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On Regular Extensions of a Semigroup
which is a Semilattice of Completely Simple Semigroups
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The structure of orthodox semigroups was described by Hall [2], Warne [4], [5] and the
author [7], [8], [9] in terms of bands and inverse semigroups. In this paper, we introduce
the concept of generalized orthodox semigroups and show that some analogues to the results
given by the papers above for the class of orthodox semigroups are also fulfilled by the
class of generalized orthodox semigroups. Further, we completely describe the structure of
generalized orthodox semigroups in terms of Cliffordian semigroups (that is, semigroups
which are unions of groups) and inverse semigroups. In the latter half of the paper, we
introduce the concept of split extensions of Cliffordian semigroups by inverse semigroups,
and next establish some necessary and sufficient conditions in order that a regular semigroup
S be a split extension of a normal Cliffordian subsemigroup of S by an inverse semigroup.
Any notation and terminology should be referred to [1J, unless otherwise stated.

1. Generalized orthodox semigroups.

A regular semigroup is called a Cliffordian semigroup if it is a union of
groups. It is well-known that any Cliffordian semigroup G is decomposed
into a semilattice /' of completely simple subsemigroups G;; that is, there
exist a semilattice /7 and, for each y € [, a completely simple subsemigroup
G such that (1) G = 3{G, : vy € '} (3 means disjoint sum) and (2) G,Cs C
Gap for all a, 3 € I" (see [1]). Further, the uniqueness of such a decomposition
of G isalso proved as follows: Let {G,: vy &1}, {G} . & € 4} be decompo-
sitions of G into semilattices /7, 4 of completely simple subsemigroups G, and
G, respectively. We next prove that for any G, there exists Gj such that G,
C Gj. Put G,NG; =G* for each y&E 4, and let [l ={y& 4: Gr#[_1}.
Then /7 is a subsemilattice of 4. Now, define ¢ : G, — [ by ap =7 if ac=
G#. Then it is obvious that ¢ is an epimorphism (that is, an onto-homo-
morphism). If /7 is not simple, then there exists a proper ideal A of /I. Hence,
G4 = U {G*: p & A} is a proper ideal of G,. This contradicts to the simplicity
of G5. Thus, [T is simple and hence is a single element. Therefore, for any
G, there exists G5 such that G, C G§. Similarly, it is proved that for any
G} there exists G, such that G C Ga. Hence, two decompositions G, : 7€
I}, {G} : 6 & 4} are essentially same.

Hereafter, “a Cliffordian semigroup G = 31{G, : v € ['}” means “a Cliffordian
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semigroup G which is a semilattice /7 of completely simple semigroups G,”. '

Let S be a regular semigroup, and E the set of idempotents of S. For each
e © E, let G, be a subgroup containing e. If

(D) M=UA{G,: e E} is a subsemigroup of S (accordingly, a Cliffordian
subsemigroup) : M = J{M; : AE A} (A: a semilattice ; and M, : a completely
simple subsemigroup),

(ID) aa*, bb* & M,, a*a, b*b & M; , ab*, b*a & M (where £* means an inverse
of x) and a & M imply b EM,
(hereafter, for an element a of a regular semigroup the notation ¢* will mean an
inverse of a),

(II) aa*, bb*, ab*, ba* & M, , a*a, b*b, a*b, b*a & M, imply that for any
7 &/ there exist My, M, such that

aM.a*, aM.b*, bM.a*, bM.b* C M; and a*M.a, a*M.b, b*M, a, b*M. b C

Mf ]

(IV) aa*, bb*, ab*, ba* & M,, a*a, b*b, a*b, b*a & M, imply that there
exist Me , My , M. and M. such that for any c, c*, (bc)* and (cb)*,

acc*b*, ac(be)* & M., b¥c*ca, (cb)*ca & M;,

cab*c*, ca(chb)* © M, and c*b*ac, (bc)*ac & M.,
then M = 5 {M;: A € A} is called a normal Cliffordian subsemigroup of S.

LEMMA 1. If M= 3{M,: A E A is a normal Cliffordian subsemigroup
of S, then a & M implies a* & M for all inverses a* of a.
Proof. Since M is a union of groups, ¢ has an inverse a* in M. Let a* be
any inverse of @, and let aa* & M, and aa# € My. Then aa# = aa*aa* =
Mag . Hence 3 = af. Similarly, we have o = af8. Thus, o = 3. That is,
aa*, aa* are contained in the same M;. Similarly, it is also proved that a*a,
a*a are contained in the same M. Since a is an inverse of both a&* and a¥,
by () a*a, a*a & M., aa*, aa” €M, , a*a, aa* © M and a* & M imply a*
€ M.

Remark. The following is easily proved : If a regular semigroup S contains

a normal Cliffordian subsemigroup, then the intersection of all normal Cliffordian

subsemigroups of S is also a normal Cliffordian subsemigroup. Hence, S has
the least normal Cliffordian subsemigroup.

Hereafter, a regular semigroup having a normal Cliffordian subsemigroup will
be called a generalized orthodox semigroup. Of course, both a Cliffordian

semigroup and an orthodox semigroup are generalized orthodox semigroups.

Let S be a generalized orthodox semigroup, and M=% {M,: \E A} a
normal Cliffordian subsemigroup of S. Define a relation 7w on S as follows:
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(1.1) @ 7y b if and only if there exist M;, M: such that aa¥, bb¥#, ab¥,

ba# €M, and a*a, b#b, a**b, b*a & M: for all inverses a*, b* of a, b.

It is obvious that this relation is reflexive and symmetric. Next define i
as follows :

(1.2) a my bif and only if there exist xy, x1,.., £, © S such that
Q= Zy Wy By Moy Lzo oLy Tag Tn = b.

Then, it is easily proved by using (I)-(IV) and by simple calculation that this
relation 7, on S is a congruence.

THEOREM 1. S/my is an inverse semigroup. Let ¢ be the decomposition
of M into the semilattice /A of the completely simple subsemigroups M; (that is,
M/o = {M, : A & A}). Then, each p-class M, is a complete T y~class and hence
{M, : AEA} is a normal system of subsets of S (in the sense of [1]).

Proof. For any x & S, let £ be the 7,-class containing x. It is well-known
that every idempotent & of S/7y contains at least one idempotent of .S (see [3]).
Now, let a, b be idempotents of S/7y. Then, there exist idempotents e, f of
S such that 2 = ¢ and & =f. By the definition of T it is obvious that every
p-class M, is contained in some my-class. For x & M, let x be the p-class
containing z. Since M/p is a semilattice, ef = fe. Hence ef = fe, and hence
gf =_)?;. Thus, we obtain ;}‘= Fe, that is, :zz =ba. Therefore, S/7y is an
inverse semigroup. Now, suppose that ¢ & M; and a 7 b. By the definition
of 7y, there exist xy, x1y..., Z, such that a= zy 7% Z1.. Lo Ty 2o = b. We
shall next show that x; 7y Zi1, x; € M, imply xiys € M,;. Since x; Ty Zip,
we have zx¥, xi+1x:'k+1, xix?iu -17i+1-'1?3;k € M., x?‘xi, x?‘+1xi+1, -‘r;kxtﬂ, iz €1 [,7
and x; & M. Therefore, z,,; & M by (II). Let x;y; & Mg. Then, T,y T, =
Z:;+1 and hence B = & (since z;uxfy E M. and zf,, & Mg). Similarly, Z.zF =
xz; and hence A = &. Therefore, @ = A. This implies that z,,, © M. Thus,
we can conclude that a 7,6, a E M; imply b & M;. Hence, every 7y—class
containing an element a of M just coincides with the p-class containing a.
Hence, every p—class is a complete m,—class. Since U {M; : A & A} contains
the set of idempotents of S, {M; : A & A} is a normal system of subsets of S.

From the result above, the congruence 7, on S is uniquely determined by
{M, : A & A}, accordingly by M. Hereafter, we shall denote S/7, by S/M.

THEOREM 2. Let S be a generalized orthodox semigroup, and K = 3 {K;:
0 € 4} the least normal Cliffordian subsemigroup of S. Then, S/K is the
greatest inverse semigroup homomorphic image of S. That is, wx is the least
inverse semigroup congruence on S,

Proof. Let o be an inverse semigroup congruence such that 0 < 7x Let
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A be the basic semilattice (that is, the semilattice of all idempotents) of [ =
S/o (see [6]). Let ¢ : S—>I" be the natural homomorphism of S onto /7, and
put S; = y¢~"' for each y & A. Then S,is a regular subsemigroup, and U {S,:
v & A} = T contains the set E of idempotents of S. Since S, is contained
in some K, , each idempotent of S, is primitive in S;. Hence S; is a primitive
regular semigroup, and hence S, is a completely simple semigroup. Therefore,
T is a semilattice / of completely simple semigroups S;. Since {S,: vy & A}
is the kernel of ¢V, T = U {S;: v & A} is a normal Cliffordian subsemigroup
of S. By the assumption, K = Y {K,; : A € 4} is the least normal Cliffordian
subsemigroup of S and accordingly K C 7. On the other hand, every S, is
contained in some K; and hence T'C K. Thus, we have T = K. Since T
(=K) is uniquely decomposed into a semilattice of completely simple semigroups,
it follows that {S; : vy & A} = {K, : A & 4}. Since 7 0 are the congruences
(on S) determined by {K; : M € 4}, {S; : v & A} respectively, we have 0 = 7x.
Hence 7y is the least inverse semigroup congruence on .

Remark. For any regular semigroup S, the existence of the least inverse
semigroup congruence on S is easily proved.

COROLLARY. Let o be the least inverse semigroup congruence on a generalized
orthodox semigroup S. Let ¢ : S — S/o be the natural homomorphism of S onto

S/0.  Then, the sum of members of the kernel of o is the least normal Cliffordian
subsemigroup of S.

Let K=JY{K;: L& A} be a Cliffordian semigroup, and /' an inverse
semigroup. Suppose that a regular semigroup S contains K as its normal
Cliffordian subsemigroup and S/K = ]'. Let 4 be the basic semilattice of I,
and put S/K =17JI. Let ¢: S— I =S/K be the natural homomorphism, and
put K;¢0 =X for all A& A. Then A’ = {} : A & A} is isomorphic to 4 and
is the basic semilattice of /1. If ¢ : [T > is an isomorphism, then of course
Ap=4. Put M) =X Then, K can be rewritten as K = J{Kz: A € 4}
where K; = K,;. Hence, we introduce the concept of regular extensions of a
Cliffordian semigroup by an inverse semigroup as follows: Let /7 be an inverse
semigroup, and 4 its basic semilattice. Let K = J{K; : 0 & 4} be a Cliffordian
semigroup. Then, a regular semigroup S is called a regular extension of K =
S{K; : 0 & 4y by I'(4) if S satisfies the following conditions : (1) S contains
K as a normal Cliffordian subsemigroup ; and (2) there exists an epimorphism
¢ : S—I" such that 0¢~' = K; for each 0 & 4.

Now, we have the following :

1) Let ¥ be a homomorphism of a regular semigroup A into a regular semigroup B. Let E
be the set of idempotents of Ay. Put 7! = A, for all ¥ € E. Then the set {4,:7 € E}
is called the kernel of .
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THEOREM 3. (1) Let S be a generalized orthodox semigroup, and K =
J{K, : A € A} a normal Cliffordian subsemigroup of S. Then S is a regular
extension of K= 3{K,; : A E A} by some inverse semigroup 2(A)P. In this
case, S/K can be taken as Q(/A).

(2) Let K= 3 {K; : A & A} be a Cliffordian semigroup, and Q2(A) an inverse
semigroup having A as its basic semilattice. Then any regular extension of K =
J{K, : LE A} by Q(A) is a generalized orthodox semigroup.

Proof. The part (1) follows from the definition of regular extensions and
the results above. Let S be a regular extension of K= J{K; : A & A}
by 2(4). Then there exists an epimorphi“sm ¢ : S— Q(A) such that 19~ = K,
for all A € A. Hence, it is obvious that U{K; : A & A} is a normal Cliffordian
subsemigroup of S. Therefore, S is a generalized orthodox semigroup.

By the theorem above, the problem of describing all possible generalized
orthodox semigroups is reduced to the following problem : Let £(A) be a given
inverse semigroup having A as its basic semilattice, and K =3 {K : A & A}

a given Cliffordian semigroup. Construct all possible regular extensions of
K=Y {K; : L& A by ().

We shall investigate this problem in the following sections.

2. Elementary properties.

Let S be a generalized orthodox semigroup, and K = J{K, : A & A} a normal
Cliffordian subsemigroup of S. Then, there exists the unique inverse semigroup
congruence 0 determined by {K, : A & A} ; that is, S/p = {S; : ¥y & '}, where
I" is an inverse semigroup containing A as its basic semilattice, such that (1)
IS, : vy ET =S8, (2) SeS, C Se,for all & n&E T and (3) S; = K; for A
& A. Take an & -class 1; and an “P-class J; from each K;, A & A» Let
K,={@g,:i€U,jEV,, g &G} be a Rees matrix representation of
K,over a group G,. Let [g;],be the sandwich matrix in this representation.
We can identify K; with {(g),: i€ U,, j€V,, g €G,}.

For (x), (v)ks of K;, it is easy to see that (1) (), (¥)is if and only if j=s;
and (2) (x);; P (y)is if and only if i = k. Hence, I, = {(x)y;: R E U, z €G,}
for some jand J,= {(x);: sEV,, x € G,} for some i. Let E; be the set
of idempotents of J;. Then, E, = {(g7). : t EV,, g is the (¢, i)-element of

[g:];}. By simple calculation, it is easily proved that J; is a regular semigroup

2) Hereafter, we sometimes use the symbol I (A) to denote an inverse semigroup /" having
A as its basic semilattice.
3) &, <& denote the Green’s L-relation and R-relation respectively.
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and E; is a right zero semigroup. Hence, J, is a right group (see [6]).
Similarly, I, is a left group. Now, let F=S{I,: L E A}, £ = 3{J, : A
Ay and & =3{E;: A & A}. Warne [5] introduced the concept of lower
[upper] partial chains of semigroups. We next show that _# is a lower partial
chain of left groups {I,: A& A} and £ is an upper partial chain of right
groups {J; : A& A}, Let x &I, y € I, and A < p. Since yxr & K;, assume
that yx = (h), in K;. If x = (g);;in I,, %z has a form (u),; in K; (z* means
an inverse of z). Hence, yx = yzz*x = (h),(u),; = (v),; for some v & G;.
Since (v),; has j as a column number, yr & x in K,. Thus, yz E'Il. That
is, _# is a lower partial chain of {I, : A & A}. By a similar method to the
above, we can prove that / is an upper partial chain of right groups {J, :
A& A},

Next, let %, be a representative of S, for each y & I'.

LEMMA 2. For any a € S,, there exist a unique p and a unique q such
that p € Ly, ¢ € Epy and pu,q = a.

Proof. First we prove that there exist x, y such that z & S,,-1, ¥y € S}y
and a = zu,y. It is obvious that a = aa*aa*a and a*a, w}u, © S;, . Since
Sty (= Kpi) i {(@ks 1 R € Upiy, s € Viy , g € Gy} Let wdu, = (gi)a and
a*a = (gi)u. I z = gilg.gx' then (2).(g5)w(gn)u = (g2)u. Hence, a =
aa*a = a(gi)u = a(xgugii Gl Jue = (a(@)ut¥)u, (a*a). Since a(x)uuf € S, -
and a*a € S,-,, there exist x, y such that x € §,,-, ¥y € 5,4
Now since u,y = wufu,y, wfu &S -, and y € Sy, if y = (@) and wfu =
(B)eu then why = (Rul@)s = (hguda Let Jyoy = {@ s s € Virty » £ € G 1.
Take n such that ng,hg.gi! = hgwg, and put e = (gi')a and ()., = 2. Then

1, and @ = zu.y.

2fu,e = win y. Hence, a = xu,2ufu,e, e © E;-, and zu,zu¥ € 5,1, Now,
let v= xu, zu¥. Then a = vure, v € 8,1 and e & E;1;. Now, let [, =
{g)y: sE Uy, g E Gy} vu, =vwuwtu, v S, and u, wtF & S, 0. I
v = (@n and if w,uf = (h)y, then vu, uf = (&) (h)s= (ggnh)r.. Take w such
that wg;h = gg.h. Then vu,u¥ = (w)u, wf and (w); € I -,. Putting (w)y,
=p, e = q, we have a = pu,ufu,q = pu.q, p < I,
the uniqueness of such p,.g. Assume that a = zu,y = 2u,v, x, 2 & ITT_,, Y,

g € E,..,. Next, we prove

is a right zero
e Put
u,y(u,y)* = (@un and x = (f);. Take ¢ and p such that ggw,c = gj. Then
(@)ar(€)as = (85 )ns. Hence, xu,y = zuy implies 2(u, y)(u,y)*(c),; = 2z (u,¥) (w0, 3)*(c)ps
and hence implies z(g7.),; = 2 (g7n ) Therefore, z(x*x) (gn)n; = 2 (2%2) (g7 )ns

vEE.,. zuy=zu,v implies zu, yy =zu, vy, Since E -,

semigroup, xu,y = zu,y. Since u,y &S, we have u,y(u,y)* €S

and x*z, ¥z € I,,-.. Since the idempotents of I, -, form a left zero semigroup,

rrt
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1

2*x(g7),; = x*x and =¥z (g7.).; = 2*2z. Thus we obtain z = 2. Similarly, we

also obtain y = v.

3. Regular products.

Let I7 be an inverse semigroup, and /4 the basic semilattice of /. Let K =
J{K, : L E A be a Cliffordian semigroup. Let I;,J; be an & -class, an
AP —class of K, respectively for each A & 4, and put # = 3{[,: A € 4}
and / = 3{J;: A E A}. Let E; be the right zero subsemigroup of idempotents
of J,, and put & =I{E; : A & A}. Then, it is easy to see from the section
2 that _# and / are a lower partial chain of left groups {I, : A & A} and
an upper partial chain of right groups {J, : A & A}. Now, let P(A, B) denote
the set of partial transformations of A into B (see [5]). Suppose that ¢ : ['2
S>P( EXx FXx ¥, Fland ¢:[2—>P( & X F X &, &) satisfy
the following conditions (A), (B), and (C) : Put (7, 0) ¢ = &, and (A, 0) ¢ =
Be for (r, 0) €.

(A) D(ag,a ) = DB ) = By XTIt X B, 2 R(Q,0)) C Loy and
R(Bey ) C Egoyiye » where D(E), R(E) denote the domain and the range
of & respectively.

B UGEE v, tEL . , hEE , vE Ij and w € E,.,, , then
(g, ¢ h>a(r,r) (g, t, h>B(r,T): v, w>a(rr,6)
= (g, th, v, W), 5y (hy 0, W) iy ,00) Oy, cn
and (¢, 2, 7) B,y 0 W) Bye s
= (g, th, v, W), 55 (b, 0, W)B( )6y

(C) For y&l', pE Ly ¢ €E E ., there exist k €1 ., and n € E, -, such
that p(q, &, W)acr, v (@, k, WB -1y ) s DG,y =P
and (¢, k&, WP, 1y » P, Q)B(n-l,r) =gq.

In this case, for the set (I, 7, &, {a, t, {Bao}) ={Gr.H:rET,

S SRS E_..} we have

LEMMA 3. (r, #, &,1{a, ) {ﬁ(m)}) is a regular semigroup under
the multiplication defined by

<i9 T, j) (P? T? Q) = (Z(j, P} Q)a(r,r)’ TT; (]7 p’ q)‘Q(T,T) )'

Proof. It is easily seen from the conditions (A), (B) and by simple calculation

that (I, . , &, {0} {B,.,)) is a semigroup. Also, the regularity
follows from the condition (C). In fact, for (3, 7, j), take 2 € I ., and n &

E..- which satisfy the condition (C). Then (&, v, #) satisfies
(i’ 7” j) (k’ 7’_1, n) (i’ T’ j) = (i’ 7/’ j)‘

Now, let M =X{M,: A& £} be a Cliffordian semigroup. Let u, be a
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representative of M, for each A € &, and L;, R; an & —class, an P -class
of M, respectively. Let F, be the set of idempotents of R;,. Then by Lemma
2, for any a & M, there exist a unique p & L; and a unique ¢ € F, such that
a = pu, q. Now, for (A, 1) € £, define a; , : F, XL, XF. > L, and Boeo
F, XL, XF, - F,, as follows :

(¢, v, w)ag,,, =t and (g, v, W)B,» = h if u,quu,w = tu b, where ¢ € F,,
vEL,wEF,tEL;,and h EF,_.

It is easy to see that such {a .} and {0, ,)} satisfy the conditions (A),
(B), (C). Hence we can consider (2, L, F, {a,. b {Ba,nt), where L=
J{L,: A€ QY and F=3{F, : A E £}.

Now, we obtain

LENMA 4. M is isomorphic to (2, L, F, {a; .}, {8, 0})-

Proof. By Lemma 2, M = {in,j: L E L, i& L,, jE F;}. Define ¢ : M —
(@, L, F, {a, s} Ba, ) by Gy )p = (6, A, ). Then ¢ is clearly surjective
and injective. Further, ((ix,j) (ku, h))p = (i(j, &, h) Aiproy Uy Uy ks M) B (1,000 =
(i Gy k)G, s ATs Gy ko B) B, ) = (i, A, )k, T, B) = (G ) §) (e, h)g).

In M= {iu,j: LEQ,iE L, jEF,}, the multiplication is given by
(i, j)kuy b)) = i(j, &, W) evy, ue, (G B B) By ey - In general, for M = {iuj: A € 2,
i€L,, jEF}, a system d={ag,., : 4 1EX ULy, 4 TEL}
satisfying (A), (B), (C) and the following
(D) wyjkuyh = Gy ks B, u, Gy b BB, for L, TEL, jEF, ke L,
h & F;
is uniquely determined. We shall call this system 4 the characteristic family
of M={uj: AERQ i€EL,jER}) It d={a,,,:LTEL U {B(M):
A, T € R} is the characteristic family of M = {iu,j : AE R, i € L,, jE F;},
then of course the multiplication in M is given by
(iu, 5) (ku h) = i(j &, h)a(“_) u, (4, & BB
Now, consider the regular semigroup (I, .# , & {a 1, {8, }) above.

Take a representative u, from each K,, A © 4, and express K as follows :
K={u,j: €A iE1,jE E;}. Then, we have

LEMMA 5. If {ag,,:AbrEA4 U {B(M) : A, T E A} is the characteristic
Sfamily of K = {iu,j: AE A, i € I, j € E,}, then there exists a homomorphism

¢of (I, #, &, ,{aunt Buny?t) onto I' such that U ker ¢ = K (where
U ker ¢ means the union of members of the kernel of ¢*).

Proof. Define ¢ as follows: (i, v, =7, Gy, peEed, *, &,

4), If ker @ = {Kj: A € 4}, then U ker @ means U{K;: 1 E 4}.
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{a¢, ot 1By, t)-  This mapping ¢ is clearly a homomorphism of (I", _#,

& s ;o) 1B, }) onto I'. Now, it is obvious that U ker ¢ =
{G,A j):AE A iEL, jEE;}. Define 7 : K—>U ker ¢ by (iu, )1 =
(3, A, j). Then by the definition of characteristic families, for iu,j, ku:h € K
(where i€ I, jEE,,kEI, hEE,)

(Gl 7) (k. ) 7 = (i(Gy By B Q9 23 (s By B) Baioy )0 =

GG b R)aGer AT, Gy b BB ) = G A 3) &, T, h) = ((Gu, ) 7) (ke B) 7).

Since 7 is clearly injective, 7 is an isomorphism.

The semigroup (I, &, & ,{cy,0ts B )) is particularly denoted by
RIIKUA); F, &5 wmb {ag b Bg.o D) if there exists a set {u, : A &
A}, where u, € K, such that {a, ., : L, 7 E A4 U {Bao AT E A is the
characteristic family of K = {iu,j: A E 4, i EI,, j € E;}. We call this R(/,
K); F, &, {a, ot {By.o)) a regular product of K(A) and I'(A).

COROLLARY. The regular product R(I", K(A); #, & ,{u,}, {a(m)},
{B(m) }) above is a generalized orthodox. semigroup.

Proof. Consider the mappings ¢, 7 defined in the proof of Lemma 5. Then,
U ker ¢ = K by 7. Since {iu,j: i &I, j € E;} = K, is clearly isomorphic
to {A,4): i€, EE,} =A¢" and since K is a Cliffordian semigroup,
U ker ¢ is a normal Cliffordian subsemigroup of R(/", K(A4); *, &, {wm},
{Ol(m)}, {8, 1)- Therefore, RU", K(A) 5 &, & , b, a1 B, 1)

is a generalized orthodox semigroup.

4. The structure of generalized orthodox semigroups

The structure of generalized orthodox semigroups can be described by slightly
modifying the method given by Warne [5] for orthodox semigroups to describe
their structure. Now, consider the generalized orthodox semigroup S in the
section 2. Then, S=3{S,;: y&l't ={uj: vy €T, i& ITT_I, jE E,}. For
each pair (7, 1) of 7, 7 & I, there exist a unique Aoy b By XL XE | —>
Lo and a unique B, . : Eyi, XI _XE_; = E ., such that for iu j
and ke h of S (where i€ I, jEE, kEL_,hEE_), u jku, b =
(G, &, h) Ay oy thr (G &, h),é’(r'r)(hence, i, jhu b = i(j, k, B)ag, o, Gk MB.o)-
It is easy to see that the set {a,, : 7,7 €1 U B, : 7, T €} satisfies
the conditions (A), (B) and (C). In fact: The condition (A) obviously holds.
Let g€ B,y )y t EL i, hRE E -y, v € Iy and w € Ej-;. Then,

(u,qtu h)vu;, w = ((g, ¢, W ag,, u,. (¢ ¢, k),Q(T,T))'vua w =

(g, ¢, h)a(m)((q, £, h)B(m) U, W) Qtyerpytres (g, ¢, h),@mf), v, W) ey - On the
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other hand, u gt (u hvuyw) = u q(t(h, v, w)Cy,, ﬁ)uw(h, v, W) B, 50 =
(g,t(hyv, w)a(r,a),(h, 0, W), Ay, eay u”a(q, thy v, W) A, 5, (B, v, W) ,8(1’6)'),6’(7,:6).
Hence, the condition (B) holds. Next, let y &7, p& I,,, and ¢ € E -1,
Since S is regular, there exists ku,n (k€ I, and n & E.- . ) such that
pu, qkunpu,q = pu, q and kusn = kugnpu,qkugen. It is easy to see that & =y~
Hence &k € I,-1, and # © E;-1.  Now, pu,gku-inpu.q = pu g implies the condition
(C). Further, {aq,oy: A T EAY U {8y, ¢ 4 T € 4} is clearly the characteristic
family of K= {au,j: V& 4, i €I, jE E;}. Hence RU, K(A); SF, &,
)y {0, 1By, of) (where 7 =23{[,: A€ A} and & = J{E;: LE

A}) can be considered, and we have the following :

THEOREM 4, S is isomorphic to R(I", K(A); # , & , {u}, 1, o
{B(-r,f)})'

Proof. Let us define ¢ : S— R, K(A); &#, & , {u,}, {a,.> {B(m)})
by Gy )b = Gy 7 - Then, (G, ) G ) § = i & B agy e By BBy 1)
= G0, by Wty 70 Gy By B Br) = (i 70 ) (B 7 1) = ity )9) (s B) ).
Since ¢ is clearly surjective and injective, ¢ is an isomorphism.

By the theorem above and Corollary to Lemma 5, we have the following
result :

COROLLARY. Any generalized orthodox semigroup is isomorphic to a
regular product of a Cliffordian semigroup and an inverse semigroup. Conversely,
any regular product of a Cliffordian semigroup and an inverse semigroup is a
generalized orthodox semigroup.

5. Preorthodox semigroups.

Let S be a regular semigroup. If there exist an epimorphism (i. e., onto—
homomorphism) ¢ : S— [ of S onto an inverse semigroup /' and a homo-
morphism ¢ : /7 — S such that

(1) ¢¢ =1 (identity mapping) and

(2) U ker ¢ = a Cliffordian subsemigroup K = J{K; : A & A} of I, and

K, = ¢! for all A & 4,
then S is called a split extension of K= 23 {K;: A& A} by I'(A).

The following results are obvious from the preceding sections : Let S be a
split extension of a Cliffordian subsemigroup K = 3{K; : A € A} by an inverse
semigroup /'(A). Then, there exist an epimorphism ¢ : S—/" and a homomor-
phism ¢ : /7—>S such that ¢ and ¢ satisfy the conditions (1), (2) above. Since
K is clearly a normal Cliffordian subsemigroup of S, the decomposition of S
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determined by the kernel {K, : A & A} of ¢is S/K = {S;: y &'}, where S;
= 7¢™" for y € I" and especially S; = K, for A € 4, and (i) S, S C Sge for
a, BET; (i) §=3{S,: vy €I'}. Further, let y¢ =u, for y €. Then,
(iii) u, & S, for all y € " and the set T = {u, : y &'} is isomorphic to [’
since ¢ is a monomorphism (i. e, 1-1, into-homomorphism). Therefore, of

course T is an inverse subsemigroup of S.

Now, let S be the above-mentioned split extension of K = Y{Ky AE A} by
I'(A). For each A € 4, let I,, J, be the “-class, 2 -class of K respectively
such that I; E«, and j, € ;. Put J{[, : 1 E 4} = & and Y{Ji : LE A}
=_# . Then, it follows that _# and _# are a lower partial chain of left
groups {I; : ME A} and an upper partial chain of right groups {J; : AE A
respectively. Let E; be the set of idempotents of J;, and put IJ{E; : 1 & A}
= g . Of course, each E, is a right zero semigroup. Further, we have the

following :

LEMMA 6. & = 3{E, : A& A} is an upper partial ' chain of right zero
semigroups {E; : A & A}.

Proof. Let A<y, tE E,and y & E,. We have xyzy = zyu,zy =
Ty, u, xy = xu,u, xy = xwxy (since T = {u, : L € A} is a semilattice and hence
u,u, = u,) = x'y = xy. Hence, zy is an idempotent. Since xy & J;, we have
zy € E,. Thus, & is an upper partal chain of {E; : A& 4}.

A Cliffordiian semigroup M = S{M, : L € A} is called a left [right] Cliffo-
rdian semigroup if there existsa system {I, : A & A} [{J; : A & A}] of <z
classes I, of M,’s [ P ~classes J; of M,’s] (each I, [J;]isan & -class[ #-
class] of M,) such that Y{F, : A€ A4} =& where F, is the set of idemp-
otents of I, [J, ], is a lower [upper] partial chain of {F; : A & A}. A generalized
orthodox semigroup G is called a preorthodox semigroup if there exists a
normal left Cliffordian subsemigroup or a normal right Cliffordian subsemigroup
in G. Therefore, the split extension S of K = Y{K;: A € A} by I"(A) above
is of course a preorthodox semigroup. In this case, it is easily seen from the
dual result of Lemma 6 with - respect to “left and right” that K should be
necessarily also left Cliffordian. Further, it is also easily seen that any orthodox
union of groups is both left and right Cliffordian and hence any orthodox

semigroup is a preorthodox semigroup. Hence, we have

LEMMA 7. A split extension of a Cliffordian semigroup K = 3{K, : 1 &
A}y by an inverse semigroup I'(/A) is a preorthodox semigroup. In this case, K

should be necessarily left and right Cliffordian.
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6. Semidirect products

Let S be a preorthodox semigroup. Then, there exists a normal right or
left Cliffordian subsemigroup K = 3 {K, : A€ A}. We assume without loss
of generality that K is a normal right Cliffordian subsemigroup. Let {I; : 1 €
Ay, 4, : A€ Ak be two systems such that (i) each I; is an & -class of K,
and each J; is an 2 -class of K, and (ii) & = J{E, : L € A}, where each
E, is the set of idempotents of J , is an upper partial chain of {E; : A & A}.
Since K = Y{K; : A& A} is a normal Cliffordian subsemigroup of S, there
exists the congruence 7, determined by the normal system {K; : A € A} of
subsets of S%; that is, S/K = S/7.. There exists an inverse semigroup [~
having A as its basic semilattice such that (i) S/K = {S,: y € I'}, (ii) S;= K;
for A€ A and (i) S=31{S,: y &'} and S.S; CS,; for a, BET.

The following results is obvious from the preceding sections : Take a re-
presentative #, from each S,. Then, each element x can be uniquely expres-
sed in the form x = iu,j, where y €[, i € I,;+ and j € E,~,. Hence, S
={i,j: vy €I, i€L, jE E~,}, and iu,j = ku h, where i C L+, j €
Eyiy, k€ I and h € E;-1,, implies y =7, i=Fk and j=h. For v, €T,
define Qg ¢ Bty %It X Ectp = Loyt and Beey ¢ Byt X Lot X B, —>
E(; o170 as follows : For j € E;1y, k€ L1 and h € Ecq, (4, k, B) gy, o= ¢ and
(s ks B) Bero= v if wu,jku.h = tu,.v where t € I,;(;ey1 and v & E¢oy-1,.. Then,
the system 4 = {a, o: v, E T U Byt 7T ET} satisfies A, B, C of
the section 3.

Further, the system {a 5: 4,0 & A4} U {B;,9: A 0 € A} is the characteristic
family of K = {iu,j: A€ A, i€ I}, j&E E;}. Therefore we can consider the
regular product R(/", K(4); 7, &, {u,}, {a(m)}, {By,o}) (of K(A) and
I'(A), where ¥ = 3{I, : L& A}, and the mapping ¢ : S— R([", K(A) ; &£ ,

&, {u,}, {ag,ohs {B(;,0p}) defined by (iu.5) ¢ = (7, 7, j) gives an isomorphism.

Now, define other mappings a(;,o) : Ej-1; X Ieet = Io¢;1 and By + Epry X
I..i—> E( -1, for each pair (7, 7) of v, 7 € [ as follows :

For j& E;1; and R E I,

(U, k) Ay =t and (5, k) ,@m): v if w, jku.= tu,.v where t © I, ., and
v & Egoyipe-

Let A= {ag,y : 7nrETN U {,G’_ZT,T) : v, 7 EI'}. Then, this system 4
satisfies the following A, B, C :

A D(_a'_(r,r)) = D(,Q—(r,f)) =Er“r><1rr'l 5 R(C;-';r,f)) CLcrors R(ﬁ?(r,r)) - E(rr)“‘rr;

5) If {Ri::E A} is a normal system of subsets of a regular semigroup R, then there exists
a unigue congruence p on R such that each R; is a complete p-class. This congruence p
is called the congruence on R determined by {Ri: A € A3}. (see also[1].)
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B. for QEE1,, t & I;1, hREE v and v € Ijss,
(q’ t)a(r,f) (_(qa t)B_(T,f) h> 'U) @'r,&) = (Q) t (h,_v)aTi(r,a) )'5&,}3) and
(g, t (h, v)a(f,a))ﬁ(r,rg) (h, 'U)B(r,ﬁ) =((g, ©) B(r,r) h, 71)‘8(7-,,5) 5 o
C.for y&I', p& I, and ¢ € E -1, there exist k& I.,and nE E,
such that |
p(g, k)a(r,r"l) (g, k)le(r,r'l) n, p) 97(”-1,7) = p.

Further, {07(1 oA 0E A B(z » A O E A} satisfies
(D) u, gku; = (4, k)oz(/1 5 (4, k),@u » for 2, oe A jEE, and kE I;.

Now, for iu,j, ku. hE S (where i € [, jE Ep, kE L and R E Er_lr)

w, jku.h = (4, k, h)cv(r r)urr(.y, kBB -

On the other hand, u,jku h = (j, k)a(r o %, (s k)B(T r)

Hence,
6. 1) Gk Bag. =G, D, and G, b DBy = G, BB oh

Accordingly, the multiplication in R(I", K(A); _#, &, {u;}, {a‘(m)} ABG.ob)

is given by
6.2) Gr.)k,h) =300k D, 17 G kDB, )

= (i(j, By 00 175 G B) By B)-

Next, we shall introduce the concept of a complete regular product of a
right [left] Cliffordian semigroup and an inverse semigroﬁp. Let I be an
inverse semigroup, and / its basic semilattice. Let K;= J{K,: A & 4} be a
right Cliffordian semigroup. Let I,,J, be an & -class, an # -class of K,
respectively such that g= JH{E,: A& A}, where E; is the set of idempotents
of J,,is an upper partial chain of {E,: A& A}. Suppose that a system 4 =
{0 T ET) u Byt 7T E T} satisfies A, B, C and {a 5 A 0 E
A} U | B(m) ), 0 € A} satisfies (D) with respect to a set {u; : L & A}, where
u, is a representative of K;. Then, the set G= {({, v,/ : vy €T, iE& I,
jE E.;} becomes a regular extension of K(A) by [7(4), accordingly to a
preorthodox semigroup, under the multiplication defined by (6. 2).

In fact : If we define ., 5, by using OY(T o /6’_(m) and (6. 1) then the
system 4 = {a,o 7,7 ET U B, 1o 7 €1} satisfies A, B, C and also
o LOE A U {Bus: 4 0 & A} becomes the characteristic family of
K= {iuj: €4, i1, jE E} Hence, a regular product R(I", K(A);

S &t {a, L {3(,,,)})—(""1161’6 F =3{,: L& A}) of K(A) and
I'(A) can be considered and coincides with the regular semigroup G above.
Since R(I", K4); 7, &, {u }, {lag b {B(,.}) is clearly a preorthodox
semigroup, G is also a preorthodox semigroup. We shall call such a G a
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complete regular product of K(A) and I'(A), and denote G by C(I', K(4) ; %,
&, {ul}ﬂ {5(7,,)}7 {E_(r,,)})'

By the results above, we have

THEOREM 5. A regular semigroup S is a preorthodox semigroup if and
only if S is isomorphic to a complete regular product of a right or left Cliffo-
rdian semigroup K(A) and an inverse semigroup 1'(A).

Proof. Obvious.

Remark. A complete regular product of a left Cliffordian semigroup and

an inverse semigroup can be defined by the dual method concerning “left and

right™.

Consider a complete regular product C(I7, K(A); &, &, {u;}, {Z)Z(T,r)},
{B(m;}) as above. If there exists a system {¢,: y &/} U {jr ryerl'},
where i, € I+ and j, & E...,, such that
6. 3) ir(jr,ir)ﬁ(m) =i, and (7, iT)B(m) j.=1J, for v, 7 & I, then we shall
call such special complete regular product a semidirect product of K(A) and
I"(4), and denote it especially by S(I", K(4) ; .7, &, {u,}, {07@”)}, {E_(T’r)}).

When K = S{K, : L & A} is a left Cliffordian semigroup, we can also define
the concept of “semidirect products of K(/) and ['(A)” by the dual method

concerning “left and right”.

7. Split extensions.

In this section, we establish necessary and sufficient conditions for a regular
semigroup to be a split extension of a normal right Cliffordian subsemigroup
by an inverse semigroup. If S isa split extension of a normal right Cliffordian
subsemigroup K=J3{K,: 1E 4} by an inverse semigroup I'(4), then it
follows from Lemma 7 that K(/) is necessarily also left Cliffordian. Hence, S
is a split extension of a normal left Cliffordian subsemigroup by an inverse
semigroup.

THEOREM 6. For a regular semigroup S, the following three conditions
are equivalent : ‘

(1) S is a split extension of a normal right Cliffordian subsemigroup by an
inverse semigroup.

(2) S contains a normal right Cliffordian subsemigroup K = J{K; : AE A}

and an inverse subsemigroup N such that
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(i) K, N N = a single element u, for all A& 4, and
(i) S= KoNoK = | {K(uu"yuK@w " u) : w € N}, where K(x) means the

U means the inverse of u in N.

class K, containing x and u”

(8) S is isomorphic to a semidirect product of a right Cliffordian semigroup

and an inverse semigroup.

Proof. (1) = (2) : Assume that S is a split extension of a normal right
Cliffordian subsemigroup K = Y{K; : A & A} by an inverse semigroup /'(/).
By the definition of split extensions, there exist an epimorphism ¢ : S—T'(A)
and a homomorphism ¢ : I'(A) = S such that A¢~' = K, for all A & 4 and
¢p =1. Put {y¢ : y EI'} = N. Then, ¢ is an isomorphism of /'(/4) onto N.
Hence, N is an inverse subsemigroup of S. Put y¢™' =S, forall y & I (hence
K,=8,for L& A). If K, N3 a, then ap = L. Let y be an element of [/’
such that @ = y¢. Then, y¢¢ = A. Since ¢¢ = 1, this implies y = A. Therefore
y is uniquely determined, and hence a is also unique. That is, K, (1 N consists
of a single element, say «,. Now, for each A & /, let I,, J;, be the Z-class,
the P -class of K, such that I, D u, and J; D u, respectively. Let £, be the
set of idempotents of J,. Since S is clearly a generalized orthodox semigroup
and u, = S,, any z of S, can be uniquely expressed in the form x = u,j where
i €1, and j € E,. Since u,u; € K v, wi'u,& Kooy, it follows that = &
K(u uy)u, K(u'u,). Thus, (i) and (ii) are satisfied.

(2) > (3) : Assume the condition (2). Since {K;: A& A} constitutes a
normal system of subsets of S, there exists the inverse semigroup congruence
o determined by {K, : A & A} ; that is, S/p={S,: y € I'} (where [ is an
inverse semigroup containing / as its basic semilattice) and K, =S, for 1 & A
For any y & I and for any = & S,, = can be expressed in the form = = zuw,
where « & N, 2 & K(uu™) and w & K(u ' u). Since zuw & S(uu™") S (u) S(uw™" u),
where S(z) means the p-class containing x, we have zuw & S(u). Hence « &
S.. Therefore, S, contains at least one element of N. Suppose that S, N
S uy, u;. There exist K,, K, such that S(uui') = S(w w;) = Ky and S (w5 'u,)
= S(u;i'uw) = K;. Since each of K;, K, contains only one element of N, it
follows that w,u;' = w,;' and w;'wy = ui'u,. Hence, u, = wui'u, = wyuy'v, =
wui'u, = u,. Thus, S, M N consists of a single element, say «,, for all y &I
Hence, () : ['—> N defined by 7y(¢ = %, is an isomorphism. For each A & 4,
let I, be the &-class of K, that contains #,, Jy, the A -class of K, that
contains #,, and FE,, the set of all idempotents of Jy,. Then, of course S =
{iw,j: w,EN, i & Iu, it j E-1_ }. Let ¢ be the natural homomorphism

Uy Uy

of Sonto S/p. Then, )¢ =1 and hence S is a split extension of K = I{K; :
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AL E A by I'(A). Hence & = Y{Eu, : u, T}, where T is the basic semi-
lattice of N, is an upper partial chain of {E : u, & T}. Now, define b?(un w) 't
Eu;1 uy X Ly Ly B—(ur, uy * Eu;‘ XLyt = Fu;f‘ Upe by

u, jku, = (j, k>0<—(u,, 2 Yre (s k)ﬁ—tun uy for 1€ E u and k£ € I, ‘

Then, as was shown above, {&—(un w) % ¥ ENP U {ﬁ(uﬁ u)’ %> ue € N}
satisfies 4, B, C and {07-(2% )t %o u, & T} U {,G(m’ w)t % ¥ ET} satisfies
(D). Hence, S is isomorphic to the complete regular product C(N, K(T);
S, &, ), Qg ut> {E(ur,u y) (where _# = 3{I, : u, © T}) under the
following mapping ¢ : (7, u,.7)¢ = iu, j.

Now, put u,u;1= by Uty = e Then, u, = i, u,Ju sy, € Lyyits du, € Eurl 0
U =ty e Juer Tue © Dygns Gy, € Bty 5 and wy o= iy uy y o by, € Lyt Juye €
Ey;1u, Hence by e Juye = ity (g Z'Z‘r)a(u,, ) re (g iur>§(ur, we) Jue? and accor-
dingly iy, (j,,» iy, )cT(u Vo = age = g, 309 G 0080, 4y, = Juye = Juu Thus
CIN,K(T) ; 7, %, {w}, {O‘(unu)} {B(,,T, x))) is a semidirect product of —
K(T) and N(T). Consequently, S is isomorphic to S(N, K(T'); #, &, {u,},
{0y, w) b { ﬁ_)(un u)})-

3)=>(): Let K=J3{K,: A& A} be a right Cliffordian semigroup, and
I'(4) an inverse semigroup having / as its basic semilattice. Let I, be an
ZL~class-of -K, -for each A & /, and J, an P-class of K, for each 1 E 4
such that & = 3{E,: A € A}, where E; is the set of idempotents of J;,
is an upper partial chain of {E, : A & A}. Let S(I', K(A); &, &, {u,}, —
{07(7 T)} {8, . )}) be the semidirect product of K(A) and /7(A) determined by
F =3 : L E A and & and by a system {{«, }, {OC(r o) {B(T o)} satisfying
A, B, C, (D) and (6. 3). By the definition of semidirect products, there exist a
system {¢, : y €'} U {j, : r € I'}, where i, I, and _Z'TE E,.,, such that
ir"(jr,ir)ozr'r)z i and (jr, ir)g(m)jr =j,.. Put{(i,, 7,4, ):y € '} =N, and define
¢ : I'>Nand ¢: ST KU &7, &, {u}, @, o Byo)) > I as
follows : y¢ = (i,, 7, j,) and (3, 7, j) = 7. Then, ¢ and ¢ are an isomorphism
and an epimorphism respectively, and satisfy (¢ = 1. Let M, = {(k, A, h) :
keI, hc E;} for each L & A Then, ker ¢ = {M,: L E A}. Since M=
K, (see [4]), M, is a completely simple semigroup. Hence, S(I°, K(/A) ; _#,
&, {u,}, {c?mr)}, {E(m)}) is a split extension of M = 3{M, : A& A} by
().

Remark. If a group G is a split extension (in the sense of this paper) of a
normal right Cliffordian subsemigroup K and an inverse semigroup /', then K
and /7 should be necessarily groups. Also, if G is isomorphic to a semidirect

product (in the sense of this paper) of a right Cliffordian semigroup K’ and an
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inverse semigroup /" then K’ and I/ should be necessarily groups. Moreover,
it is easily prove that for the class of groups, the concepts of split extensions
and semidirect products in the sense of this paper completely coincide with
those in the group theory respectively. Further, if we restrict S to groups
then K(A), N in the theorem above are also groups, especially N is a normal
subgroup of S, and KoNoK = KN. Hence as a special case, if we restrict S
to groups then the theorem above means the following well-known result in
the group theory : For a group S, the following three conditions are equivalent.

(1) S is a split extension of a normal subgroup H by a group G.

(2) There exist a normal subgroup H of S and a subgroup N of S such

that (i) S=HN and (i) HN N=1.
(3) S is isomorphic to a semidirect product of a group M and a group G.
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