Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 8, pp. 25-29, March 10, 1975

On Random Fields on Homogeneous Space

Yasuhiro Asoo

Department of Mathematics, Shimane University, Matsue, Japan (Received November 5, 1974)

In this paper, we define the homogeneous random field, the isotropic random field, w-homogeneous random field and w-isotropic random field on homogeneous space S=G/K. We give some representations of w-homogeneous field from the view point of $L^2(\mathcal{Q})$ -theory.

§1. Introduction

Let G be a locally compact group and S=G/K be the associated homogeneous space, or let G be a connected Lie group and (G, K) be the Riemannian symmetric pair with K compact subgroup and S=G/K be the associated Riemannian symmetric space. Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space and $\{X(P), P \in S\}$ be a family of \mathfrak{B} measurable, complex-valued functions. Such a family we call a random field on S=G/K.

DEFINITION 1. For any set of Borel measurable subsets of complex field C, E_1, \ldots, E_n , we define the function

(1)
$$F(E_1,...,E_n;P_1,...,P_n) = \mu\{X(P_1) \in E_1,...,X(P_n) \in E_n\},$$

where P_1, \ldots, P_n are points of S.

The random field $X = \{X(P), P \in S\}$ is called homogeneous iff

(2)
$$F(E_1,...,E_n;gP_1,...,gP_n) = F(E_1,...,E_n;P_1,...,P_n)$$
 for any g of G.

The random field X is called *isotropic* iff

(3) $F(E_1,...,E_n;kP_1,...,kP_n) = F(E_1,...,E_n;P_1,...,P_n)$ for any k of K.

REMARK. In the case of S being the d-dimensional vector space E^d (see, p. 28, (A)), our homogeneous random field is called *homogeneous and isotoropic*, and our isotropic one is called *isotropic*.

DEFINITION 2. Let us suppose our random field X belongs to the class $L^2(\Omega)$, and we define the covariance function $C(P, Q)(P, Q \in S)$ as

(4)
$$C(P, Q) = E[X(P) - EX(P)][\overline{X(Q)} - EX(Q)].$$

Yasuhiro Asoo

The random field X is called homogeneous in the wide sense (w-homogeneous) iff

(5)
$$C(gP, gQ) = C(P, Q)$$
 for any g of G,

and is called isotropic in the wide sense (w-isotropic) iff

(6)
$$C(kP, kQ) = C(P, Q)$$
 for any k of K.

In the case of Gaussian random field on S, these two definitions are equivalent. Let P_0 be the fixed point of the isotropy subgroup K, then the covariance function C of the w-isotropic random field has the property $C(P_0, Q) = C(P_0, kQ)$, for any k of K, that is, it takes on each sphere through Q with center P_0 constant value.

Now, let us assume that the random field X belongs to the class $L^2(\Omega)$ and $L^2(\Omega)$ continuous. Under these assumptions the covariance function C(P, Q) is a Hermitian
symmetric positive definite kernel.

Thus, in the case of S being compact, we have the eigenfunction expansion

(7)
$$C(P, Q) = \sum_{j=1}^{\infty} \lambda_j^2 \psi_j(P) \overline{\psi_j(Q)}, \ \lambda_j > 0$$

by the Mercer's expansion theorem, where

(8)
$$\lambda_j^2 \psi_j(P) = \int C(P, Q) \psi_j(Q) dQ$$

 $\lambda_1 \ge \lambda_2 \ge \dots$ and ψ'_i s are corresponding complete orthonormal eigenfunctions.

Then, let $\{X_j(P); j=1, 2,...\}$ be random fields such that $EX_j(P) \equiv 0$, $EX_j(P)\overline{X_k(Q)} = \delta(j, k)\psi_j(P)\overline{\psi_k(Q)}$. Using these, we have $L^2(\Omega)$ -decomposition of the random field X in the $L^2(\Omega)$ -convergence.

(9)
$$X(P) = \sum_{j=1}^{\infty} \lambda_j X_j(P).$$

However, in the general case, corresponding results are not so simple. In the following, we consider the w-homogeneous random field from another aspect.

§ 2. Representations of w-homogeneous random field

In the present section, we assume that w-homogeneous random field belongs to the class of $L^2(\Omega)$ -continuous fields and $EX(P) \equiv 0$. The covariance function C(P, Q) = C(gK, hK) satisfy an expression

(10)
$$C(P, Q) = C(h^{-1}gK, eK) = EX(h^{-1}gK)\overline{X(eK)},$$

thus we could consider it as a function on G such that

(a) continuous on G

(b)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} C(g_j^{-1}g_i)c_i\bar{c}_j \ge 0 \quad \text{for any } g_1, \dots, g_n \in G \text{ and any } c_1, \dots, c_n \in \mathbb{C}$$

(c) K-biinvariant,

that is, the function C on G is a K-biinvariant positive definite function on G. Thus, the covariance function C of the w-homogeneous random field X defines a unitary representation of the group G. Since the function C is a positive definite function, it has the property $|C(g)| \leq C(e)$ for any g of G. Gel'fand and Raikov [2] proved that there exists a complete system of irreducible unitary representations of the group G and these irreducible unitary representations correspond to elementary positive definite functions. Consider the set \mathfrak{P} of positive definite functions on G such that $\phi(e) \leq C(e)$, the set \mathfrak{P} is the smallest weakly-closed convex set containing elementary positive definite functions with $\phi(e) = C(e)$ and $\phi \equiv 0$. These elementary positive definite functions and $\phi \equiv 0$ exhaust extreme points of the set \mathfrak{P} which form the closed set, and the corresponding representations are irreducible. Thus, from the Choque-Deny integral representation theorem [1], there exists the unique maximal positive Radon measure F = F(C), supported by the set of extreme points of \mathfrak{P} , $\mathfrak{C}(\mathfrak{P})$, such that

(11)
$$C = \int \phi_{\lambda} dF(\lambda),$$

 $\mathfrak{E}(\mathfrak{P}) \setminus \{0\}$

where ϕ'_{λ} s are K-biinvariant normalized elementary postive definite functions (zonal spherical functions on G).

The irreducible unitary representations of the group G corresponding to ϕ'_{λ} s are the class 1 representations.

We call the expression (11) the spectral representation of the function C and the measure F the spectral measure corresponding to C.

REMARK. In the case of G being the locally compact abelian group, ϕ'_{λ} s are characters of G [5] and then let v be a random measure such that

(12)
$$Edv(\lambda)\overline{dv(\lambda')} = \delta(\lambda, \lambda')dF(\lambda)$$

and we have a spectral representation of the w-homogeneous field X,

(13)
$$X(P) = \int \phi_{\lambda}(P) d\nu(\lambda) \,.$$

Let us now assume that (G, K) is a symmetric Riemannian pair with K compact subgroup. Then, ϕ'_{λ} s are positive definite zonal spherical functions on G, and they satisfy the differential equations $D\phi_{\lambda} = c_{\lambda}(D)\phi_{\lambda}$, $c_{\lambda}(D) \in \mathbb{C}$, for any invariant differential operator D on G/K and the integral equations

$$\int_{K} \phi_{\lambda}(gkh) dk = \phi_{\lambda}(g) \phi_{\lambda}(h) \, .$$

REMARK. In the case of G/K being one-dimensional Euclidean space, we have the spectral representation (13), which is well-known. However, in general, when the w-homogeneous random field X is a field on the space $K \setminus G/K$, we have the spectral representation (13). These ϕ_{λ} functions are specified as the following [3]:

(A) THE EUCLIDEAN TYPE

Let S be a Euclidean space of dimension d and let G stand for $I_0(S)$, the largest connected group of isometries of S, and let K denote the compact subgroup of G leaving the origin $0 \in S$ fixed. The subgroup of all translations of S will be denoted also by S. Then, our function ϕ'_A s are the functions

(14)
$$\phi_{\lambda}(x) = \int_{K} \exp(\lambda(kxk^{-1})) dk, \quad x \in S,$$

where λ is an arbitrary purely-imaginary valued linear function on S.

(B) THE COMPACT TYPE

Let (G, K) be a Riemannian symmetric pair, G compact. Then, our function φ'_{AS} are the functions of the form

(15)
$$\phi_{\lambda}(g) = \int_{K} \lambda(g^{-1}k) dk,$$

where λ is the character of a finite-dimensional representation T of G of class 1.

(C) THE NONCOMPACT TYPE

Let (G, K) be a Riemannian symmetric pair of the noncompact type. We assume that G has finite center so K is compact. Let $G = KA_{\mathfrak{P}}N$ be the Iwasawa decomposition of the group G. If x belong to G, let H(x) denote the unique element in $\mathfrak{H}_{\mathfrak{P}_0}$ for which $x = k \exp H(x)n$, where $k \in K$, $n \in N$. Let ρ be the half of the sum of positive roots. Then, our function $\phi_{\lambda}s$ are the functions

(16)
$$\phi_{\lambda}(x) = \int_{K} e^{(\sqrt{-1}\lambda - \rho)(H(xk))} dk, \qquad x \in G,$$

where λ is a real-valued linear function on $\mathfrak{H}_{\mathfrak{P}_0}$. These two functions are identical iff $\mu = s\lambda$ for some s in the Weyl group.

Now, let X_{λ} be a field on S such that $EX_{\lambda} \equiv 0$ and $EX_{\lambda}(P)\overline{X_{\mu}(Q)} = \delta(\lambda, \mu)\phi_{\lambda}(h^{-1}g)$, v be a Radon measure (complex) such that $|dv(\lambda)|^2 = dF(\lambda)$, then we have a (formal) integral representation of the w-homogeneous field X,

(17)
$$X(P) = \int X_{\lambda}(P) dv(\lambda) \,.$$

We call these random fields X'_{λ} s elementary components of the field X, and we note that these component fields have some regularity properties of their paths owing to properties of the function ϕ'_{λ} s.

References

- G. CHOQUET et P. A. MEYER, Existence et Unicité Des Représentations Intégrales Dans Les Convexes Compacts Quelconques, Ann. Inst. Fourier, Grenoble 13 (1963), 139–154.
- [2] И.М. Гельфанц и Д.А. Райков, Неприводимые унитарные прецставления локально бикомпактных групп, Мат. Сборник 13 (55) (1943), 301–316.
- [3] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962.
- [4] F. PETER and H. WEYL, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97 (1927), 737–755.
- [5] A. WEIL, L'Intégration dans les Groupes Topologigues et ses Applications, Hermann, Paris, 1940.