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0. Introduction.

One of the authors has shown in [3] the following results :
Let K= Y{K;: A &= A} be a right Cliffordian semigroup (see [3] ; throughout
this paper, any terminology and notation should be referred to [3], unless
otherwise stated), and /'(/{) an inverse semigroup having / as its basic
semilattice”. For each A = /A, let I; be an < -class of K;. Then,
S =23{I;: 2= A} (¥ means the disjoint sum) is a lower partial chain of
left groups {I, : A += 1}”. Since K is a right Cliffordian semigroup, “there
exists an <2 -class J; of K; for each 1 & / such that & = S{E;: A & A},
where E; is the set of idempotents of .J,, is an upper partial chain of right
zero semigroups {E; : A = A}. Now, let u; be a representative of K, for each
A= Aand put U={u; : A E Ay, Let d={a¢.o: 7, 71 U By.o:7,T =1}
be a collection of mappings (- and B¢, such that
0.1) (O D<05(r,:)) = D(B(r,r)) = By X R<C¥(T,f)> C Liero- and

R(B¢,o) C Egoipe, where D(E), R(§) denote the domain and the range

of & respectively ;
(II) for & Ejy, t E 14, h & Epiz and v & [y,

(@, oo, 1)Ba,oh, v)Aan = (g, th, "U)OZ(r,a))O((,,ra)

and (g, £(h, 1’)61’(7,:?))§B(r,ra) (h, l’)/@/(r,g) = ((q, t)B(T,f)h'y v)ﬁ)(rr,ﬁ) 5
() for y &', p E I, and ¢ € E,-,, there exist £ & I, and n © Epn

such that p(q, K)o, (g B)BG. v n, P)ag, 1,y = -

1) The set B of idempotents of an inverse semigroup G constitutes a semilattice. This semi-
lattice B is called the basic semilattice of G. An inverse semigroup G having B as its
basic semilattice is sometimes denoted by G(B).

2) Let S be a partial groupoid which is a union of a collection of pairwise disjoint subsemi-
groups {T;: 0 & A} where A is a semilattice. If x &= T,, ¥ € Ty, and & -<7[r < 6J(in A)
imply zy is defined(in S)and zy € Ts[xvy € T;], and, if £ <d[d < EJand =z E T imply
(zy)z = x(y=), then S is called a lower [upper] partial chain of the semigroups
{TJ: o} - /1} .
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If further the collection £ = {au,0 : A, 0 E A U {Bu.n : A, 0 & A} satisfies
the following
(IV)  wy jkuy = (5, B)aq,s e (G, B)Ba,s for 1,0 E 4, j EE; and k & I;, then
S=1{G, 71,7 : vETl, i EL1, j € E-i;} becomes a regular extension of
K(A) by I'(A) under the multiplication defined by
0.2) G 7o D 7 B) = GG, B, 77 Gy D8, oh)-
This S is denoted by C(, K(A); #, &, {4}, {ag.or {Bg.ol) and is
called a complete regular product of K(/) and I'(A). Conversely every regular
extension of K(A) by I'(A) can be obtained as a complete regular product of
K(A) and T'(A).
Every element x of K; is uniquely expressed in the form
z =1iwj, i € I, j & E; (see [3]).
Hence, K= {iu;j: \E A, iE1L, jEE;}. We shall call 4 above a CR-
Jactor set in K = {iu,5: AE A i E1, jEE;} belonging to I'(A). The
semigroup S above will be sometimes called the regular extension of K(A)
determined by I'(4, and {_#, &, {u;}, 4}.
As a special case, we next consider the case where each E; consists of a
single element, say ¢;. If we denote each element
Gy 72 e) ES=CU, KU) 5 7, &, ), el 8.0} by i, 7] and
define af, .y : Ict = Lo by (e, B,y = k afy,q (for each pair (7, 1)
of elements 7, 7 of I"), then the family 4* = {af, ., : 7, 7 € ['} satisfies the
following :
O. 1% (0% Da, ) = Lo 3 R@h0) C Legror
(ID* for t & I, and v & Iz,
(taﬁ,,))(vaaf,a)) = (¢ (‘vaﬁ',é‘)>) a:(kr,rd)‘ 5
(IID)* for y €I, p & I,,+, there exists &£ &€ I,-, such that
plkact, )20t ) = b
Further, the family 2% = {a},5 : A, 0 € 4} satisfies
(IV)* wuze;bu, = kaz’};a) u e, for 1,0 €A ke I

Now, by using this family 4%, the semigroup S above can be expressed as

follows :
©.3) {S= iyl :yEl i1 }.
' the multiplication in S : [z, Y][%, ] = [i(kaf, ), 7]

Conversely, let 4* = {a’fr'f) : 7,7 &'} be a family of mappings satisfying
(D*, (ID*, (IID*, (IV)* of (0. 1)*. Define a(, . : Erty X It — Loy and
Biey + Ep1p X It —> Eqroyiye @8 follows :

(er—lr’ k)a(7")= ka(t,r) WS and (er"T’ k)ﬁ(hr) = €(re)res ke I 1.
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Then, 4= {a¢o: 7, t €N U {Ba.o: v, r € I'} satisfies @, an, din,
(IV) of (0.1) and hence we can consider the complete regular product
CUI'y, KU); 7, &, lut {agoh{Banh)-

In this system, the product of two elements (3, 7, e,,) = [i, y] and
(k, 7, e.1,) = [k, 7] is given as follows :

i, Y1 [k, 7] =G, 75 €,4,) (R, Ty €1 ) =(i(er1r, ) Qtyey > YT5 (€r1r5 B) Byye) €c1c)
= ((Raf, o) T, eoyire i) = GRAT, )5 TT5 €oyipe)
= [z (ka’}‘r,t) ), rrl.
Accordingly, when every E; consists of a single elements ¢;, a family
d*={af, .7, T €1} of mappings satisfying D* AD*, (IID*, (TV)* of (0. 1)*
will be called @ CR-factor set in K = {iu,e; : i EI,, A & A} belonging to
I'(A). Further, the semigroup S defined by (0. 3) is called the regular extension
of K(A) determined by I'(A) and {_#, {e,}, {u,}, 4*} (or the complete regular
product of K(A) and I'(A) determined by {_ 7, {e;}, {u;}, 4*}. In this case,
S is simply denoted by C(I", K(A) ; 7, {e;}, {wa}, {af;,o})-

Next, let us consider the case where K is a left regular band (that is, a
band satisfying the identity xyx = xy). In this case, for each A & 4, I; = K
and (J,=)E,; consists of a single element, say e;. Hence, every regular
extension of K(A) by I'(A) can be obtained as a complete regular product
C(I", K(A) ; 7, {er}, {uy}, {af, o)) of K(4) and ['(4). On the other hand,
it has been shown by [2] that every regular extension of K(A) by [7(A) is
obtained as follows :

Let ¢ be a mapping of /'(A) into the endomorphism semigroup End (K) on
K such that the family {0, : ¥y € '}, where 0, = 7@, satisfies the following
(0. 4) and (0. 5) :

(0. 4) Each o0, is an endomorphism on K such that K; o, C Kpngp- for all

A E A. In particular, for A &€ 4, 0, is an inner endomorphism on K.*
(0.5) 0,0,0/0. = 0pp 0,0, for e © Kug-1, fE Kagap-t, a BE " (where 0,

is the inner endomorphism on K induced by e (see [2])).

Consider the set K X I’ defined as follows : K X I' ={ey):y&Er,
e & K;;1} and the multiplication in K i« [ is given by
(0.6) (e,1)(f, 7) = (ef°T, y1), where f'7 = fo,.
- This K i« I is a regular extension of K(A) by I'(A) and is called zhe
L.H.D.-product of K=3{K; : A& A} and I'(A) determined by ¢ (hence, by

3) Let K be a regular band (that is, a band satisfying the identity xyrzx = xyzx). Let e € K.
Then the mapping ¢e : K — K defined by zp. = eze is an endomorphism on K. Such a ¢. is
called an inner endomorphism on K.
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{or : Yy EI'}). The set {0, y E I'} is called an L. H. D.-factor set in K =
2 {K; : A€ A} belonging to I'(A). Conversely, every regular extension of
K(A) by I'(4) can be obtained in this way.

Now, we have the following problem :

Problem 1. Let K(A) be a left regular band. For any given complete regular
product C(I', K() 5, {ei}, luy}, {at, ) = dle,7]: 7 € e € Ky} of
K(A) and I (A), consider how we can construct the L. H. D. -product K X I =
{e7): v ET, eEKTTI} that coincides with C(I", K(A); _#, {e;}, {ul}
{af,.y}) when each (e, v) is identified with [e, /] (i.e. K >;§ I" such that @ :
CI', K(A) 5 £, ey}, {u,}, {ag »1) —> K%( I" defined by [e, Y]1® = (e, 7)
gives an isomorphism). Consider also the converse.

In the next section, we shall discuss this problem.

Next, let us also consider the case where both K and /7 are groups. In this
case, K is of course right Cliffordian and A = {1}, I, = K and E, = {1}.
Hence, every regular extension of K by /" can be obtained as a complete
regular product C (I, K({1}); _% {1}, {ag, ) of K({1}) and I"({1}).

On the other hand, it is well-known from the group theory that every regular
extension of K by /" can be obtained as a Schreier extension of K by /”. That
s: Let ¢ : '—> Aut (K) be a mapping of /" into the group of automor-
phisms of K and C(y, 1) an element of K for each pair (7, 7) of elements
of I', such that
0.7 (@ = C(r, 7)a"C(r, y)™"* and
0.8) C(r,)C(yr, 0) = C(r, O C(y, 0)

where 7= yp for y © " and a7 = ay.
Then, S={(a,7) : y €I, a & K} become a regular extension of K by [’
under the multiplication defined by (a, 7)(b, 7) = (ab"C(y, 1), Y7). Further,
every extension of K by /7 can be obtained in this way.” The system
{7, C(y, r)}tis called a factor set in K belonging to I', and the S above is
called the Schreier extension of K determined by I and {7, C(y, 1)}.

Now, we have another problem as follows :

Problem 2. Let K, I" be groups. For any given complete regular product
C(I", K({1}); 7, {1} Aw} {a¥, o} )={le. Y1: 7 E I',e € K} consider how we can
construct the Schreier extension S= {(e,7) : y EI, e © K} of K by I" that
coincides with C(/7, K({1}); 7, {1}, {w}, {a’("r't)}) when each element (e, 7)
of S is identified with [e, y] (i. e, § such that @ : C(I", K({1}); _#, {1},
{w.}, {az"m)}) —> S defined by [e, y] @ = (¢, ) gives an isomorphism).

Consider also the converse.
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We shall investigate the two problems above in the following sections.

1. CR-factor sets and L. H. D. -factor sets.

In this section, we discuss the problem 1. Let /'(A4) be an inverse semigroup
having A as its basic scmilattice, and K = J{K; : A & A} a left regular band®.
Let C{U", K(A); #, e}, {ua}, {af, ,}) be a complete regular product of
K(A) and I'(A). In this case, of course =K =3{K;: A1E A}.

The following (1. 1) is obvious from (IV)* of (0. 1)*:

(1. 1) wyku. = kady, yu,, = kaf, ., for L, vt € 4, k€ K.

For every vy & I, define 7 as follows :
(1.2) & = ea’fm) if e © K, 1.
Such 7 is well-defined : Suppose that i & K¢ ' = K o' and j & K .
By (ID*, we have (iaf, )( ja’fm,rl_,)) = (i(ag, - Dok« Since jaf., .
& Kot , the left side of the equation above is equal to iaf .. Since
jaf € Ko, the right side is equal to iaf, ... Hence iaf, ., =
iy, epe). Similarly, we have iaf ., = ia’(",,,ﬂ,z—:) . Since rir7! = .77, ia(t,:l) =
iaf . Thus, 7 is well-defined.

Lemma 1. 1. For A E 4, ) is an inner endomorphism on K, especially
fF=u,f for fFEK.

Proof. Let f be an element of K;, 7 & A. Since K, is a left zero semigroup
we have f7 = fu¥ = u,fu. (by (1. 1)) = u,f.

Lemma 1. 2. For e © K-y, & Kyoroyr, where v, T €1, ef = e(ur-lrf;_!)?

Proof. ef=eu, f = ef TT'= e(fag,1,,5) = (w10, ) (fag 1) (since
g, 1 € Ky) = ellttsg (e ) tt 1,0 )by (D) = elatyag 707

Lemma 1.8. Each 7 is an endomorphism on K,

Proof. Let e € K, and fE K;. (¢f)T= (eNag, .= (eu,f)a?mﬁ)
= (e<fa?:§) ))aﬂ(;r,ﬁ) = (ea’(kr.ﬂ )(fa*(ms))(by <II)*) = e?(u”_'a?rr(rr)",r)-)(faz';r,d)>
(since eT, a1 O eyt E K, o) = eT((upm (faf 5 ) A etrey1,r8))
= (gt (fk, py N = €T tyers (st (¥, ) (by Lemma 1. 1)
= efu,1 7= e7f7 (since e’ E K ez and hence efurrt & Ko(yey1).

Lemma 1.4. For e € K -1, f€ Ko 5

70,0, = 710,0.
where O, means the left multiplication on K determined by e. .

4) In this case, each K, is a left zero semigroup.
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Proof. Let g € K;. ¢ 70fte— ef (gafs. 5y) = e(u; .Tf )’(ga(" 5
= e{(u1f 7. Naf e ) @k ) = ey f " (@ yes) DA r ) (by (AD*)
= e(ty1,f 7T 1y ) )7. If we can prove the equation 7 (ga* ire P
= fr' g%, we can obtain the lemma. Hence, we next prove the equation above.
F et ) = F T w00 (@05 )
= [P urvi((ee0E, 5))) gy ey ) (B (ID¥) = 70, 17 (et (G )T
=fF‘ur_,ru,—;,-(u"—x(ga’(",,a) ) = f;—lg? (since f7" Uty U = = fi).

Let us define ¢ : I" —> End (K) by y¢ = 7. Then, the system {7 : y & [}
is an L. H. D. ~factor set in K = Y{K; : A & A} belonging to /'(4). Hence,
we can consider the L. H. D. -product K ?f N=Aly): vEI, e K}
of K(A) and I"'(A) determined by ¢.

Theorem 1.1. K X I' coincides with C(I", K(A) ; _#, {e;}, {u1}; {a?‘,,r)})
if each element (e, 7) ¢of K x I' is identified with [e, Y] € CU", K(A); _#,
{e}s {u}, {0k, ). !

Proof. Take two elements (e, 7), (f, 7) from K X I'. Assume that (&, &) =
[%, £] for each (h, &) € Kx I". Then, (¢ 7)(/, ) (n K XIM) = (ef7,77) =
[ef7, yr]=[e (faf, ) 7’2']—[6,7’] [f,7l(n C(I", K(4); 7, {el} {fua}, a5 1)-

Conversely, let KX I be a given L. H.D. -product of K(A) and (/)
(where ¢ is a mapping of I’ into End (K) which satisfies (0. 4), (0. 5)). Put
7¢ =7. Define af ., : Kiet —> Kregot by eafy ) = e’. Then,

Lemma 1.5. 4% ={af ., : 7, v €'} satisfies (D*, (ID*, (ID* and (IV)*
with respect to a system {u; : A E A} of elements of K;’s such that et =
uieny, e = K, 1 € A>

Proof. It is obvious that 4* satisfies (I)* and (III)*., Next, we show that
A*v satisfies (IN)*. For ¢ € Kier and v € Ky, (20F, ) (va ) = tfvit=
L7 € ey €, _lvT’ (where ¢; is a fixed element of K; for each A& A) =
relre) .en-.(v )r (by (0.5)) = tr(’u’)” = (tv?)" (since 7 is an endomorphism) =
(t(va"(‘rm))a ety Finally, we prove that 4* satisfies (IV)*. Since 1 is an
inner endomorphism for each A & A, there exists u;& K, such that e*=
wer; = uze for all e & K. We need only to Sh0~W that wikue = ka¥,
for all A, r € A and for all 2 & K.. Now, ka*g,o= k* = wiku; = uak = upbu,.

By the lemmas above, we can consider the complete regular product
CI'y K(A) ; 7, {ea}, {ua}y {a*(r,) Y=Ale, 7] : Y ET, e € Ky},

Theorem 1. 2. C(I"y K(A) ; _#, {es}, {ui}, {a (m)}) coincides with the given

te

5) By the definition of K x I, 7 is an inner endomorphism for each ) € A. Hence, there
s
exists u; € K; such that e = weu; for all e € K(see also[2]).
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. K 2(1_' ={le,7): vyETI, e ©E Kyy} if each element [e,y] of C(I', K(A);

o det, fads {at, ) }) is identified with (e, 7) € K X I.

Proof. Take two elements fe, y1, [f; 7] from C(I", K(A); 7, {e;}, {uy},
{0&’5,_,)}). Identify every [h, 01 & C(I", K(A); 7, {ex}, {u;}, {a’é‘r.t)}) with
(h,0) EKXT. [e711f7] (n CUI, KU)s F, la}, fah, {ah0h) =
le(fak, o), yr] = (e(fak o), v7) = (ef T, y7) = (e, ¥) (, 1) (in K K.

Corollary. Let I'(A) be an inverse semigroup having A as its basic semilattice,
and K = J{K; : A& A} a left regular band (hence, each K, is a left zero
semigroup). Let C(I', K(A) ; #, {e}, {wy}, {a%,.9)) = {le, 7] : e € Kn1,
Yy &1} be a complete regular product, and K ?f N =4{le7r):eE Ky, =T}
an L. H. D. -product of K(A) and I'(A). Let ¥=1v¢ for each vy ET". If
{at, o7 T ETY and {7 : v € I'} satisfy
(1.3) ¥ = kaf o for all v, v €I and all k& K.,
then C(I', K1) ; &, {e), luy}, laf, ot and K %( I" are the same system if

each le, 7] is identified with (e, 7).

2. Group extensions.

In this section, we investigate the second problem. Let /7, K be groups.
The basic semilattice of /7 consists of only one element 1 (the identity of I).
Further, it is easy to see that in this case, K = K; = [, (an & -elass of K))
and E; (the set of idempotents of an 2 -class of K = K,) = 1 (the identity
of K). Now, let C(I", K({1}); 7, {1}, {w}, {af ;) =Hle7r]: v ET, e E K}
be a complete regular product of K({1}) and /'({1}). Put la*q,,= C(y, ).
First, we have

Lemma 2. 1. zaf,=wx for all 6 ET and for x E K.
Proof. .For t € K, u,tu, = taf wu, (by IV)*). Hence ¢ = taf,,. By (II)*%,
(tad 1) (vad »)= t(vad »)ad ».
Hence, wit(vaf ;) = (t(vads)as s Since {t(va&,) : L, v E K} =K, uyx =
xof s for £ E K,

Putting 7 = 1, v =1 in (I[)*, we have

(tat v)(Lag ») = ¢(lad s)ad.-
Hence, tak.,,C(y,d) = (tu)a . Let ¢t =yur'. Then, (yui'ai., C(r, 0) =
yo& 5 Therefore, for any a € K,

aog s C(y, 0)™ = (aw a1, Cly, O)C(y, )7

= (auraf ».

Thus, aa¥.;C(y, 0)™* does not depend on the selection of J. Hence, we can
define ¥ : K—> K as follows :
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2.1) &= aag,C(y, 0)™ = (au"ak., a € K.

Lemma 2.2. For vy &I, 7 is an automorphism on K.
Proof. Put ¢ =aui’, v="0ui' and 7 = 6 =1 in (I)*. Then,
(auit)od 1y (buad 1y = (aur) (bui™) o 1)) o .
Since (buiY)a¥ 1y = wbu;* by Lemma 2. 1,
((aur) ag.p) (bui) af.v) = (abui™) o .
That is, a'® = (ab)’. Next, let y be an element of K.
Put «7'C(y, v™) 7y = p. By (IID)*, there exists £ & K such that
plka® ) (pad») = p. Now,
K= (kui) al .y = ka"zr,r-_l)c('f: 77
= (P p) " Clr, ™)™ = (Cly, v pad )™
= (C(y, y Dup)™ =y = .
Hence, 7 is an onto-mapping. Next, assume a’ = b for elements a, b E K.
Then, (aui)af ., = (bui)ak . By (ID*, we have
(105&-1,7) Y(wadiy) = (vad; 1) 01?;-1
Hence, we have
(Aag,, ) (aur) af )= (a1, ) (Gui)ad v

and hence (aui')af , = (bur')af .. Therefore, wmaur' = ubui’.

1) °

Consequently, ¢ = . Thus, 7 is 1—1.

Lemma 2.8. (1) &y = C(r, 0)a” C(r, o).
(2) C(a, 1)C(ot, 0) = C(t, )" C(a, T0).
Proof. By (II)*,
(Lot ) ((awh) ot ) = (aui) ad v)ad.o
= (((au") ad vnui®) o ») Lad »).
Hence, (@ = ((aui")a ) = ((aur) af nui) ok g
= (1o, ) (auaf, ) Qo )7
= C(r, 0)a" C(r, o).
Thus, we obtained (1). Next, we prove (2).
By (I%, (lago) (o, )= (ag )0y
Hence, C(o, 7)C(oT, ) = (lag o) (1ot
= (1o ) O .0y = (C(7, 0)) O e 0>
= (C(r, 0)) &y eC(0, T0) " Clo, TP)
= (C(r, )" C(o, T0).

By the lemma above, the system {G, C(0, 7)} is a factor set in K belonging
to I'. Hence, we can obtain the Schreier extension
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S=A{@a,7):a€ K, yET} of K by I" and {5, C(o, 7)}.

Theorem 2.1 S coincides with the given C(I', K({1}):_# , {1}, {w},
{ag }) if each element (a, ) of S is identified with [a; 7).

Proof. Let (a, 7), (b, ) be elements of S.

(a, )&, T) (in.S)= (ab C(y, 1), 77) = [ab C(y, 1), 77]
= labatt, ), 7] = la, 7115, 7]
(in C(I', K({1} 5 7, {1}, {u}, {0 ).

Conversely, let {7, C(o, )} be a factor set in K belonging to /7 and

= {(a,7) : y EI, a € K} the Schreier extension of K determined by I”
and {G, C(o, 7)}. Put C(1, 1) = u,, and define afy,.;: K—>K for each pair
(7, 1) of elements of I as follows : aal,,y= a’C(y, 1), a € K. Then,

Lemma 2. 4. The system {{af,.: 7,7 E '} {wl} satisfies (I)* ~ (IV)*.
Proof. It is obvious that the system satisfies (I)*,
(ID* : For ¢, v € K,
(k) (vatk,, ) = FCr, T)*Clrr, D).
On the other hand,
((0at, )%, ) = (E@CT, DNV Cly, T0)
= # (v)*C(r, 0 C(y, r0)
= ¢ C(y, 1) 0" C(y,r)" C(r, O)C(y, TO).
Since C(z, O C(y, t0) = C(y, r)C(y1, &), we have C(r, ) =
C(y, 0)C(rr, 0)C(y, 0)™". Hence, (taX, ) (vak,. ) = t(va%, ;))at,, .
(II)* : Let y & /" and p & K. Since 7 is an onto-mapping,; there exists %
such that A C(y, “) pCQ,y) =1. Hence, (ka% k) (Pay ) = 1. That is,
plkat Gr. ,-1))(Pa(1 ” =
(IV)* : Let a & K In the equation (a’)‘ =C(r, )a"C(r, 7)™, put r =1
and ¥ =1. Then, a =C(,1)aC(1, 1)"'. Hence, aC(1, 1) = C(1, 1)a. Now,
for k € K, wku, = C(1, Dku, = kC (1, Du, = ¥C(, )uy = ka ,u. Thus, (IV)*

is satisfied.

By the lemma above, we can consider C(/", K({1}); %, {1}, {u}, {a*zr,,f}).
Theorem 2. 2. C(I'y K({1}); £, {1}, {u}, {a%,o}) = {la, 7] : a € K,
y € I'} coincides with the given S = {(a,7) : a E K, y & '} if each element
la, 7] of C(I", K({1}); _# , {1}, {w}, {a%, o)) is identified with (a,7) E S.
Proof. Take [e, 1], [k, T] from C(I", K({1}) ; 7, {1}, {uw}, {ak.o})-
Then, [e, y] [k, 7] (in C(", K({1}) ; _#, {1}, {m}, {a%.»})
= [e(hat, ), vl = [ C(y, 1), y7] = (h°C(y, 1), 7T)
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= (e, ), T) (in S).

Corollary. Let K, I' be groups. Let C(I', K({1}) ;_#, {1}, {u}, {a%, 4})
= {le,7]: e E K,y EI'} be a complete regular product of K({1}) and I'({1}).
Let {0, C(0, 1)} be a factor set of I with respect to K, and S = {(e, 7) :
e = K, y EI'} the Schreier extension of K determined by I' and {o, C(o, 7)}.
If
(2.2) uy,=CQ, 1) and aa*, = aCQy, 1) for all a€E K and all y,TET,
then C(I", K({1}) ; 5, {1}, {w}, {a*G.ey}) and S are the same system if each
le, 71 € C(I", K({1}) 5 7, (1}, {m}, {a¥, o)) is identified with e EeS;
that is, ¢ : C(I", K({1) ;% {1}, {m}, {a%, o} )—>S defined. by le, y] ¢ = (e, 7)

gives an isomorphism.
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