F^{-1} above, explicitly, for the composition

$$\begin{split} (\mathfrak{F} \mid M_{H}) \mid \varphi_{i}(U_{i} \cap U_{j} \times \Gamma(H)) & \longleftarrow \{U_{i} \cap U_{j} \times \Gamma(H)\} \times_{\Gamma(H)} \\ \{T(H \backslash G) \mid \Gamma(H)\}^{-\mathcal{g}^{(i)}} U_{i} \cap U_{j} \times T_{(H)}(H \backslash G) \times \Gamma(H) \\ &= (\mathfrak{F} \mid M_{H}) \mid \varphi_{j}(U_{i} \cap U_{j} \times \Gamma(H)) \xleftarrow{\varphi_{j}} \{U_{i} \cap U_{j} \times \Gamma(H)\} \times_{\Gamma(H)} \\ \{T(H \backslash G) \mid \Gamma(H)\} & \xleftarrow{g^{(j)}} U_{i} \cap U_{j} \times T_{(H)}(H \backslash G) \times \Gamma(H), \\ \{\varphi_{j} \circ g^{(j)}\}^{-1} \{\varphi_{i} \ g^{(i)}\}(x, v, \gamma) = (g^{(j)})^{-1}(\varphi_{j}^{-1} \circ \varphi_{i})(x, \gamma, f(\gamma^{-1})v) \\ &= (g^{(j)})^{-1}(x, \gamma_{ji}(x)\gamma, f(\gamma^{-1})v) \\ &= (x, f(\gamma_{ji}))f(\gamma^{-1})v, \gamma_{ji}(x)\gamma), \end{split}$$

hence $g_{ji}(x) = f(\gamma_{ji}(x))$, thus we obtain

Proposition 4. The π_* -image of the tangent bundle along the fibers is given by $\bigcup_i U_i \times T_{(B)}(H \setminus G)/(f(\gamma_{ji}), \gamma_{ji})$. $(dg)_x X_x = X_{xg}$ for all $x \in M$ and $g \in G$.

We have already prepared the next propositions in [4].

Proposition 5. A G-manifold M admits a G-invariant vector field without singularities if and only if the tangent bundle T(M) of M has a G-vector bundle decomposition $T(M) = E \oplus \theta^{1}$, where E is a G-vector bundle and θ^{1} is the product G-line bundle over M.

Proposition 6. Let X be a vector field on a G-manifold M and $\{\varphi_i\}$ be the one parameter group of transformations generated by X. Then X is a G-invariant if and only if $g \cdot \varphi_i = \varphi_i \cdot g$ for each $t \in R$ and $g \in G$.

Consider the standard imbedding $U(N) \subset SO(2N)$, which is given by $A + Bi \longrightarrow \begin{pmatrix} A & -B \\ A & B \end{pmatrix}$. The center of U(N) is Diag (exp $2\pi it$), which induces a nowhere vanishing vector field on the sphere $S^{2N-1} \subset C^N$, the complex N-space. We call this field the canonical field.

Corollary of Proposition 6. The canonical vector field on the sphere S^{2N-1} is invariant under an orthogonal action of a compact connected Lie group if and only if the action is a complex unitary action.

Proof. Suppose $G = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in SO(2N)$ to commute with each element of the center \mathfrak{C} of U(N). Let $\exp 2\pi it = a + bi$, then

$$\begin{pmatrix} A & B \end{pmatrix}$$
 (Diag *a* Diag $-b$) $=$ $\begin{pmatrix} aA+bB & -bA+aB \end{pmatrix}$

(C D) (Diag b Diag a) (aC+bD -bC+aD),

 $\begin{pmatrix} \text{Diag} & a & \text{Diag} & -b \\ \text{Diag} & b & \text{Diag} & a \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} aA - bC & aB - bD \\ bA + aC & bB + aD \end{pmatrix},$

hence bB = -bC, -bA = -bD, thus C = -B, D = A, and so $G \in U(N) \subset SO(2N)$ and the corollary is proved.

Next as an example we choose the real Stiefel manifold $SO(n-k)\setminus SO(n) = V_{n,k}$. Denote by V^{n-k} the standard real representation space of SO(n-k), then we have

Proposition 7.

$$T(SO(n-k)\setminus SO(n)) = \bigoplus_{k} V^{n-k} \times {}_{SO(n-k)}SO(n) \oplus R^{k(k-1)} \times (SO(n-k)\setminus SO(n)).$$

Corollary of Propositions 5 and 7. On the SO(n)-manifold $SO(n-k) \setminus SO(n)$, there exist just k(k-1)/2-linearly independent invariant fields. Proof of Proposition 7.

Since $T(SO(n-k)\setminus SO(n)) \cong T_{\{SO(n-k)\}}(SO(n-k)\setminus SO(n)) \times {}_{SO(n-k)}SO(n)$, it is sufficient to determine the isotropy representation $SO(n-k) \longrightarrow \text{Aut} \{T_{\{SO(n-k)\}}(SO(n-k)\setminus SO(n))\}$. It is known that

$$T_{iel}(SO(n)) \cong \mathfrak{M}^{s}(R, n)$$
, skew symmetric $n \times n$ -matrices,

$$\cong R^{n-1} \oplus R^{n-2} \oplus \ldots \oplus R^1 \cong R^{n(n-1)/2}$$
 as a vector space

 $T_{{\scriptscriptstyle \{\!e\!\}}}(SO(n)) \cong T_{{\scriptscriptstyle \{\!e\!\}}}(SO(n-k)) \oplus T_{{\scriptscriptstyle \{\!SO(n-k)\}}}(SO(n-k) \backslash SO(n)).$

Let x_{ij} be a coordinate system of $n \times n$ -matrices $\mathfrak{M}_n(R)$ and define $T_{(e)}(SO(n)) \longrightarrow \mathfrak{M}_n(R)$ by $X_e \longrightarrow (X_e(x_{ij}))$. Let g_1 be a variable in a neighborhood of the unit in SO(n). Since we have concerned with the right action,

$$(dR_{g}X_{e})(x_{ij}) = X_{e}(x_{ij}R_{g}) = X_{e}(x_{ij}(g_{1}g)) = X_{e}(\Sigma_{k}x_{ik}(g_{1})x_{ki}(g))$$

$$= \Sigma_{k}X_{e}(x_{ik})x_{kj}(g),$$
and so for each $g = \begin{bmatrix} 1 & & \\ & \ddots & \\ & 1 & \\ & & g_{k+11} \cdots g_{k+1n} \\ & & \vdots & \\ & & g_{n1} \cdots g_{nn} \end{bmatrix} \in SO(n-k) \subset SO(n),$ the isotropy

representation is given by

$$\begin{bmatrix} 0 & y_{12} & y_{13} \cdots & y_{1k} & y_{1k+1} & \cdots & y_{1n} \\ 0 & y_{23} & \cdots & & & \\ & & 0 & y_{k-1k} & y_{k-1k+1} & \cdots & y_{k-1n} \\ & & & 0 & y_{kk+1} & \cdots & y_{kn} \\ & & & 0 & y_{n-1n} \\ & & & & 0 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \\ & & g_{k+11} & \cdots & g_{k+1n} \\ & & & g_{n1} & \cdots & g_{nn} \end{bmatrix}$$

which is equal to $\{(k-1)\theta \oplus \rho_{n-k}\} \oplus \{(k-2)\theta \oplus \rho_{n-k}\} \oplus \cdots \oplus \rho_{n-k} = \{k(k-1)/2\} \theta \oplus k\rho_{n-k}$, where θ is the one dimensional trivial representation and ρ_{n-k} is the standard one. Thus we proved the proposition.

Now since $\Gamma(SO(n-k)) = O(k) \subset N(SO(n-k)) \subset SO(n)$, from the principal bundle $O(k) \longrightarrow O(k+r) \longrightarrow O(k+r)/O(k) = V_{k+r,r}$,

we obtain an associated bundle

 $SO(n-k)\backslash SO(n) \longrightarrow O(k+r) \times {}_{o(k)}[SO(n-k)\backslash SO(n)] \xrightarrow{p} V_{k+r,r^*}$

The total space is an SO(n)-manifold with one orbit type (SO(n-k)), (Proposition 4. 1, [2]). We denote by $V_{n,k,r}$ the total space. By Proposition 7, we have $T(V_{n,k,r}) = O(k+r) \times O(k) \{R^{k(k-1)/2} \times (SO(n-k) \setminus SO(n)\} \oplus$

 $O(k+r) \times_{O(k)} \{ \bigoplus_k V^{n-k} \times_{SO(n-k)} SO(n) \} \bigoplus p^*T(V_{k+r,r}).$

By W. A. Sutherland, [7], $V_{k+r,r}$ is parallelizable whenever r is greater than 1. Thus $_{n,k,r}$ admits at least dim $V_{k+r,r} = r(r+2k-1)/2$ -linearly independent invariant fields. Now we recall the representation f in Proposition 4. Since $\gamma v = \{f(\gamma)v\}\gamma$, then $f(\gamma)v = \gamma v\gamma^{-1}$. In the case of our example, for $A \in O(k)$,

$$\begin{pmatrix} \alpha & \beta \\ -\beta & \delta \end{pmatrix} \in \mathfrak{M}^{s}(R, n), \begin{pmatrix} A & 0 \\ 0 & I_{n-k} \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ -\beta & \delta \end{pmatrix} \begin{pmatrix} {}^{t}A & 0 \\ 0 & I_{n-k} \end{pmatrix} = \begin{pmatrix} A\alpha^{t}A & A\beta \\ -\beta^{t}A & \delta \end{pmatrix}$$

Thus $V_{n,k,r}$ admits at least r(r+2k-1)/2-linearly independent invariant fields.

Remark. The homomorphism $T_{\{e\}}(SO(n)) \longrightarrow \mathfrak{M}_n(R)$ defined above is the restriction of the isomorphism in § 3 of Chapter 4, [1], which is an isomorphism between the Lie algebra of GL(n, C) and $\mathfrak{M}_n(C)$, the Lie algebra of all $n \times n$ -matrices of complex entries.

OSAKA CITY UNIVERSITY AND SHIMANE UNIVERSITY

••••••

References

- [1] C. Chevalley, Theory of Lie groups 1, Princeton (1946).
- [2] Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups 1, Amer. J. Math. 89 (1967), 705-786.
- [3] D. Husemoller, Fibre bundles, McGraw-Hill, (1966).
- [4] H. Matsunaga, K_G -groups and invariant vector fields on special G-manifolds, Osaka J. Math. 9 (1972), 143-157.
- [5] G. Segal, Equivariant K-Theory, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968) 129-151.
- [6] N. E. Steenrod, The topology of fibre bundles, Princeton, (1951).
- [7] W. A. Sutherland, A note on the parallelizability of sphere bundles over spheres, J. London Math. Soc. 39 (1964), 55-62.