Some Remarks on Regular Extensions of Cliffordian Semigroups.

Teruo IMAOKA, Nobuyuki OKAMOTO, Takuo MIWA and Miyuki YAMADA

(Received September 11, 1973)

0. Introduction.

One of the authors has shown in [3] the following results :

Let $K = \Sigma \{K_{\lambda} : \lambda \in A\}$ be a right Cliffordian semigroup (see [3]; throughout this paper, any terminology and notation should be referred to [3], unless otherwise stated), and I'(A) an inverse semigroup having A as its basic semilattice¹. For each $\lambda \in A$, let I_{λ} be an \mathscr{L} -class of K_{λ} . Then,

 $\mathscr{I} = \Sigma \{ I_{\lambda} : \lambda \subseteq \Lambda \}$ (Σ means the disjoint sum) is a lower partial chain of left groups $\{ I_{\lambda} : \lambda \subseteq \Lambda \}^{\circ}$. Since K is a right Cliffordian semigroup, there exists an \mathscr{P} -class J_{λ} of K_{λ} for each $\lambda \in \Lambda$ such that $\mathscr{C} = \Sigma \{ E_{\lambda} : \lambda \in \Lambda \}$, where E_{λ} is the set of idempotents of J_{λ} , is an upper partial chain of right zero semigroups $\{ E_{\lambda} : \lambda \in \Lambda \}$. Now, let u_{λ} be a representative of K_{λ} for each $\lambda \in \Lambda$ and put $U = \{ u_{\lambda} : \lambda \in \Lambda \}$. Let $\Delta = \{ \alpha_{(\tau,\tau)} : \gamma, \tau \in \Gamma \} \cup \{ \beta_{(\tau,\tau)} : \gamma, \tau \in \Gamma \}$ be a collection of mappings $\alpha_{(\tau,\tau)}$ and $\beta_{(\tau,\tau)}$ such that

- (0. 1) (I) $D(\alpha_{(\tau,\tau)}) = D(\beta_{(\tau,\tau)}) = E_{\tau^{-1}\tau} \times I_{\tau\tau^{-1}}$; $R(\alpha_{(\tau,\tau)}) \subset I_{\tau\tau(\tau\tau)^{-1}}$ and $R(\beta_{(\tau,\tau)}) \subset E_{(\tau\tau)^{-1}\tau\tau}$, where $D(\xi)$, $R(\xi)$ denote the domain and the range of ξ respectively;
- (II) for $q \in E_{\tau^{-1}\tau}$, $t \in I_{\tau\tau^{-1}}$, $h \in E_{\tau^{-1}\tau}$ and $v \in I_{\delta\delta^{-1}}$, $(q, t)\alpha_{(\tau,\tau)}((q, t)\beta_{(\tau,\tau)}h, v)\alpha_{(\tau\tau,\delta)} = (q, t(h, v)\alpha_{(\tau,\delta)})\alpha_{(\tau,\tau\delta)}$ and $(r, t(h, v), r) = (h, v)\alpha_{(\tau,\tau)}$
 - and $(q, t(h, v)_{\alpha(\tau,\delta)}) \beta_{(\tau,\tau\delta)}(h, v) \beta_{(\tau,\delta)} = ((q, t)\beta_{(\tau,\tau)}h, v)\beta_{(\tau,\delta)};$
- (III) for $\gamma \in \Gamma$, $p \in I_{\gamma\gamma^{-1}}$ and $q \in E_{\gamma\gamma^{-1}\gamma}$, there exist $k \in I_{\gamma\gamma^{-1}\gamma}$ and $n \in E_{\gamma\gamma^{-1}}$ such that $p(q, k)\alpha_{(\gamma,\gamma^{-1})}((q, k)\beta_{(\gamma,\gamma^{-1})}, n, p)\alpha_{(\gamma\gamma^{-1},\gamma)} = p$.

¹⁾ The set B of idempotents of an inverse semigroup G constitutes a semilattice. This semilattice B is called the basic semilattice of G. An inverse semigroup G having B as its basic semilattice is sometimes denoted by G(B).

Let S be a partial groupoid which is a union of a collection of pairwise disjoint subsemigroups {T_i: ∂ ∈ Λ} where Λ is a semilattice. If x ∈ T_i, y ∈ T_i, and ∂ ≤ γ [γ ≤ δ](in Λ) imply xy is defined (in S) and xy ∈ T_i [xy ∈ T_i], and, if ξ ≤ ∂ [∂ ≤ ξ] and z ∈ T_ξ imply (xy)z = x (yz), then S is called a lower [upper] partial chain of the semigroups {T_i: ∂ ∈ Λ}.

If further the collection $\Omega = \{\alpha_{(\lambda,\delta)} : \lambda, \delta \in \Lambda\} \cup \{\beta_{(\lambda,\delta)} : \lambda, \delta \in \Lambda\}$ satisfies the following

(IV) $u_{\lambda} jku_{\delta} = (j, k)\alpha_{(\lambda,\delta)} u_{\lambda\delta} (j, k)\beta_{(\lambda,\delta)}$ for $\lambda, \delta \in \Lambda$, $j \in E_{\lambda}$ and $k \in I_{\delta}$, then $S = \{(i, \gamma, j) : \gamma \in \Gamma, i \in I_{\gamma\gamma^{-1}}, j \in E_{\gamma^{-1}\gamma}\}$ becomes a regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ under the multiplication defined by

(0. 2) $(i, \gamma, j)(k, \tau, h) = (i(j, k)\alpha_{(\tau, \tau)}, \gamma\tau, (j, k)\beta_{(\tau, \tau)}h).$

This S is denoted by $C(\Gamma, K(\Lambda); \mathcal{I}, \mathcal{C}, \{u_{\lambda}\}, \{\alpha_{(\tau,\tau)}\}, \{\beta_{(\tau,\tau)}\})$, and is called a complete regular product of $K(\Lambda)$ and $\Gamma(\Lambda)$. Conversely every regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ can be obtained as a complete regular product of $K(\Lambda)$ and $\Gamma(\Lambda)$.

Every element x of K_{λ} is uniquely expressed in the form

 $x = iu_i j, i \in I_i, j \in E_i$ (see [3]).

Hence, $K = \{iu_{\lambda}j : \lambda \in \Lambda, i \in I_{\lambda}, j \in E_{\lambda}\}$. We shall call Δ above a CRfactor set in $K = \{iu_{\lambda}j : \lambda \in \Lambda, i \in I_{\lambda}, j \in E_{\lambda}\}$ belonging to $\Gamma(\Lambda)$. The semigroup S above will be sometimes called the regular extension of $K(\Lambda)$ determined by $\Gamma(\Lambda)$ and $\{\mathcal{I}, \mathcal{C}, \{u_{\lambda}\}, \Delta\}$.

As a special case, we next consider the case where each E_{λ} consists of a single element, say e_{λ} . If we denote each element

 $(i, \gamma, e_{r^{-1}\tau}) \in S = C(\Gamma, K(\Lambda); \mathcal{I}, \mathcal{C}, \{u_{\lambda}\}, \{\alpha_{(r,\tau)}\}, \{\beta_{(r,\tau)}\})$ by $[i, \gamma]$ and define $\alpha_{(r,\tau)}^* : I_{\tau\tau^{-1}} \to I_{\tau\tau(\tau\tau)^{-1}}$ by $(e_{r^{-1}\tau}, k)\alpha_{(r,\tau)} = k \alpha_{(r,\tau)}^*$ (for each pair (γ, τ) of elements γ, τ of Γ), then the family $\Delta^* = \{\alpha_{(r,\tau)}^* : \gamma, \tau \in \Gamma\}$ satisfies the following :

(0. 1)* (I)* $D(\alpha^*_{(\tau,\tau)}) = I_{\tau\tau^{-1}}; R(\alpha^*_{(\tau,\tau)}) \subset I_{\tau\tau(\tau\tau)^{-1}};$ (II)* for $t \in I_{\tau\tau^{-1}}$ and $v \in I_{\delta\delta^{-1}},$

 $(t\alpha^*_{(\tau,\tau)})(v\alpha^*_{(\tau,\delta)}) = (t(v\alpha^*_{(\tau,\delta)}))\alpha^*_{(\tau,\tau\delta)};$

(III)* for $\gamma \in \Gamma$, $p \in I_{\gamma\gamma^{-1}}$, there exists $k \in I_{\gamma^{-1}\gamma}$ such that $p(k\alpha^*_{(\gamma\gamma^{-1})})(p\alpha^*_{(\gamma\gamma^{-1},\gamma)}) = p$.

Further, the family $\Omega^* = \{\alpha^*_{(\lambda,\delta)} : \lambda, \delta \in \Lambda\}$ satisfies (IV)* $u_{\lambda}e_{\lambda}ku_{\delta} = k\alpha^*_{(\lambda,\delta)}u_{\lambda\delta}e_{\lambda\delta}$ for $\lambda, \delta \in \Lambda$ $k \in I_{\delta}$.

Now, by using this family Δ^* , the semigroup S above can be expressed as follows :

(0.3) $\begin{cases} S = \{[i, \gamma] : \gamma \in \Gamma, i \in I \} \\ \text{the multiplication in } S : [i, \gamma][k, \tau] = [i(k\alpha^*_{(\tau,\tau)}), \gamma\tau]. \end{cases}$

Conversely, let $\Delta^* = \{\alpha^*_{(r,\tau)} : \gamma, \tau \in \Gamma\}$ be a family of mappings satisfying (I)*, (II)*, (III)*, (IV)* of (0, 1)*. Define $\alpha_{(r,\tau)} : E_{r^{-1}\tau} \times I_{\tau\tau^{-1}} \longrightarrow I_{(r\tau)(r\tau)^{-1}}$ and $\beta_{(r,\tau)} : E_{r^{-1}\tau} \times I_{\tau\tau^{-1}} \longrightarrow E_{(\tau\tau)^{-1}\tau\tau}$ as follows :

 $(e_{\tau^{-1}\tau}, k)\alpha_{(\tau,\tau)} = k\alpha^*_{(\tau,\tau)}, \ k \in I_{\tau\tau^{-1}} \text{ and } (e_{\tau^{-1}\tau}, k)\beta_{(\tau,\tau)} = e_{(\tau\tau)^{-1}\tau\tau}, \ k \in I_{\tau\tau^{-1}}.$

Then, $\Delta = \{\alpha_{(\tau,\tau)} : \gamma, \tau \in \Gamma\} \cup \{\beta_{(\tau,\tau)} : \gamma, \tau \in \Gamma\}$ satisfies (I), (II), (III), (IV) of (0, 1) and hence we can consider the complete regular product $C(\Gamma, K(\Lambda); \mathcal{I}, \mathcal{C}, \{u_{\lambda}\}, \{\alpha_{(\tau,\tau)}\}, \{\beta_{(\tau,\tau)}\}).$

In this system, the product of two elements $(i, \gamma, e_{\tau^{-1}\tau}) = [i, \gamma]$ and $(k, \tau, e_{\tau^{-1}\tau}) = [k, \tau]$ is given as follows:

$$\begin{split} [i, \gamma] [k, \tau] &= (i, \gamma, e_{\tau^{-1}\tau})(k, \tau, e_{\tau^{-1}\tau}) = (i(e_{\tau^{-1}\tau}, k)\alpha_{(\tau,\tau)}, \gamma\tau, (e_{\tau^{-1}\tau}, k)\beta_{(\tau,\tau)} e_{\tau^{-1}\tau}) \\ &= (i(k\alpha^*_{(\tau,\tau)}), \gamma\tau, e_{(\tau^{\tau})^{-1}\tau\tau} e_{\tau^{-1}\tau}) = (i(k\alpha^*_{(\tau,\tau)}), \gamma\tau, e_{(\tau^{\tau})^{-1}\tau\tau}) \\ &= [i(k\alpha^*_{(\tau,\tau)}), \gamma\tau]. \end{split}$$

Accordingly, when every E_{λ} consists of a single elements e_{λ} , a family $\Delta^* = \{\alpha^*_{(\tau,\tau)} : \gamma, \tau \in \Gamma\}$ of mappings satisfying (I)* (II)*, (III)*, (IV)* of (0, 1)* will be called a CR-factor set in $K = \{iu_{\lambda}e_{\lambda} : i \in I_{\lambda}, \lambda \in \Lambda\}$ belonging to $\Gamma(\Lambda)$. Further, the semigroup S defined by (0, 3) is called the regular extension of $K(\Lambda)$ determined by $\Gamma(\Lambda)$ and $\{\mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \Delta^*\}$ (or the complete regular product of $K(\Lambda)$ and $\Gamma(\Lambda)$ determined by $\{\mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \Delta^*\}$. In this case, S is simply denoted by $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^*_{\{\tau,\tau\}}\})$.

Next, let us consider the case where K is a left regular band (that is, a band satisfying the identity xyx = xy). In this case, for each $\lambda \in \Lambda$, $I_{\lambda} = K_{\lambda}$ and $(J_{\lambda} =)E_{\lambda}$ consists of a single element, say e_{λ} . Hence, every regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ can be obtained as a complete regular product $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\tau,\tau)}\})$ of $K(\Lambda)$ and $\Gamma(\Lambda)$. On the other hand, it has been shown by [2] that every regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ is obtained as follows :

Let ϕ be a mapping of $\Gamma(\Lambda)$ into the endomorphism semigroup End (K) on K such that the family $\{\sigma_r : \gamma \in \Gamma\}$, where $\sigma_r = \gamma \phi$, satisfies the following (0.4) and (0.5):

- (0. 4) Each σ_r is an endomorphism on K such that $K_{\lambda} \sigma_r \subset K_{r\lambda(r\lambda)^{-1}}$ for all $\lambda \in \Lambda$. In particular, for $\lambda \in \Lambda$, σ_{λ} is an inner endomorphism on K.³⁾
- (0.5) $\sigma_{\beta} \sigma_{\alpha} \delta_{f} \delta_{e} = \sigma_{\alpha\beta} \delta_{f} \delta_{e}$ for $e \in K_{\alpha\alpha^{-1}}$, $f \in K_{\alpha\beta(\alpha\beta)^{-1}}$, $\alpha, \beta \in \Gamma$ (where δ_{e} is the inner endomorphism on K induced by e (see [2])).

Consider the set $K \underset{\phi}{\times} \Gamma$ defined as follows : $K \underset{\phi}{\times} \Gamma = \{(e, \gamma) : \gamma \in \Gamma, e \in K_{\gamma\gamma^{-1}}\}$ and the multiplication in $K \underset{\phi}{\times} \Gamma$ is given by (0. 6) $(e, \gamma)(f, \tau) = (ef^{\sigma_{\gamma}}, \gamma\tau)$, where $f^{\sigma_{\gamma}} = f\sigma_{\gamma}$.

This $K \underset{\phi}{\times} \Gamma$ is a regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ and is called the L.H.D.-product of $K \equiv \Sigma \{K_{\lambda} : \lambda \in \Lambda\}$ and $\Gamma(\Lambda)$ determined by ϕ (hence, by

³⁾ Let K be a regular band (that is, a band satisfying the identity xyxzx = xyzx). Let $e \in K$. Then the mapping $\varphi_e : K \to K$ defined by $z\varphi_e = eze$ is an endomorphism on K. Such a φ_e is called an inner endomorphism on K.

 $\{\sigma_r : \gamma \in \Gamma\}\)$. The set $\{\sigma_r \ \gamma \in \Gamma\}$ is called an L. H. D.-factor set in $K \equiv \Sigma \{K_{\lambda} : \lambda \in \Lambda\}$ belonging to $\Gamma(\Lambda)$. Conversely, every regular extension of $K(\Lambda)$ by $\Gamma(\Lambda)$ can be obtained in this way.

Now, we have the following problem :

Problem 1. Let $K(\Lambda)$ be a left regular band. For any given complete regular product $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(r,\tau)}\}) = \{[e, \gamma] : \gamma \in \Gamma, e \in K_{\gamma\gamma^{-1}}\}$ of $K(\Lambda)$ and $\Gamma(\Lambda)$, consider how we can construct the L. H. D. -product $K \ll \Gamma =$ $\{(e, \gamma) : \gamma \in \Gamma, e \in \dot{K}_{\gamma\gamma^{-1}}\}$ that coincides with $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(r,\tau)}\})$ when each (e, γ) is identified with [e, f] (i. e. $K \ll \Gamma$ such that Φ : $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(r,\tau)}\}) \longrightarrow K \underset{\phi}{\approx} \Gamma$ defined by $[e, \gamma] \Phi = (e, \gamma)$ gives an isomorphism). Consider also the converse.

In the next section, we shall discuss this problem.

Next, let us also consider the case where both K and Γ are groups. In this case, K is of course right Cliffordian and $\Lambda = \{1\}$, $I_1 = K$ and $E_1 = \{1\}$. Hence, every regular extension of K by Γ can be obtained as a complete regular product $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{\alpha^*_{(r,r)}\})$ of $K(\{1\})$ and $\Gamma(\{1\})$.

On the other hand, it is well-known from the group theory that every regular extension of K by Γ can be obtained as a Schreier extension of K by Γ . That is : Let $\varphi : \Gamma \longrightarrow \operatorname{Aut}(K)$ be a mapping of Γ into the group of automorphisms of K and $C(\gamma, \tau)$ an element of K for each pair (γ, τ) of elements of Γ , such that

(0.7) $(a^{\tilde{\tau}})^{\tilde{\tau}} = C(\tau, \gamma)a^{\tilde{\tau}}C(\tau, \gamma)^{-1}$ and

(0.8) $C(\gamma, \tau)C(\gamma\tau, \delta) = C(\tau, \delta)^{\tilde{\tau}}C(\gamma, \tau\delta)$

where $\widetilde{\gamma} = \gamma \varphi$ for $\gamma \in \Gamma$ and $a^{\widetilde{\tau}} = a \widetilde{\gamma}$.

Then, $S = \{(a, \gamma) : \gamma \in \Gamma, a \in K\}$ become a regular extension of K by Γ under the multiplication defined by $(a, \gamma)(b, \tau) = (ab^{\tilde{\tau}}C(\gamma, \tau), \gamma\tau)$. Further, every extension of K by Γ can be obtained in this way.^{*} The system $\{\tilde{\gamma}, C(\gamma, \tau)\}$ is called a factor set in K belonging to Γ , and the S above is called the Schreier extension of K determined by Γ and $\{\tilde{\gamma}, C(\gamma, \tau)\}$.

Now, we have another problem as follows :

Problem 2. Let K, Γ be groups. For any given complete regular product $C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\}) = \{[e, \gamma] : \gamma \in \Gamma, e \in K\}$ consider how we can construct the Schreier extension $S = \{(e, \gamma) : \gamma \in \Gamma, e \in K\}$ of K by Γ that coincides with $C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\})$ when each element (e, γ) of S is identified with $[e, \gamma]$ (i. e., S such that $\Phi : C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\}) \longrightarrow S$ defined by $[e, \gamma] \Phi = (e, \gamma)$ gives an isomorphism). Consider also the converse.

22

We shall investigate the two problems above in the following sections.

1. CR-factor sets and L. H. D. -factor sets.

In this section, we discuss the problem 1. Let $\Gamma(\Lambda)$ be an inverse semigroup having Λ as its basic schildtice, and $K \equiv \Sigma \{K_{\lambda} : \lambda \in \Lambda\}$ a left regular band⁴. Let $C(\Gamma, K(\Lambda); \mathcal{F}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\tau,\tau)}\})$ be a complete regular product of $K(\Lambda)$ and $\Gamma(\Lambda)$. In this case, of course $\mathcal{F} = K = \Sigma \{K_{\lambda} : \lambda \in \Lambda\}$.

The following (1, 1) is obvious from $(IV)^*$ of $(0, 1)^*$:

(1. 1) $u_{\lambda}ku_{\tau} = k\alpha^{*}_{(\lambda,\tau)}u_{\lambda\tau} = k\alpha^{*}_{(\lambda,\tau)}$ for $\lambda, \tau \in \Lambda, k \in K_{\tau}$.

For every $\gamma \in \Gamma$, define $\widetilde{\gamma}$ as follows :

(1.2)
$$e^{\tilde{r}} = e\alpha^*_{(r,\tau)}$$
 if $e \in K_{\tau\tau^{-1}}$.

Such $\widetilde{\gamma}$ is well-defined: Suppose that $i \in K_{\tau_1 \tau_1^{-1}} = K_{\tau_2 \tau_2^{-1}}$ and $j \in K_{\tau_1 \tau_1}$. By (II)*, we have $(i\alpha_{(\tau,\tau_1)}^*)(j\alpha_{(\tau_1,\tau_1^{-1})}^*) = (i(j\alpha_{(\tau_1,\tau_1^{-1})}^*))\alpha_{(\tau,\tau_1\tau_1^{-1})}^*$. Since $j\alpha_{(\tau,\tau_1,\tau_1^{-1})}^*$ $\in K_{\tau\tau_1(\tau\tau_1^{-1})}$, the left side of the equation above is equal to $i\alpha_{(\tau,\tau_1)}^*$. Since $j\alpha_{(\tau,\tau_1,\tau_1^{-1})}^*$. Since $i\alpha_{(\tau,\tau_1)}^* = i\alpha_{(\tau_1,\tau_1^{-1})}^*$. Hence $i\alpha_{(\tau,\tau_1)}^* = i\alpha_{(\tau,\tau_1\tau_1^{-1})}^*$. Since $\tau_1\tau_1^{-1} = \tau_2\tau_2^{-1}$, $i\alpha_{(\tau,\tau_1)}^* = i\alpha_{(\tau,\tau_2)}^*$. Thus, $\widetilde{\gamma}$ is well-defined.

Lemma 1.1. For $\lambda \in \Lambda$, $\tilde{\lambda}$ is an inner endomorphism on K, especially $f^{\tilde{\lambda}} = u_{\lambda} f$ for $f \in K$.

Proof. Let f be an element of K_r , $\tau \in \Lambda$. Since K_{λ} is a left zero semigroup we have $f^{\tilde{i}} = f \alpha^*_{(I,\tau)} = u_{\lambda} f u_{\tau}$ (by (1.1)) $= u_{\lambda} f$.

Lemma 1.2. For $e \in K_{\gamma\gamma^{-1}}$, $f \in K_{\gamma\tau(\gamma\tau)^{-1}}$, where γ , $\tau \in \Gamma$, $ef = e(u_{\gamma^{-1}r}f^{\tilde{\tau}^{-1}})$. Proof. $ef = eu_{\gamma\gamma^{-1}}f = ef^{\tilde{\tau}\tilde{\tau}^{-1}} = e(f\alpha^*_{(\gamma\gamma^{-1},\gamma\tau)}) = e(u_{\gamma^{-1}\gamma}\alpha^*_{(\gamma,\gamma^{-1})})(f\alpha^*_{(\gamma\gamma^{-1},\gamma\tau)})$ (since $u_{\gamma^{-1}r}\alpha^*_{(\gamma,\gamma^{-1})} \in K_{\gamma\gamma^{-1}} = e((u_{\gamma^{-1}r}(f\alpha^*_{(\gamma^{-1},\gamma\tau)}))\alpha^*_{(\gamma,\gamma^{-1}\gamma\tau)})$ (by (II)*) $= e(u_{\gamma^{-1}r}f^{\tilde{\tau}^{-1}})^{\tilde{\tau}}$.

Lemma 1.3. Each $\tilde{\gamma}$ is an endomorphism on K.

Proof. Let $e \in K_{\tau}$ and $f \in K_{\delta}$. $(ef)^{\tilde{\tau}} = (ef)\alpha^*_{(\tau,\tau\delta)} = (eu_{\tau}f)\alpha^*_{(\tau,\tau\delta)}$ $= (e(f\alpha^*_{(\tau,\tau)}))\alpha^*_{(\tau\tau,\delta)} = (e\alpha^*_{(\tau,\tau)})(f\alpha^*_{(\tau\tau,\delta)})(\text{by (II)}^*) = e^{\tilde{\tau}}(u_{\tau\tau^{-1}}\alpha^*_{(\tau\tau(\tau\tau)^{-1},\tau)})(f\alpha^*_{(\tau\tau,\delta)})$ (since $e^{\tilde{\tau}}, u_{\tau\tau^{-1}}\alpha^*_{(\tau\tau(\tau\tau)^{-1},\tau)} \in K_{\tau\tau(\tau\tau)^{-1}}) = e^{\tilde{\tau}}((u_{\tau\tau^{-1}}(f\alpha^*_{(\tau,\delta)}))\alpha^*_{(\tau\tau(\tau)^{-1},\tau\delta)})$ $= e^{\tilde{\tau}}(u_{\tau\tau^{-1}}(f\alpha^*_{(\tau,\delta)}))^{\tau\tau(\tau\tau)^{-1}} = e^{\tilde{\tau}}u_{\tau\tau(\tau\tau)^{-1}}(u_{\tau\tau^{-1}}(f\alpha^*_{(\tau,\delta)})) (\text{by Lemma 1. 1})$ $= e^{\tilde{\tau}}u_{\tau\tau^{-1}}f^{\tilde{\tau}} = e^{\tilde{\tau}}f^{\tilde{\tau}}(\text{since } e^{\tilde{\tau}} \in K_{\tau\tau(\tau\tau)^{-1}} \text{ and hence } e^{\tilde{\tau}}u_{\tau\tau^{-1}} \in K_{\tau\tau(\tau\tau)^{-1}}).$

Lemma 1.4. For $e \in K_{\gamma\gamma^{-1}}$, $f \in K_{\gamma\gamma(\gamma^{\tau})^{-1}}$,

 $\tilde{\tau}\tilde{\gamma}\delta_f\delta_e=\tilde{\gamma}\tau\delta_f\delta_e$

where δ_e means the left multiplication on K determined by e.

4) In this case, each K_{λ} is a left zero semigroup.

Proof. Let $g \in K_{\delta}$. $g^{\tilde{\tau} \tilde{r} \delta f \delta_{e}} = ef(g \alpha^{*}_{(\tau \tau, \delta)}) = e(u_{\tau^{-1} \tau} f^{\tilde{\tau}^{-1}})^{\tilde{\tau}} (g \alpha^{*}_{(\tau \tau, \delta)})$ $= e((u_{\tau^{-1} \tau} f^{\tilde{\tau}^{-1}}) \alpha^{*}_{(\tau, \tau^{-1} \tau \tau)}) (g \alpha^{*}_{(\tau, \tau, \delta)}) = e((u_{\tau^{-1} \tau} f^{\tilde{\tau}^{-1}} (g \alpha^{*}_{(\tau^{-1} \tau \tau, \delta)})) \alpha^{*}_{(\tau, \tau^{-1} \tau, \tau)}) (by (II)^{*})$ $= e(u_{\tau^{-1} \tau} f^{\tilde{\tau}^{-1}} (g \alpha^{*}_{(\tau^{-1} \tau, \tau)}))^{\tilde{\tau}}$. If we can prove the equation $f^{\tilde{\tau}^{-1}} (g \alpha^{*}_{(\tau^{-1} \tau \tau, \delta)})$ $= f^{\tilde{\tau}^{-1}} g^{\tilde{\tau}}$, we can obtain the lemma. Hence, we next prove the equation above. $f^{\tilde{\tau}^{-1}} (g \alpha^{*}_{(\tau^{-1} \tau, \tau, \delta)}) = f^{\tilde{\tau}^{-1}} u_{\tau^{-1} \tau} (u_{\tau \tau^{-1}} \alpha^{*}_{(\tau^{-1} \tau, \tau)}) (g \alpha^{*}_{(\tau^{-1} \tau \tau, \delta)})$ $= f^{\tilde{\tau}^{-1}} u_{\tau^{-1} \tau} ((u_{\tau \tau^{-1}} (g \alpha^{*}_{(\tau, \delta)})) \alpha_{(\tau^{-1} \tau, \tau, \delta)}) (by (II)^{*}) = f^{\tilde{\tau}^{-1}} u_{\tau^{-1} \tau} (u_{\tau \tau^{-1}} (g \alpha^{*}_{(\tau, \delta)})))^{\tilde{\tau}^{-1} \tau}$ $= f^{\tilde{\tau}^{-1}} u_{\tau^{-1} \tau} (u_{\tau \tau^{-1}} (g \alpha^{*}_{(\tau, \delta)})) = f^{\tilde{\tau}^{-1}} g^{\tilde{\tau}} (since f^{\tilde{\tau}^{-1}} u_{\tau^{-1} \tau} u_{\tau^{-1} \tau} u_{\tau^{-1}} = f^{\tilde{\tau}^{-1}}).$

Let us define $\phi: \Gamma \longrightarrow \text{End}(K)$ by $\gamma \phi = \widetilde{\gamma}$. Then, the system $\{\widetilde{\gamma}: \gamma \in \Gamma\}$ is an L. H. D. -factor set in $K \equiv \Sigma\{K_{\lambda}: \lambda \in \Lambda\}$ belonging to $\Gamma(\Lambda)$. Hence, we can consider the L. H. D. -product $K \underset{\phi}{\ll} \Gamma = \{(e, \gamma): \gamma \in \Gamma, e \in K_{rr^{-1}}\}$ of $K(\Lambda)$ and $\Gamma(\Lambda)$ determined by ϕ .

Theorem 1. 1. $K \ll \Gamma$ coincides with $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}; \{\alpha^{*}_{(\gamma,\tau)}\})$ if each element $(e, \gamma)^{\circ}$ of $K \underset{\phi}{\ll} \Gamma$ is identified with $[e, \gamma] \in C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\gamma,\tau)}\})$.

Proof. Take two elements (e, γ) , (f, τ) from $K \ll \Gamma$. Assume that $(h, \hat{\xi}) \equiv [h, \hat{\xi}]$ for each $(h, \hat{\xi}) \in K \ll \Gamma$. Then, $(e, \gamma) (f, \tau) (\text{in } K \ll \Gamma) = (ef\tilde{\tau}, \gamma\tau) \equiv [ef\tilde{\tau}, \gamma\tau] = [e(f\alpha^*_{(\tau,\tau)}), \gamma\tau] = [e, \gamma] [f, \tau] (\text{in } C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^*_{(\tau,\tau)}\})).$

Conversely, let $K \underset{\phi}{\times} \Gamma$ be a given L. H. D. -product of $K(\Lambda)$ and $\Gamma(\Lambda)$ (where ϕ is a mapping of Γ into End (K) which satisfies (0. 4), (0. 5)). Put $\gamma \phi = \widetilde{\gamma}$. Define $\alpha^*_{(\tau,\tau)} : K_{\tau\tau^{-1}} \longrightarrow K_{\tau\tau(\tau\tau)^{-1}}$ by $e\alpha^*_{(\tau,\tau)} = e^{\widetilde{\tau}}$. Then,

Lemma 1.5. $\Delta^* = \{\alpha^*_{(\tau,\tau)} : \gamma, \tau \in \Gamma\}$ satisfies (I)*, (II)*, (III)* and (IV)* with respect to a system $\{u_{\lambda} : \lambda \in \Lambda\}$ of elements of K_{λ} 's such that $e^{\tilde{\lambda}} = u_{\lambda}eu_{\lambda}$, $e \in K$, $\lambda \in \Lambda$.⁵

Proof. It is obvious that Δ^* satisfies (I)* and (III)*. Next, we show that Δ^* satisfies (II)*. For $t \in K_{rr^{-1}}$ and $v \in K_{\delta\delta^{-1}}$, $(t\alpha^*_{(r,\tau)})(v\alpha^*_{(r\tau,\delta)}) = t\tilde{r}v\tilde{r}\tilde{r} = t\tilde{r}e_{rr(\tau\tau)^{-1}}e_{rr^{-1}}v\tilde{r}\tilde{r}$ (where e_{λ} is a fixed element of K_{λ} for each $\lambda \in \Lambda$) = $t\tilde{r}e_{rr(\tau\tau)^{-1}}e_{rr^{-1}}(v\tilde{r})\tilde{r}$ (by (0.5)) = $t\tilde{r}(v\tilde{r})\tilde{r} = (tv\tilde{r})\tilde{r}$ (since $\tilde{\gamma}$ is an endomorphism) = $(t(v\alpha^*_{(r,\delta)}))\alpha^*_{(r,\tau\delta)}$. Finally, we prove that Δ^* satisfies (IV)*. Since $\tilde{\lambda}$ is an inner endomorphism for each $\lambda \in \Lambda$, there exists $u_{\lambda} \in K_{\lambda}$ such that $e^{\tilde{\lambda}} = u_{\lambda}eu_{\lambda} = u_{\lambda}e$ for all $e \in K$. We need only to show that $u_{\lambda}ku_{\tau} = k\alpha^*_{(\lambda,\tau)}$ for all $\lambda, \tau \in \Lambda$ and for all $k \in K_{\tau}$. Now, $k\alpha^*_{(\lambda,\tau)} = k^{\tilde{\lambda}} = u_{\lambda}ku_{\lambda} = u_{\lambda}k = u_{\lambda}ku_{\tau}$.

By the lemmas above, we can consider the complete regular product $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\tau,\tau)}\}) = \{[e, \gamma] : \gamma \in \Gamma, e \in K_{\pi}^{-1}\}.$

Theorem 1. 2. $C(\Gamma, K(\Lambda); \mathcal{J}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^*_{(\tau,\tau)}\})$ coincides with the given

⁵⁾ By the definition of $K \underset{\phi}{\ll} \Gamma$, $\tilde{\lambda}$ is an inner endomorphism for each $\lambda \in \Lambda$. Hence, there exists $u_{\lambda} \in K_{\lambda}$ such that $e^{\tilde{\lambda}} = u_{\lambda}eu_{\lambda}$ for all $e \in K$ (see also [2]).

 $K \underset{\varphi}{\ll} \Gamma = \{(e, \gamma) : \gamma \in \Gamma, e \in K_{rr^{-1}}\} \text{ if each element } [e, \gamma] \text{ of } C(\Gamma, K(\Lambda); \mathcal{F}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(r,\tau)}\}) \text{ is identified with } (e, \gamma) \in K \underset{\varphi}{\ll} \Gamma.$

Proof. Take two elements $[e, \gamma]$, $[f, \tau]$ from $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha_{\{\tau,\tau\}}\})$. Identify every $[h, \delta] \in C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha_{\{\tau,\tau\}}^{*}\})$ with $(h, \delta) \in K \underset{\phi}{\times} \Gamma$. $[e, \gamma] [f, \tau]$ (in $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha_{\{\tau,\tau\}}^{*}\})) = [e(f\alpha_{\{\tau,\tau\}}^{*}), \gamma\tau] = (e(f\alpha_{\{\tau,\tau\}}^{*}), \gamma\tau) = (ef^{\tilde{\tau}}, \gamma\tau) = (e, \gamma) (f, \tau) (\text{in } K \underset{\phi}{\times} \Gamma).$

Corollary. Let $\Gamma(\Lambda)$ be an inverse semigroup having Λ as its basic semilattice, and $K \equiv \Sigma\{K_{\lambda} : \lambda \in \Lambda\}$ a left regular band (hence, each K_{λ} is a left zero semigroup). Let $C(\Gamma, K(\Lambda); \mathcal{I}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\tau,\tau)}\}) = \{[e, \gamma] : e \in K_{\tau\tau^{-1}}, \gamma \in \Gamma\}$ be a complete regular product, and $K \underset{\phi}{\ll} \Gamma = \{(e, \gamma) : e \in K_{\tau\tau^{-1}}, \gamma \in \Gamma\}$ an L. H. D. -product of $K(\Lambda)$ and $\Gamma(\Lambda)$. Let $\widetilde{\gamma} = \gamma \phi$ for each $\gamma \in \Gamma$. If $\{\alpha^{*}_{(\tau,\tau)}; \gamma, \tau \in \Gamma\}$ and $\{\widetilde{\gamma} : \gamma \in \Gamma\}$ satisfy

(1.3) $k^{\tilde{\tau}} = k \alpha^*_{(\tau,\tau)}$ for all $\gamma, \tau \in \Gamma$ and all $k \in K_{\tau\tau^{-1}}$,

then $C(\Gamma, K(\Lambda); \mathcal{J}, \{e_{\lambda}\}, \{u_{\lambda}\}, \{\alpha^{*}_{(\tau,\tau)}\}\)$ and $K \underset{\phi}{\times} \Gamma$ are the same system if each $[e, \gamma]$ is identified with (e, γ) .

2. Group extensions.

In this section, we investigate the second problem. Let Γ , K be groups. The basic semilattice of Γ consists of only one element 1 (the identity of Γ). Further, it is easy to see that in this case, $K = K_1 = I_1$ (an \mathscr{L} -elass of K_1) and E_1 (the set of idempotents of an \mathscr{R} -class of $K = K_1$) = 1 (the identity of K). Now, let $C(\Gamma, K(\{1\}); \mathscr{I}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\}) = \{[e, \gamma] : \gamma \in \Gamma, e \in K\}$ be a complete regular product of $K(\{1\})$ and $\Gamma(\{1\})$. Put $1\alpha^*_{(\tau,\tau)} = C(\gamma, \tau)$. First, we have

Lemma 2. 1. $x\alpha_{(1,\delta)}^* = u_1 x$ for all $\delta \in \Gamma$ and for $x \in K$. Proof. For $t \in K$, $u_1 t u_1 = t\alpha_{(1,1)}^* u_1$ (by (IV)*). Hence $u_1 t = t\alpha_{(1,1)}^*$. By (II)*, $(t\alpha_{(1,1)}^*)(v\alpha_{(1,\delta)}^*) = (t(v\alpha_{(1,\delta)}^*))\alpha_{(1,\delta)}^*$.

Hence, $u_1t(v\alpha_{(1,\delta)}^*) = (t(v\alpha_{(1,\delta)}^*))\alpha_{(1,\delta)}^*$. Since $\{t(v\alpha_{(1,\delta)}^*) : t, v \in K\} = K$, $u_1x = x\alpha_{(1,\delta)}^*$ for $x \in K$.

Putting $\tau = 1$, v = 1 in (II)*, we have $(t\alpha^*_{(\tau,1)})(1\alpha^*_{(\tau,\delta)}) = (t(1\alpha^*_{(1,\delta)}))\alpha^*_{(\tau,\delta)}.$

Hence, $t\alpha_{(\tau,1)}^* C(\gamma, \delta) = (tu_1)\alpha_{(\tau,\delta)}^*$. Let $t = yu_1^{-1}$. Then, $(yu_1^{-1})\alpha_{(\tau,1)}^* C(\gamma, \delta) = y\alpha_{(\tau,\delta)}^*$. Therefore, for any $a \in K$, $a\alpha_{(\tau,\delta)}^* C(\gamma, \delta)^{-1} = (au_1^{-1})\alpha_{(\tau,1)}^* C(\gamma, \delta)C(\gamma, \delta)^{-1}$

$$(au_1^{-1})\alpha^{*}_{(\tau,1)}$$

Thus, $a\alpha^*_{(\gamma,\delta)}C(\gamma,\delta)^{-1}$ does not depend on the selection of δ . Hence, we can define $\widetilde{\gamma}: K \longrightarrow K$ as follows :

Teruo IMAOKA, Nobuyuki OKAMOTO, Takuo MIWA and Miyuki YAMADA

(2.1) $a^{\tilde{\tau}} = a \alpha^{*}_{(\tau,\delta)} C(\gamma, \delta)^{-1} = (a u^{-1}_{1}) \alpha^{*}_{(\tau,1)}, a \in K.$

Lemma 2.2. For $\gamma \in \Gamma$, $\widetilde{\gamma}$ is an automorphism on K.

Proof. Put $t = au_1^{-1}$, $v = bu_1^{-1}$ and $\tau = \delta = 1$ in (II)*. Then,

 $(au_1^{-1})\alpha^*_{(\tau,1)}(bu_1^{-1})\alpha^*_{(\tau,1)} = ((au_1^{-1})((bu_1^{-1})\alpha^*_{(\tau,1)}))\alpha^*_{(\tau,1)}.$

Since $(bu_1^{-1})\alpha_{(1,1)}^* = u_1bu_1^{-1}$ by Lemma 2.1,

 $((au_1^{-1}) \alpha^*_{(\tau,1)})((bu_{\mathtt{b}}^{-1}) \alpha^*_{(\tau,1)}) = (abu_1^{-1}) \alpha^*_{(\tau,1)}.$

That is, $a^{\tilde{r}}b^{\tilde{r}} = (ab)^{\tilde{r}}$. Next, let y be an element of K. Put $u_1^{-1}C(\gamma, \gamma^{-1})^{-1}y^{-1} = p$. By (III)*, there exists $k \in K$ such that $p(k\alpha^*_{(\tau,\tau^{-1})})$ $(p\alpha^*_{(1,\tau)}) = p$. Now,

$$k^{r} = (ku_{1}^{-1})\alpha_{(r,1)}^{*} = k\alpha_{(r,r^{-1})}^{*}C(\gamma,\gamma^{-1})^{-1}$$

= $(p\alpha_{(1,r)}^{*})^{-1}C(\gamma,\gamma^{-1})^{-1} = (C(\gamma,\gamma^{-1})p\alpha_{(1,r)}^{*})^{-1}$
= $(C(\gamma,\gamma^{-1})u_{1}p)^{-1} = (y^{-1})^{-1} = y.$

Hence, $\tilde{\gamma}$ is an onto-mapping. Next, assume $a^{\tilde{r}} = b^{\tilde{r}}$ for elements $a, b \in K$. Then, $(au_1^{-1})\alpha^*_{(r,1)} = (bu_1^{-1})\alpha^*_{(r,1)}$. By (II)*, we have

 $(1\alpha^*_{(r^{-1},r)})(v\alpha^*_{(1,1)}) = (v\alpha^*_{(r,1)})\alpha^*_{(r^{-1},r)}.$ Hence, we have

 $(1\alpha^{*}_{(r^{-1},r)})((au_{1}^{-1})\alpha^{*}_{(1,1)}) = (1\alpha^{*}_{(r^{-1},r)})((bu_{1}^{-1})\alpha^{*}_{(1,1)})$ and hence $(au_{1}^{-1})\alpha^{*}_{(1,1)} = (bu_{1}^{-1})\alpha^{*}_{(1,1)}$. Therefore, $u_{1}au_{1}^{-1} = u_{1}bu_{1}^{-1}$. Consequently, a = b. Thus, $\tilde{\gamma}$ is 1–1.

Lemma 2. 3. (1) $\tilde{a^{o}})^{\tilde{r}} = C(\tau, \sigma) a^{\tilde{r}o} C(\tau, \sigma)^{-1}$. (2) $C(\sigma, \tau)C(\sigma\tau, \rho) = C(\tau, \rho)^{\tilde{o}}C(\sigma, \tau\rho)$. Proof. By (II)*, $(1\alpha^{*}_{(\tau,\sigma)})((au_{1}^{-1})\alpha^{*}_{(\tau,1)}) = ((au_{1}^{-1})\alpha^{*}_{(\sigma,1)})\alpha^{*}_{(\tau,\sigma)})$ $= (((au_{1}^{-1})\alpha^{*}_{(\sigma,1)}u_{1}^{-1})\alpha^{*}_{(\tau,1)})(1\alpha^{*}_{(\tau,\sigma)})$. Hence, $(\tilde{a^{o}})^{\tilde{r}} = ((au_{1}^{-1})\alpha^{*}_{(\sigma,1)})^{\tilde{r}} = ((au_{1}^{-1})\alpha^{*}_{(\sigma,1)}u_{1}^{-1})\alpha^{*}_{(\tau,1)})$ $= (1\alpha^{*}_{(\tau,\sigma)})((au_{1}^{-1})\alpha^{*}_{(\tau,\sigma,1)})(1\alpha^{*}_{(\tau,\sigma)})^{-1}$ $= C(\tau, \sigma)a^{\tilde{r}o}C(\tau, \sigma)^{-1}$.

Thus, we obtained (1). Next, we prove (2). By (II)*, $(1\alpha^*_{(\sigma,\tau)})(1\alpha^*_{(\sigma^\tau,\rho)}) = (1\alpha^*_{(\tau,\rho)})\alpha^*_{(\sigma^*,\tau\rho)^*}$ Hence, $C(\sigma, \tau)C(\sigma\tau, \rho) = (1\alpha^*_{(\sigma,\tau)})(1\alpha^*_{(\sigma^\tau,\rho)})$ $= (1\alpha^*_{(\tau,\rho)})\alpha^*_{(\sigma,\tau\rho)} = (C(\tau, \rho))\alpha^*_{(\sigma,\tau\rho)}$ $= (C(\tau, \rho))\alpha^*_{(\sigma,\tau\rho)}C(\sigma, \tau\rho)^{-1}C(\sigma, \tau\rho)$ $= (C(\tau, \rho))^{\sigma}C(\sigma, \tau\rho).$

By the lemma above, the system $\{\tilde{\sigma}, C(\sigma, \tau)\}$ is a factor set in K belonging to Γ . Hence, we can obtain the Schreier extension

26

 $S = \{(a, \gamma) : a \in K, \gamma \in \Gamma\} \text{ of } K \text{ by } \Gamma \text{ and } \{\widetilde{\sigma}, C(\sigma, \tau)\}.$ Theorem 2.1 S coincides with the given $C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_1\}, \{\alpha^*_{(\gamma,\tau)}\})$ if each element (a, γ) of S is identified with $[a, \gamma]$.

Proof. Let (a, γ) , (b, τ) be elements of S. $(a, \gamma)(b, \tau)$ $(\text{in } S) = (ab^{\tilde{r}}C(\gamma, \tau), \gamma\tau) \equiv [ab^{\tilde{r}}C(\gamma, \tau), \gamma\tau]$ $= [a(b\alpha^*_{(\tau,\tau)}), \gamma\tau] = [a, \gamma] [b, \tau]$ $(in \ C(\Gamma, K(\{1\}; \mathcal{I}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\})).$

Conversely, let $\{\widetilde{\sigma}, C(\sigma, \tau)\}$ be a factor set in K belonging to Γ and $S = \{(a, \gamma) : \gamma \in \Gamma, a \in K\}$ the Schreier extension of K determined by Γ and $\{\widetilde{\sigma}, C(\sigma, \tau)\}$. Put $C(1, 1) = u_1$, and define $\alpha^*_{(\tau,\tau)} : K \longrightarrow K$ for each pair (γ, τ) of elements of Γ as follows : $a\alpha^*_{(\tau,\tau)} = a^{\widetilde{\tau}}C(\gamma, \tau)$, $a \in K$. Then,

Lemma 2. 4. The system $\{\{\alpha^*_{(\tau,\tau)}: \gamma, \tau \in \Gamma\}, \{u_i\}\}$ satisfies (I)* ~ (IV)*. Proof. It is obvious that the system satisfies (I)*.

(II)*: For $t, v \in K$,

 $(t\alpha^*_{(\tau,\tau)})(v\alpha^*_{(\tau\tau,\delta)}) = t^{\tilde{t}}C(\gamma,\tau)v^{\tilde{\tau}}C(\gamma\tau,\delta).$

On the other hand,

$$\begin{aligned} (t(v\alpha^*_{(\tau,\delta)}))\alpha^*_{(\tau,\tau\delta)} &= (t(v^{\overline{\tau}}C(\tau,\delta)))^{\overline{\tau}}C(\gamma,\tau\delta) \\ &= t^{\overline{\tau}}(v^{\overline{\tau}})^{\overline{\tau}}C(\tau,\delta)^{\overline{\tau}}C(\gamma,\tau\delta) \\ &= t^{\overline{\tau}}C(\gamma,\tau)v^{\overline{\tau\tau}}C(\gamma,\tau)^{-1}C(\tau,\delta)^{\overline{\tau}}C(\gamma,\tau\delta). \end{aligned}$$

Since $C(\tau, \delta)^{\tilde{\tau}} C(\gamma, \tau \delta) = C(\gamma, \tau) C(\gamma \tau, \delta)$, we have $C(\tau, \delta)^{\tilde{\tau}} = C(\gamma, \tau) C(\gamma \tau, \delta) C(\gamma, \tau \delta)^{-1}$. Hence, $(t\alpha^*_{(\tau,\tau)})(v\alpha^*_{(\tau,\delta)}) = (t(v\alpha^*_{(\tau,\delta)}))\alpha^*_{(\tau,\tau\delta)}$.

(III)*: Let $\gamma \in \Gamma$ and $p \in K$. Since $\tilde{\gamma}$ is an onto-mapping, there exists k such that $k^{\tilde{r}}C(\gamma, \gamma^{-1})p^{\tilde{1}}C(1, \gamma) = 1$. Hence, $(k\alpha^*_{(r, \gamma^{-1})})(p\alpha^*_{(1, \gamma)}) = 1$. That is, $p(k\alpha^*_{(r, \gamma^{-1})})(p\alpha^*_{(1, \gamma)}) = p$.

 $(IV)^*$: Let $a \in K$. In the equation $(a^{\tilde{\tau}})^{\tilde{\tau}} = C(\tau, \gamma)a^{\tau\tilde{\tau}}C(\tau, \gamma)^{-1}$, put $\tau = 1$ and $\gamma = 1$. Then, $a = C(1, 1) aC(1, 1)^{-1}$. Hence, aC(1, 1) = C(1, 1)a. Now, for $k \in K$, $u_1ku_1 = C(1, 1)ku_1 = kC(1, 1)u_1 = k^{\tilde{\tau}}C(1, 1)u_1 = k\alpha^*_{(1,1)}u_1$. Thus, $(IV)^*$ is satisfied.

By the lemma above, we can consider $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_i\}, \{\alpha^*_{(\tau,\tau)}\})$. Theorem 2. 2. $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_i\}, \{\alpha^*_{(\tau,\tau)}\}) = \{[a, \gamma] : a \in K, \gamma \in \Gamma\}$ if each element $[a, \gamma]$ of $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_i\}, \{\alpha^*_{(\tau,\tau)}\})$ is identified with $(a, \gamma) \in S$. Proof. Take $[e, \gamma], [h, \tau]$ from $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_i\}, \{\alpha^*_{(\tau,\tau)}\})$.

Then, $[e, \gamma]$ $[h, \tau]$ (in $C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_i\}, \{\alpha^*_{\{r, r\}}\}))$

 $= [e(h\alpha^*_{(\tau,\tau)}), \gamma\tau] = [eh^{\tilde{\tau}}C(\gamma, \tau), \gamma\tau] \equiv (eh^{\tilde{\tau}}C(\gamma, \tau), \gamma\tau)$

$$= (e, \gamma)(h, \tau)$$
 (in S).

Corollary. Let K, Γ be groups. Let $C(\Gamma, K(\{1\}); \mathcal{J}, \{1\}, \{u_1\}, \{\alpha^*_{\{\tau,\tau\}}\})$ = $\{[e, \gamma] : e \in K, \gamma \in \Gamma\}$ be a complete regular product of $K(\{1\})$ and $\Gamma(\{1\})$. Let $\{\widetilde{\sigma}, C(\sigma, \tau)\}$ be a factor set of Γ with respect to K, and $S = \{(e, \gamma) : e \in K, \gamma \in \Gamma\}$ the Schreier extension of K determined by Γ and $\{\widetilde{\sigma}, C(\sigma, \tau)\}$. If

(2. 2) $u_1 = C(1, 1)$ and $a\alpha^*_{(\tau,\tau)} = a^{\tilde{\tau}}C(\gamma, \tau)$ for all $a \in K$ and all $\gamma, \tau \in \Gamma$, then $C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\})$ and S are the same system if each $[e, \gamma] \in C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\})$ is identified with $(e, \gamma) \in S$; that is, $\varphi : C(\Gamma, K(\{1\}); \mathcal{I}, \{1\}, \{u_1\}, \{\alpha^*_{(\tau,\tau)}\}) \longrightarrow S$ defined by $[e, \gamma] \varphi = (e, \gamma)$ gives an isomorphism.

References

- 1. Warne, R. J. : The structure of a class of regular semigroups, II, Kyungpook Math. J. 11 (1971), 165-167.
- 2. Yamada, M. : Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6(1973), 113-128.
- 3. Yamada, M. : On regular extensions of a semigroup which is a semilattice of completely simple semigroups, Mem. Fac. Lit. & Sci. Shimane Univ. Nat. Sci., 7(1974); 1-17.