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On the Quotient Topological Ordered Spaces.

Takuo Miwa

(Received September 26, 1973)

In the theory of general topology, the following theorem is well known(c. f. [2]or [4]).
For a topological space X, and an equivalence relation R on X, if the quotient space X/R is
Hausdorff, then R is closed in the product space X2. If the projection p of a space X onto the
quotient space X/R is open, and R is closed in X2, then X/R is a Hausdorff space. The analogy
of this theorem in a topological ordered space has been obtained in the case where X is a
compact ordered space (c. f. [9] Proposition 9). In this paper, we shall study the sufficient
conditions for X/R to be Ts-ordered, and give some examples. For the problem of this kind,
S. D. McCartan studied in[6]a particular quotient ordered space (that is, a quotient ordered
space by a particular equivalence relation) which inherites some interesting properties of the
domain ordered space.

The author wishes to express his gratitude to Professor Osamu Takenouchi for his helpful
suggestions and encouragement in the preparation of this paper.

§1. Preliminaries.

In this section, we shall present some definitions and propositions which are
used in the later sections. Let X be a topological space and partially ordered
space, then we call X a topological ordered space. The partial (or quasi) order
is denoted by <. Let R be an equivalence relation on X. The topology of
the quotient spacz X/R is the usual quotient topology. Let p be a natural
projection of X onto X/R. The order in the quotient X/R is variously
considered (c. f. [1] §1 Exercise 2, [6] and [9]). In this paper, we adopt the
definition of the order in [9] where it is denoted by <, i. e. p(x) < p(y) in
X/R if and only if there exist ' € p~'(p(x)), ' € p~(p(y)) such that 2/ < y'.
By this order, X/R is a quasi ordered space, but in general not necessarily a
partially ordered space. In a partially ordered space X, for any x, vy © X, x||y
means that x ﬁ; y and y £ z.

Definition 1. (c. f. [7]) Let X be a partially ordered space, then [x, =] and
[<-, 2] denote the sets {y E X : <y} and {y & X : y < a} respectively.
It ACYCX, we put iy (A) = {U {la,>] : a € A}} NY 4y (4) = {U {[«,
al ta e A}y NY. A is said to be increasing (decreasing) in Y if and only if
A =iy (A) (A = dy (4)).

Definition 2. (c.f. [7])Let X be a topological ordered space, then X is said
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to be T\-ordered (T.-ordered) if and only if for each pair a, b6 © X such that
a <b, there exist an increasing neighbourhood U of a and a decreasing
neighbourhood V of & such that b U and ac V (UNV = ¢).

If X is T\-ordered (T:-ordered), then it is clear that X is a T'-space (Hausdorff
space). Also, X is T,-ordered if and only if the partial order of X is closed,
that is, its graph is closed in X? (c. f. [8] p. 26 Proposition 1).

In this paper, we use a notion of a proper mapping. For this, see [2] § 10.

Next, we consider the following conditions in a topological ordered space X.

(C. 1) if(K) and dy(K) are closed for each compact set K of X.
(C. I) i(F) and d(F) are closed for each closed set F of X.

If X is Hausdorff, then (C. II) implies (C. I). The converse of this fact
does not hold, even if X is locally compact normal and 7T:-ordered. For this,
see §3 Example 2. Also, if X is compact, then (C. I) implies (C. II). The
converse of this fact does not hold. Indeed, although X in §3 Example 4
is compact, (C. II) does not imply (C. I).

The following pfopositions are useful in the next section.

Proposition 1. Let X be a locally compact Hausdorff space. Then, X is
Ty-ordered if and only if X satisfies (C. I).

Proof. The necessity and the sufficiency are clear by [8] p. 44 Proposition
4, and [5] Theorem 3. 3 respectively. 0. E. D.

Remark 1. The necessity always holds by [8] p. 44 Proposition 4. However,
if X is not locally compact Hausdorff, then the sufficiency does not necessarily
hold. For this, see §3 Example 1.

Proposition 2. Let X be a regular space satisfying (C. II). Then, X is
T,~ordered.

Proof. For z, y E X, x <\i vy, since [«, y] is closed, X—[<, y] is an increasing
open neighbourhood of . Since X is regular, there exists a closed neighbourhood
U of z such that U C X—[<, y]. Then, i(U) C X—[¢, y], and #,(U) is a
closed increasing neighbourhood of x. Therefore, X—:,(U) is an open decreasing
neighbourhood of y. Thus, X is Ty-ordered. Q. E. D,

Remark 2. The converse of this proposition does not hold. For this, see
8§ 3 Example 2.

Remark 3. Let X be a T,-ordered space satisfying (C. II). Then, the fact
that X is regular does not necessarily hold. For this, see §3 Example 3.

Remark 4. This proposition does not hold by merely assuming that X is
a T,-ordered space satisfying (C. II). For this, see § 3 Example 4. It remains
an open question as to whether the assumption of Proposition 2 may be relaxed
to the one that X is a Hausdorff space satisfying (C. II).
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§2. Main theorems.

In this section, we prove the main theorems. H. A. Priestley proved the
following theorem in [9].

Theorem [H. A. Priestley]. Let X be a compact ordered space. If X/R is
a topological ordered space, X/R is a compact ordered space if and only if X/R
is a Hausdorff space.

We study the sufficient conditions for ¥/R to be T.-ordered.

Theorem 1. Let X be a locally compact Ty-ordered space. Assume that p is a
proper mapping. If X/R is a topological ordered space, then X/R is a locally
compact T-ordered space.

Proof. Since X is locally compact Hausdorff and p is proper, X/R is locally

compact Hausdorff by [2] §10 Proposition 9. Also, by §1 Proposition 1, X
satisfies the condition (C. I). Then, since iyz(K) = p(ix(p7'(K))), duya(K) = p
(d(p~(K))) for each compact set K of X/R, p~'(K) is compact by [2] §10
Proposition 7, iy(p7'(K)) and d,(p7'(K)) are closed by that X satisfies (C. I),
and p(i(p~'(K))) and p(d,(p~'(K))) are closed by the assumption of p, therefore
ive(K) and dyx(K) are closed. Thus, X/R satisfies the condition (C. I). By
§ 1 Proposition 1, X/R is T,-ordered. O. E. D.

Remark 5. In this theorem, the condition that p is proper is essential. For
this, see §3 Example b.

Remark 6. In this theorem, the condition that X is T,~ordered is essential.
Indeed, S. D. McCartan showed in [7], Example 6 the existence of a space
which is a compact Hausdorff T-ordered space but not T,-ordered space.

Remark 7. This theorem does not hold by merely assuming that p is a
closed mépping. Indeed, let X be a locally compact Hausdorff space but not
a normal space. (For instance, Tychonoff's example.) Then, by the same way
as [3] §4 Exercise 14 we can construct an equivalence relation R on X such
that p is closed but not proper and X/R is not Hausdorff. If we introduce
the discrete order as the partial order in X, then we seec that Theorem 1
does not hold.

Remark 8. Without p not being proper or X not being 7T,-ordered, X/R
can be T.-ordered. For these, see §3 Example 6 and 7.

Theorem 2. Let X be a regular space satisfying (C. II). Assume that p is
a proper mapping. If X/R is a topological ordered space, then X/R is a regular
space satisfying (C. IL). Therefo‘re, X/R is T,~ordered by §1 Proposition 2.

Proof. Since X is regular and p is proper, X/R is regular. For this, see [2]
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8 10 Exercise 5 (a) and § 10 Corollaire 4 of Proposition 5. Next, since iyx(F) =

plx(p™(F))) and dyz(F) = p(d(p~'(F))) for all closed set F of X/R, therefore
ixr(F) and dyx(F) are closed. Thus, X/R is a regular space satisfying (C. II).
Q. E. D,

Remark 9. In this theorem, the assumption of p is essential. For this, see
§ 3 Example 5.

Remark 10. Note that the following fact holds in general. Let X be a
Hausdorff space satisfying (C. II). Assume that p is proper. Then, X/R is a
Hausdorff space satisfying (C. II). Therefore, if an opsn question in Remark
4 be answered in the affirmative, then X/R can be T,-ordered under the

assumption of this remark.

3. Examples.

In this section, we give some examples. We use N to denote the set of
all natural numbers.

Example 1. Let X be a real line. We define the topology of countable
complements on X by declaring open all sets whose complements are countable,
together with ¢ and X. Next, we introduce the discrete order as the partial
order in X. By the above topology and order, X is a topological ordered space.
Then, we easily see that the only compact sets are finite subsets of X, and a
finite subset of X is closed. Therefore, X satisfies the condition (C. I). However
X is not Ty-ordered. \

Ezxample 2. Let X be a set {(a,x,9) : a=0 or'l, x& [0, 1], y is a real
number}. The topology on X is the usual topology. Next, we define a partial
order in X as follows : (a, x, y) < (b, u,v) if and only if a=0,b6=1, x =
u=x0, y =l ora=2b x=u, y=v. By the above topology and order, X
is a locally compact normal space and T2~ordered Then, F = {(O ) n) :
ne N1 is closed in X, but (F) = F U {(1 ) y):nE N,y is a real number}
is not closed Therefore, X does not satisfy (C. II).

Example 3. Let X be a set {(a,2) : a=0 or 1, x &[0, 1]}. We define
the topology on X as follows : the neighbourhood system of (a,0) (¢ =0 or
1) is {Ue(a, )~ {(a, 1) : n € N}: 0 <6 <1, Uz (@, 0) is an open ball of (a, 0}
and the neighbourhoods of other points as usual. Next, we define the partial
order on X as follows : (a, ) < (b, y) ifand onlyif a =0, 6 =1, z =1y =% s
nEN, or a=b, x=1y. By these, X is T;-ordered and satisfies (C. II).
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However, X is not regular.

Ezample 4. Let X be a countable set. We define the topology of finite
complements on X by declaring open all sets whose complements are finite,
together with ¢ and X. Next, we introduce the discrete order as the partial
order in X. Then, all subsets of X are compact, and all closed subsets of X
except ¢ and X are finite subsets. By the above topology and order, X is a
T,-ordered space satisfying (C. II). However, X is not T,-ordered.

Example 5. Let X be a set {(a, z,y) : a=0 or 1, z © [0, 1], and y is real
number}. We define an equivalence relation R on X as follows : (a, z, y) R
(b, u, v) if and only if @ = b, z = u. The topology on X is the usual topology.
We define the partial order in X as follows : (b, u, v) < (a, z, ») if and only
ifa=1 06=0, x:u#o,y:vz%; or a=b, xt=u, y=v. Then, X
is a locally compact T,-ordered space satisfying (C. II), but p is not proper.
If we denote p ((a, z, v)) = (a, )%, (0, 0)*!| (1, 0)* in X/R. Then, there do
not exist an increasing neighbourhood U of (0, 0)* and a decreasing neighbo-
urhood V of (1, 0)* such that U M V = ¢. Therefore, X/R is not T,-ordered.

Ezample 6. Let X be a real plane. The topology on X is the natural
topology. We define a partial order in X as follows : (x v) < (z, y) if and only
if y=v=0, u<z, z and « are real numbers, or y =v =1, u <z, x and
u are rational numbers, or x = u, y = v. Next, we define an equivalence
relation R on X as follows : (z, y)R (u, v) if and only if £ = . Then, X is
locally compact Hausdorff 7T)-ordered but not 7T:-ordered, and p is not
proper. However, X/R is T,-ordered.

Example 7. Let X be {a, b, c;. We define the topology on X as follows :
{a} = {a}, {b} = {c} = {b, ¢} where {a} is a closure of {a}, etc. We introduce
the discrete order as the partial order in X. Next, we define an equivalence
relation R on X as follows: z Ry if and only if =y = a or {z, y} = {b, c}.
Then, X is not even T,-ordered, however X/R is T.-ordered.
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