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On some Quasigroups of Algebraic Models
of Symmetric Spaces 1I

Michihiko KIKKAWA

(Received September 12, 1973)

In the previous paper [3], we introduced a concept of symmetric loop and showed that it
is obtained, interchangeably, from a quasigroup of reflection with a base point. The latter
is an algebraic model of symmetric space ({4], [5)). In this paper, we shall investigate
further properties of symmetric loop G about di-associativity (§1)and show that the left
inner mapping group is a subgroup of AutG (§2). In §3, we shall give an embedding of G
into a group AutGy, the automorphism group of the quasigroup of reflection of G. The
method of embedding was suggested, essentially, by Professor Kiyosi Yamaguti in his recent
letter to the author.

1. Di-associativity of symmetric loops.

We recall a definition of symmetric loop given in [3].

DEFINITION. A loop G is called a symmetric loop if it satisfies the following
conditions ;

(1.1) G is left di-associative (in the weak sense), i.e., G is power associative

and both of equations z(xy) = (zx)y, = '(xzy) =y hold for all x, y & G,

(1. 2) z(yyz) = (xy)(xzy)(z~'z) holds for all z,y, =z & G,
(1. 3) the quadratic mapping Q : G —> G defined by Q(x) = x° is bijective.
PrROPOSITION 1. Let G be a symmetric loop. Then,
) (xy)t =z
i) G is left di-associative in the strong sense, 1. e.,
(1. 4)  Sflar)o flz)) = flar+o)
holds for any integers p and q, where fx denotes a left translation of G by an
element x of G.

Proof. i) is easily obtained by putting z =y ' in (1. 2). For the proof of
ii), we shall prove a formula f(z») =(fz)" for positive integer n by induction.
Then the formula (1. 4) will be shown for any positive integers p and ¢, and
its validity for any integers will be found by noting the property (fz)™' =
Sz,

Now, assume that the formula fiz»)= (fz)" holds for all positive integers
n<m. If mis odd, set m = 2k—1, Then the left di-associativity of G and the
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assumption of the induction imply that flant) = farat = flak) o flat) = (f2)
olfa) = (fz)"*'. If m is even, set m = 2k. Then fla?i+))= (f2)"*" holds.
In fact, since G is power associative and the quadratic mapping ( has an
inverse, we have 2%t = (Z)"**" = (2'z) (z'Z), where & = Q7'(x). Applying
the formula frofyofz = flz9)(x5) obtained from (1. 2) (Theorem 4 in [3]), and
taking into account of ‘the assumption of the induction, we have flziz)aiz) =
(fo)ofzo(fz) = (fz)**'. The induction is thus completed.
DEFINITION. A loop G is called a Moufang loop if the equation

(1.5) aly(xz)) = ((xy)x)z

holds for all z, v, 2 of G.

It is well known that the above equation is equivalent to one of the following
equations ;

ay(zy)) = ((xy)2)y,
(av) (zx) = (x(y2))x,

and that every Moufang loop is di-associative (Moufang’s Theorem). For the
details, see [2].

The following results about commutative Moufang loops will be used later.
For the proofs we refer to [1] (Theorem 7C).

LEMMA. If G is a commutative Moufang loop, then

) the subset F of G consisting of all elements of finite order is a normal

subloop of G,
ii) the quotient loop G/F is an Abelian group.

PROPOSITION 2. A loop G with a surjective quadratic mapping Q has the
Following properties if and only if G is a commutative Moufang loop ;

) G is left and right di-associative in the weak sense,

i) the equation (1. 2) holds.

Proof. Suppose that G is a loop with surjective mapping Q and that it
satisfies i) and ii). Then, in the equation (l.2), substituting z by an identity
¢ of G, we have

(1.6) x(yy) = (zy) (xy)a™"
Since the left hand side of this equation can be replaced by (zy)y, we can see
that G is commutative. On the other hand, from (1. 2), we have
x(y (x2)) = (z¥) (3) =,
where ¥ & Q7 '(y).. The right hand side of this equation is equal to ((zy)z)<z,

for (1. 6) implies (z(3y))x = (xy) (xy). Thus we can conclude that G satisfies
the Moufang axiom (1. 5).

Conversely, let G be a commutative Moufang loop with a surjective quadratic



On Some Quasigroups of Algebraic Models of symmetric Spaces II. 31

mapping. Since G is di-associative, it is, of course, left and right di-associative.
We are only to prove the formula (1. 2). Since (7 is commutative, the Moufang
axiom (1. 5) is equivalent to

x(y (x2)) = (zxy)=.
In this equation, if ¥y and az are substituted by y° and =, respectively, it
holds ;

2(yyz) = ((2x) (yy)) (a7'z),
which shows (1. 2), for (xx)(yy) = (xy)(xy) is valid in .

THEOREM 1. Let G be a lop. A nccessary and sufficient condition that G
should be a di-associative symmetric loop is that G be a commutative Moufang
loop with a bijective quadratic mapping Q(x) = x°.

In this case, the quotient loop G/F is an Abelian group, where F is a subloop
of G consisting of all clements of finite order.

Proof. This is an immediate consequence of Proposition 2 and the preceding

Lemma.

2. Left inner automorphisms.

DEFINITION. Let G be a loop. For z, y of G, a mapping Lz, y = fz}ofzo
fy of G onto itself is called a left inner mapping of G, where fr denotes a
left translation by = & G. A group L(G) of transformations of G generated
by the set of all left inner mappings is called the lefi inner mapping group
of G.

THEOREM 2. Let G be a symmetric loop. Then the left inner mapping
group W(G) is a subgroup of automorphisms group of G.

Proof. Tt is sufficient to show that every left inner mapping is a homo-
morphism of G. We shall prove it by mecans of the results obtained in the
previous paper [3]. Let (G, ) be a quasigroup of reflection associated with the
symmetric loop G (Theorem 2 in [3]). Then every left translation of G is a
homomorphism of (G, ) (Lemma 8 in [3]). That is, the equation

(yxz) = (xy)s(rz)
holds for all z,y, = = G, where yxz = yvz™' by definition.

Hence every left inner mapping Lz, y is also a homomorphism of (G, ).
Now, let z, ¥, # and v be elements of G. The multiplication in the symmetric
loop can be expressed by that of (G, 4) as follows ;

2. 1) uv = alexv),
where e is an identity of the loop and @ = Q '(«). (Theorem 2, [3]).
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Thus we have

(2.2) (Lx,yu) (Lyyv) = (m>*<e*(Lx,yv>> = (W)*(Lx,y@*v))-
On the other hand, an equation

2.3) Lyyu= Liya
holds, because Lyyuge = Lyyu = Ly y(axe) = (L yit)xe. Therefore from (2. 1),
(2.2) and (2. 3), it follows that the left inner mapping Lz,y is an automorphism
of G.

REMARK. If Gis a left di-associative loop, an inverse of a left inner mapping
Lz, y is also a left inner mapping. Hence the left inner mapping group L(G)
consists of all finite products of left inner mappings of G.

PROPOSITION 3. Let G be a left di-assoeiative loop (in the weak sense), in
which all left inner mappings are automorphisms. Then the equation

@2.4) () =2y "=e™))
holds for all z, vy & G.

Proof. Since a left inner mapping Lyz = f5:0fyofz is a homomorphism of
G, we have

Lyz = (Ly2")" = ((52)7 )"

In this equation, if we set x = (y2)™' and substitute 2 with y 'z

, we have
the required formula.

REMARK. Suppose that the loop G in the above Proposition is also right
di-associative (even if in the weak sense). Then we have (zy)™' = y~'27}, that
is, in this case, a transformation z—>z' of G is an anti-automorphism of
G. The converse is valid more generally.

PROPOSITION 4. Under the assumption in Proposition 3, the following threc
equations are equivalent ;

D (@t =27y

i) a(yyz™") = (xy)(x2) 7,

i) z(yyz) = (zy)(xy)(x7'2).

Proof. i) implies ii). In fact, in the formula (2. 4), if z is substituted with
z7', it holds

(2.5) zzy =y '),
and also

(2.6) 2(zzy™) = 2(y(y"'2)").

Moreover, if = and y in (2. 5) are substituted with zz and zy, respectively, it
follows

2.7 (z2)(zz)(zy)™ = (29)((&¥)7'(z2))"

On the other hand, an equation Lz, y(y™'z)’ = (Lz y(y~'x))" implies
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(2.8) () '™ 2)) = (2007 (z2))"

Comparing the right hand sides of (2. 6), (2.7) and (2. 8), we have an equation
axy™) = (zz)(2z2)(y)™",

which is the same as ii). Also, iii) follows from ii) under the assumption i).

Conversely, 1) s obtained by setting y = 27" in ii) or z = y~' in iii).

THEOREM 3. A left di-associative loop G is a symmetric loop if and only
if it satisfies the following conditions ;

1) the left inner mapping grovp 1(G) is a subgroup of the automorphism

group of G,

ii) the quadratic mapping is bijective,

i) (zy)™' =27y

Proof. By the definition of symmetric loop and by Proposition 1 and
Theorem 2, it is seen that a symmetric loop has the properties i), ii) and iii).
Conversely, if G is a left di-associative loop whose left inner mappings are
automorphisms of G and if it satisfies iii), then Proposition 4 shows that G
satisfies the axiom (1. 2) of symmetric loop. Therefore, G is a symmetric loop

if it satisfies ii) additionally.

3. Embedding of symmetric loop into a group.

Let G be a symmetric loop. An associated quasigroup of reflection, Gy,
of G is a quasigroup with the same underlying set as G and with a multipli-
cation defined by

(3. 1) xyv = zxy\.

The multiplication of the loop G is expressed, reciprocally, by

(3. 2) zy = Zylewy).

For the details, see [3]. The axiom (1. 2) of symmetric loop implies that any
left translation fz of G is an automorphism of G,.

Denote AutG and AutG, the automorphism groups of G and G, respectively.

PROPOSITION 5. AutG is a subgroup of AutGy consisting of all elements o
of AutGy such that ale) = e.

Proof. Suppose « be an element of AutG. Then afe) = e and alryy) =
alzzy™) = alz)a(x)a(y)™ = alz)xa(y). On the other hand, if o & AutGy
satisfies a(e) = ¢, then, by (3.2), we have alzy) = a(Z«(exy)) = a(®)s(esa(y)).
Since Zye = z, it follows that a(x) = a(Zxe) = a(Z)xe, which shows alz) =
a(x). Thus we have alzy) = a(@)x(exa(y)) = a(z)aly).

THEOREM 4. Let G be a symmetric loop. Then :
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i) A mapping j . G—> AutGy defined by j(x) = fz2 is injective.

i) The image j(G) =8 is an AutG-invariant subset of AutGy.

i) S M AutG = {id}.

iv) A mapping k : G—> AutGy/AutG (quotient space) defined by k(x) =

[fz] is bijective, where [fz] denotes a coset with a representative fzx.

v) AutGy/AutG is a symmetric loop with a multiplication defined by

[fz] [fy] = [fzofyl, and k is an isomorphism of the symmetric loops.

Proof. i) Since any left translation of G is an automorphism of Gy, j is
well defined, and i) follows from the fact that the quadratic mapping Q of G
is bijective. ii) Suppose fxt © S and @ & AutG. Then aofzzoa™ is also an
element of S. Indeed, aofa¥(z) = alzzz) = a(x)a(x)a(z) = fa@)(z)»a(z), for
any element z © G. Thus acj(z) = jla(x))oa holds. iii) If o &S N AutG,
then a = f2 for some x & G and ale) = e. Hence, we have 2% = e, which
shows z == ¢ since the quadratic mapping is injective. Therefore, & must be
the identity mapping. iv) If fz'ofy belongs to AutG, then f;'ofy(e) = e, and
we have z7'y = e. Hence the mapping % is injective. On the other hand,
let & be any element of AutGy. Then, a 'ofue)e) = a '(ale)e) = e. Therefore,
it follows by Proposition 5 that a 'ofae) = AutG, i.e., [a] = [fa@)]. The
mapping & is thus surjective. v) In Theorem 2, we proved that any left inner
mapping fzyofzofy of G is an automorphism of G. Hence, the coset [fzy]
coincides with [fzofy]. Since each coset of AutGy/AutG has a unique
representative of left translation of G, the coset [fzy] is determined uniquely
by the cosets [fz] and [fy]. Thus the multiplication in AutG,/AutG is
well defined and % is an isomorphism of the loops.

THEOREM 5. Let j be the mapping of a symmetric loop G into the auto-
morphism group AutGy of Gy, defined in Theorem 4. Then :

) j(xy) = j(@)oj(y)os(x), where j(x) is a square root of j(x).

i) The subset S = j(G) of AutGy satisfies the followings ;

1) ideS,

(2) S'=S§,

3) if a, BES, then aoffoa & 8,

(4) any element o E 8 has a unique square root @ in S.

Conversely, let G be a group with multiplication denoted by aoS. Then, any
subset S of G satisfying (1), (2), 8) and (4) is a symmetric loop with a new
multiplication defined by af3 = GoBed. In this case, the identity, inverse
element and any power of an element in the loop coincide with those in the

group, respectively.
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Proof. 1) is evident since fzofyofz = flzy» holds in G, and ii) is an
immediate consequence of Theorem 4 in [3]. To prove the second part of
the theorem, we note that any subset of a group closed under a binary
operation ax3 = o3 ‘ot is a reflection space (see [4], [5]), that is, it satisfies
the axioms; axa = @, axlaxB) = [ and ax(Bx7) = (axP)x(axy). Since any
clement of 8 has a unique square root in S, (S, %) itself is a quasigroup of
reflection. Indeed, for any «, 5 & S, the equation zyxa = @ hasa unique
solution x = @o(a "oFoctJodt. Henceforth, there can be defined a symmetric
loop on S with the identity element of G as that of the loop, as was studied
in our previous paper [3]. (Theorem 1 in [3]). In this case, the loop multip-
lication /3 on S is expressed, by definition, as (3. 2), which is equal to o 5oa.
The last assertion of the theorem is clear from this expression of multiplication.
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