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We shall discuss first the basic properties of the 

quantities of rather simple quantum mechanical systems 
propagator and then evaluate some 

S 1. Density Matrix in the Canonical Ensemble I ) 

A propagator formalism based on the Bloch equation for the density matrix is 

presented. The propagator is essentially the density matrix in quantum mechanical 

terminology. In quantum mechanics, the expectation value of an operator A which 

acts on a wave function ~(r, t) is 

A = (~, A~) . (1) 
The wave function ~(r, t) may be expanded in terms of a complete orthogonal set 

of functions ip*, 

~(r, t) = c.(t)ip.(r) , (2) 
where ip*(r) is a function independent of time. Then 

A= ~ c~c~(nlAln) . (3) ",~ 

We introduce a projection operator P by 

(nl PI m) = c*c~ , (4) 
so that 

A = ~ (nl Plm)(InlAln) =Tr PA . (5) 
",~ 

P has the properties 

P2 = P (idempotent) , (6) 
(nl Pl m) = (m I Pl n)* (Hermitian) . 

We define the ensemble average of A by 
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 = ~ 
(mlAln) (8) 

"'~ 

Thus, it is convenient to introduce the density matrix p with following elements : 

(nl pl m) = 
 (9) and the ensemble average is written as 

 = Tr pA . (10) 
Double averages, quantum mechanical and statistical, both mean essentially the 

average values, we shall use the notation 

 from now by omitting the bat The density matrix has several important properties. First, it is Hermitian, in 

particular, the diagonal elements are real. and if A = I in Eq. (10), 

Tr p = I , (11) 
which indicates that the diagonal elements (nlpln) of a density matrix give the nor-

malized probability that the state ip* is realized in the ensemble. Second, the averages 

defined by the density matrices are invariant under unitary transformations 

The time dependence of the wave function is given by the Schr6dinger equation 

i at 

The expansion (2) gives 

h dc - . ~ "ip~=~cHc (13) l ~ dt 

From (9) and (12), one can derive 

d
 dt (nlPlm) h (nIPH HPjm) (14) 

In terms of the density matrix p and the commutator [ , I Eq. (14) becomes 

ap _ i 

at ~ h [P, H]. (15) 
The formal solution of the Bloch equation (Eq. (15)) for a time independent H is 

p(t) = [exp ( - ih- iHt)] p(O) exp (i~- IHt) . (1 6) 

From the analogy of classical cases, we introduce a operator 

p e PH I pH+ ~ P2H2-... (17) 
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as the density matrix for the canonical ensemble, P being 1lkT 

We are interested in the quantum mechanical systems of N fermions or bosons 

described by the Hamiltonian H. We shall assume that our system is in equilibrium 

and the Hamiltonian operator 11 has the eigenvalues E* and the eigenfunctions ~~ : 

H~n = E~~~ . (18) 
The partition function of the system is 

ZN = ~ e~E~/kT. (19) 
The Schr6dinger equation is not soluble in most cases. Therefore, we try to express 

the partition function directly in terms of the Hamiltonian H. For this purpose, Iet 

us start with the density operator e~PH and define 

p(r'N, rN) = ~ ~~ (r'N)e~PE~~*(rN) = ~ ~~(r'N)e~PH~*(rN), (.20) 

where r'v represents the coordinates of the N particles. This is the (r'N, rN) ele-

ment of the density matnx p m the canonical ensemble. The trace of this matrix is 

simply the partition function 

fp(r'N, rN)6(r'N, rN)dr'NdrN = )p(rN, rN)drN = ~ e~PE~. (21) C
 

In Eq. (20), the density matrix is defined in terms of the energy eigenfunctions. 

However, it is possible to use orthonormal set of eigenfunctions to express p. To show 

this, we expand the energy eigenfunctions in terms of the orthogonal set {epl} : 

j
 

~*= ~1 c~l~91' = ~~(rN)ep~(rN)drN. (22) c~l 

Then, using the closure property of ~~, 

~ ~~ (r'N)~~(rN) = 6(rN - r'N), (23) 

and the orthogonal properties of q)*, we find 

~ c~lc~* = 8is ' (24) 
Thus, Eq. (20) is reduces to 

p(r'N rN) = ~1 ep~(r'N)e~PHq)1(rN). (25) 

Consequently, the density matrix for thermal equilibrium may be defined in 

terms of any orthonormal set of functions, and the partition function can be obtained 

by taking its trace 
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On differentiating Eq. (20), we find the Bloch equation 

ap = _Hp 
a p 

for the equilibnum density matnx. The formal solution can be expressed as 

p = e~PHp(O) , 

where p(O) rs the value of p at p = O. 

(26) 

(27) 

S 2. Propagator im the r-P Space2) 

In view of (20), we introduce a new wave function in the r - P space (i.e., space 

of coordinate and reciprocal thermal energy) by 

~l (rN p) e PH~ (rN) =e~PE~~*(rN). (28) 

Since H and e~PH commute, y~(rN, p) satisfies the Bloch equation 

a~7. 

ap ~ 
The solution of this equation may be obtained by solving the integral equation 

J , , y*(rN, p) = K(rNp r'Np )~ (r'N p )dr'N (30) 

as can easily be verified by differentiating both sides with respect to P. The kernel 

represents a propagation of the set of coordinates from (r'N, p') to (rN, p) and is 

the propagator. It is mathematically the Green's function satisfying 

aK(2, 1)+H(2)K(2 1) 6(2 1) (31) 
a p2 

For simplicity, the notation 2 stands for (rN, p=P2) and I for (r'N, p =P1)' Eq. (30) 

can be written as 

~~(rN)={exp [P p JE J}jK(rNp r'Np )~ (r'N)dr'N (32) 

From this expression, we see that ~~(rN) is an eigenfunction and ~*=e(P~P')E~ is an 

eigenvalue of the integral equation (32) 

Eq. (3 1) requires that the kernel be the Green's function belonging to the differential 

equation (29). The Green's function is subject to the subsidiary condition 

K(2, 1)-6(.rN-r'N) as P2-PI (33) 

=0 if p2
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The kernel may be expanded in terms of the eigenfunctions of the integral equation 

From Eq. (32), we have 

K(2, 1). = ~ ~~(rN)~~(r'N) 
A
.
 

= ~ {exp [ - ( P - P')E~] } ~~(rN) ~~ (r'N) . (34) 

Equating P' to O in Eq. (34), we see that K(rNp, r'NO) reduces the density matrix. 

We arrive at the relation 

l
 

ZN = K(rNp, r'NO)drN. (35) 
We now consider a system with the Hamiltonian 

N 
H=H0+H1; H1= ~ . i 

and the interaction H1 is small compared to Ho' Corresponding to the above Hamil-

tonian (Eq. (36)), we put 

K(2, 1)=Ko(2, 1)+K1(2, 1) (37) 
where Ko(2, 1) satisfies 

[ e +Ho(2)]Ko(2, 1)=~(2-1). (38) 
e p2 

Thus we have 

aK' 

a P2+HK=-H2K. (39) 
However, since the Green's function belonging to this equation is Ko(2, 1), we obtain 

p'C j o' p,)vK (2 3)H(3)K(3 1)d3 

where d3 = dr3d p3. 

Adding Ko(2, 1) to the above equation, we find an integral equation 

K(2, 1)=Ko(2, 1)- JCKo(2, 3)H1(3)K(3, 1)d3 (41) 

This integral equation can be solved by iteration. We arrived at 

p.C K(2, 1)=Ko(2, 1)-j o ' p,)vK (2 3)H (3)K (3 1)d3 
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+ P'C Ko(2, 3)H1(3)Ko(3' 4)H1(4)d3d4.. p'C j i p,Jv p')v 
(42) 

S 3. Example of a Propagator as am Imverse Operator 

From Eq. (35), the partition function is written in the form 
j
 
i
 Z = e~PEN(E)dE , (43) oo 

where N(E) is the density of states 

Now, the Green's function can be manipulated symbolically as a limit of the re-

solvent of H, viz, 

*~+0 E-H-i8 

IE' > being any state, we obviously have 

(E-H) E-H-i8 IE > IE > + E-H-i8 ('45) I E' > 

The norm of the second term on the right-hand side is 

1
 N(E) 8 

 

=eJC
2 (E-E')+e dE (46) 

The second line is obtained by adopting a representation in which H is diagonal ; 

 2dE' is the norm of the component of IE' > . By a known property of the 

6 function, 

~ ,1*1+mo(E- E')2+82 

the density of states N(E) is expressed as 

N(E) = ~ 

 E' 

)
 

lim Tr 
7c H- E- ie .++0 

S 4. The Second Virial Coefficient 

In the present section the properties of the Laplace transform of p(P) and tech 
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niques for its evaluation are discussed. 

For a density matrix p = e~PH with H = Ho + Hi, define a Laplace transform : 

I
~
 

ep(E) - e~PHp(fi)dp (49) 
m the region where E is less than the smallest eigenvalue of H. Using a boundary con-

drtion p(O) = 1, it was shown3) that the "M~ller wave operator" 

G(E) = ep(E)(E - Ho) (50) 
satrsfies 

G(E) = I + E( - Ho)~ iHi G(E) . (51) 
This is precisely the familiar stationary state scattering equation in quantum mechanics. 

As a preliminary to our subsequent discussion, we define G in terms of the two-

body scattering operator ta by 

t. = V* + V*(E - Ho)~ I ta (52) 
wherle V. represents the potential of a pair of particles. Index cc runs over all ij pairs 

of , N(N - 1). This is the integral equation for solving the two-body scattering 

problem. In terms of the t.'s, an exact expression for G is 

G(E) = I +(E- Ho)~ I ~. t.G. , 

G. = I + (E - Ho)~ I ~ tpGp . (53) 

By perturbation expansion, Eqs. (53) Ieads to 

G(E)= I +(E-Ho)~1 ~. ta+(E-Ho)~i ~. ta(E- Ho)~1 ~p tP+ ･･･ . (54) 

Eq. (53) permit one to evaluate Z in terms of two-body scattering operators for 

N particles, although it is rather cumbersome if N is large. 

For evaluation of the second virial coefficient, N = 2 and the sum over pairs has just 

one term : 

G = I + (E - Ho)~ I t (55) 
The expansion of the equation of state in terms of the inverse volume v~ I (v = 

V/N) is 

Pv B C kT =1+ v + v2 +"" (56) 
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and B is the second virial coefficient 

B= - b2 

where b2' the second cluster integral, is given by 

2= j[ , - 2 b I (
 
 
)drldr2 (57) 

2V 

H1 and H2 are, respectively, the Hamiltonians of one particle and of a pair of particles 

Then we have 

B ~'~2~(27ch2)3/2 {
 exp( Pp2/m)} vdp 

f
 = ~ (m P) 3/2 (21Th) 3 

v fdpfe 1 _PE 
 dE (58) = ~ (1clnkT)3/2 27Ti (E-Ho)2 

From the first line to the second line in the above calculation, the diagonal represen-

tation of the density matrix in the following form is used 

J
 
1 
 

 e~PE E IHO + (E-Ho)2 dE (59) 
27ci c

 

for the inverse of Eq. (49) 

1 c-ico = f p ( P) e~ PEep(E)d E 
c+ico 

S 5. The Propagator of a Free Electron in a Homogeneous Magnetic Field 

In a uniform magnetic field H along z-axis, a free electron go on a helical path 

around the z direction, and the projection to the xy-plane perpendicular to H is a 

eH uniform circular motion with the Larmor frequency coL= 2mc ' Quantum mechani-

cally the circular motion is equivalent to the 2-dimensional oscillator and the quantized 

energy of the helical motion is 

E I ha) + P~ co = 2coL 

and taking account the momentum of a electron in the magnetic field p = - grad e A, 
c
 

where A ( ) = - ; Hy, ~ Hx, O , the wave function is given by 

~n(r)=(Cn/27c)ei(P*x+p.z)e 1 2(y yo) H (a(y y )) 
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Cn= [a/1cl/2,nnf] 1/2 J o Px/a2 a2 - eH _ co 
2
 

c
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(62) 

For simplicity, we take the units such that h = I and 2ln = I in Eq. (62) and the fol-

10wing. H~(y) is the hermite polynomial 

The propagator of an electron from (r', p') to (r, P) in the coordinate-reciprocal 

thermal energy space is given as in Eq. (34) by 

K(rp r'fi') ~ e (P P )E ~~(;)~~(r'). (63) 

Then performing the summation over n and integrating the result over p* and p., 

we finds 

K(rP r'fi')=(271;)25/2 (p-p')1/2 [oc(P p )smh(p p )co] 1/2 

a 7T 
1 (z-z')2 a (

 
xexp - 4 p-p' ~40c(P, p')[(.y-y')2+(x x')2] 

)
 +i ~ (y+y')(x-x') , (64) 

where 

oc(P, p') = tanh [(p - p')co/2] . 

1
)
 2
)
 

3
)
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