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In this paper, we define the homogeneous random field, the isotropic random field,
w-homogeneous random field and w-isotropic random field on homogeneous space
S=G|K. We give some representations of w-homogeneous field from the view point
of L¥(£)-theory.

§1. Introduction

Let G be a locally compact group and S=G/K be the associated homogeneous
space, or let G be a connected Lie group and (G, K) be the Riemannian symmetric
pair with K compact subgroup and S=G/K be the associated Riemannian symmetric
space. Let (Q, B, u) be a probability space and {X(P), PeS} be a family of B-
measurable, complex-valued functions. Such a family we call a random field on
S=G/K.

DEerFiNITION 1. For any set of Borel measurable subsets of complex field C,
E,,..., E,, we define the function

) F(E,,...,E,; Pi,..., P)=p{X(P,)€E,..., X(P,)EE,},
where P,,..., P, are points of S.
The random field X = {X(P), P S} is called homogeneous iff
2 F(E,,...,E,; gPy,...,gP,)=F(E,,..., E,; Py,..., P,) for any g of G.
The random field X is called isotropic iff
3) F(E,,..., E,; kP,,...,kP))=F(E4,..., E,; Py,..., P,) for any k of K.

ReMARK. In the case of S being the d-dimensional vector space E? (see, p. 28,
(A)), our homogeneous random field is called homogeneous and isotoropic, and our
isotropic one is called isotropic.

DEFINITION 2. Let us suppose our random field X belongs to the class L2(<),
and we define the covariance function C(P, Q)(P, Q€ S) as

“ C(P, Q)=E[X(P)-EX(P)]LX(Q)—EX(Q)].
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The random field X is called homogeneous in the wide sense (w-homogeneous) iff
(%) C(gP, gQ)=C(P, Q)  foranyg of G,

and is called isotropic in the wide sense (w-isotropic) iff

(6) C(kP, kQ)=C(P, Q) for any k of K.

In the case of Gaussian random field on S, these two definitions are equivalent. Let
P, be the fixed point of the isotropy subgroup K, then the covariance function C
of the w-isotropic random field has the property C(P,, Q)= C(P,, kQ), for any k
of K, that is, it takes on each sphere through Q with center P, constant value.

Now, let us assume that the random field X belongs to the class L2(Q) and L2(Q)-
continuous. Under these assumptions the covariance function C(P, Q) is a Hermitian
symmetric positive definite kernel.

Thus, in the case of S being compact, we have the eigenfunction expansion

(M C(p, Q)=j=21 23 (PWQ), 4;>0
by the Mercer’s expansion theorem, where

®  AP)=cP, 0w )0
A1=2,>... and ¥’s are corresponding complete orthonormal eigenfunctions.

Then, let {X(P); j=1, 2,...} be random fields such that EX;(P)=0, EX (P)X,(Q)=
o(j, kW (P)W(Q). Using these, we have L2(Q)-decomposition of the random field
X in the L%(Q)-convergence.

©) X(P)= £ 1,X(P).
However, in the general case, corresponding results are not so simple. In the

following, we consider the w-homogeneous random field from another aspect.

§2. Representations of w-homogeneous random field

In the present section, we assume that w-homogeneous random field belongs
to the class of L2(Q)-continuous fields and EX(P)=0. The covariance function
C(P, Q)=C(g9K, hK) satisfy an expression

(10) C(P, Q)=C(h~'gK, eK)=EX(h~'gK)X(eK),

thus we could consider it as a function on G such that
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(a) continuous on G
n n
(b) 21 _ZIC(g;lg,-)ciEj>0 for any ¢4,..., g,€ G and any cy,..., c,€C
=1 =

(¢) K-biinvariant,

that is, the function C on G is a K-biinvariant positive definite function on G. Thus,
the covariance function C of the w-homogeneous random field X defines a unitary
representation of the group G. Since the function C is a positive definite function,
it has the property |C(g)|<C(e) for any g of G. Gel'fand and Raikov [2] proved
that there exists a complete system of irreducible unitary representations of the group
G and these irreducible unitary representations correspond to elementary positive
definite functions. Consider the set 98 of positive definite functions on G such that
P(e)< C(e), the set P is the smallest weakly-closed convex set containing elementary
positive definite functions with ¢(e)=C(e) and ¢=0. These elementary positive
definite functions and ¢ =0 exhaust extreme points of the set 9§ which form the closed
set, and the corresponding representations are irreducible. Thus, from the Choque-
Deny integral representation theorem [1], there exists the unique maximal positive
Radon measure F=F(C), supported by the set of extreme points of B, (), such that

(11) C=\0,dF(),
G(B)\{o}
where ¢’s are K-biinvariant normalized elementary postive definite func-

tions (zonal spherical functions on G).

The irreducible unitary representations of the group G corresponding to ¢4s are
the class 1 representations.

We call the expression (11) the spectral representation of the function C and
the measure F the spectral measure corresponding to C.

REMARK. In the case of G being the locally compact abelian group, ¢'s are
characters of G [5] and then let v be a random measure such that

(12) Edv(A)dv(A")=65(4, A")dF(2)
and we have a spectral representation of the w-homogeneous field X,
(13 X(B)={p:(Pv).
Let us now assume that (G, K) is a symmetric Riemannian pair with K compact

subgroup. Then, ¢’s are positive definite zonal spherical functions on G, and they
satisfy the differential equations D¢, =c,(D)¢;, c,(D) € C, for any invariant differential
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operator D on G/K and the integral equations

gxtbl(gkh)dk =du9)¢i(h).

REMARK. In the case of G/K being one-dimensional Euclidean space, we have
the spectral representation (13), which is well-known. However, in general, when
the w-homogeneous random field X is a field on the space K\G/K, we have the spectral
representation (13). These ¢, functions are specified as the following [3]:

(A) THE EUCLIDEAN TYPE

Let S be a Euclidean space of dimension d and let G stand for I4(S), the largest
connected group of isometries of S, and let K denote the compact subgroup of G
leaving the origin 0 e S fixed. The subgroup of all translations of S will be denoted
also by S. Then, our function ¢/s are the functions

(14) b= S exp(Mkxk-1)dk, xeS,
K
where 1 is an arbitrary purely-imaginary valued linear function on S.

(B) THE COMPACT TYPE
Let (G, K) be a Riemannian symmetric pair, G compact. Then, our function
@4s are the functions of the form

as)  dio)={ Mgriak,

where A is the character of a finite-dimensional representation T of G of
class 1.

(C) THE NONCOMPACT TYPE

Let (G, K) be a Riemannian symmetric pair of the noncompact type. We assume
that G has finite center so K is compact. Let G=KAyxN be the Iwasawa decom-
position of the group G. If x belong to G, let H(x) denote the unique element in
$Hp, for which x=kexp H(x)n, where ke K, ne N. Let p be the half of the sum of
positive roots. Then, our function ¢,s are the functions

(16) ¢l(x)=g Tk xeG,
K

where 4 is a real-valued linear function on $g,. These two functions
are identical iff y=sA for some s in the Weyl group.

Now, let X, be a field on S such that EX;=0 and EX (P)X ,(Q)=03(4, p)¢(h~'g),
v be a Radon measure (complex) such that |dv(1)|2=dF(J), then we have a (formal)
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integral representation of the w-homogeneous field X,

a7

X(P)= SXA(P)dv(A) .

We call these random fields X's elementary components of the field X, and we
note that these component fields have some regularity properties of their paths owing
to properties of the function ¢s.
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