On the Quotient Topological Ordered Spaces (II)

Takuo Miwa

Department of Mathematics, Shimane University, Matsue, Japan (Received November 5, 1974)

In § 1, for a topological ordered space X and an equivalence relation R on X, we shall study some sufficient conditions for X/R to be T_2 -ordered. In § 2, we shall investigate the necessary and sufficient condition of R for X/R to be T_2 -ordered, which is an analogue of a known fact in general topology. ([1] § 8 Proposition 8 or [2] Chapter 3 Theorem 11)

§1. We use the terms and notations in our previous paper [3]. Consider the following condition.

(C) $i_X(F)$ and $d_X(F)$ are closed for each closed set F of X. (In [3], we wrote this condition by (C. II).) We proposed a question in [3] which states

(Q) If X is a Hausdorff space satisfying (C), then is it T_2 -ordered? If X is regular, the next result was obtained in [3] (Proposition 2).

PROPOSITION 1. Let X be a regular space satisfying (C). Then X is T_2 -ordered. If X satisfies the first countability axiom, then the answer to (Q) is affirmative.

PROPOSITION 2. Let X be a Hausdorff space satisfying (C) and the first countability axiom. Then X is T_2 -ordered.

PROOF. Since X satisfies the first countability axiom, we may replace "net" by "sequence" for convergence. ([2] Chapter 2 Theorem 8) Let $G(\leq)$ be the graph of order \leq in X. X is T_2 -ordered if and only if $G(\leq)$ is closed in X^2 . ([4] Chapter 1, Proposition 1 and the definition of T_2 -ordered in [3]) Therefore we shall show that $G(\leq)$ is closed in X^2 . Let $\{(x_n, y_n)\}$ be a sequence in $G(\leq)$ such that it converges to (x, y). Then, since $A = \{z : z = x_i \text{ or } z = x\}$ is closed in X, so $i_X(A)$ is closed in X by (C). On the other hand, since $\{y_1, y_2, \ldots\} \subseteq i_X(A)$ and the sequence $\{y_n\}$ converges to y, therefore $y \in i_X(A)$. Hence $x \leq y$ or there exists n such that $x_n \leq y$. Let B = $\{(x_n, y_n) : x_n \leq y\}$. First, if $B = \phi$ or if B is a finite set, without loss of generality, we may assume $B = \phi$ from the beginning. Thus $x \leq y$, hence $(x, y) \in G(\leq)$. Next, if B is an infinite set, the sequence $\{x_n : (x_n, y_n) \in B\}$ converges to x. Moreover since $\{x_n : (x_n, y_n) \in B\} \subseteq d_X(y)$ from the construction of B and $d_X(y)$ is closed by (C), we see that $x \in d_X(y)$, i.e. $(x, y) \in G(\leq)$. Thus, $G(\leq)$ is closed and the proof is complete. Q.E.D.

Takuo Mrwa

Hereafter, we show main theorems of this section. First, the following theorem was obtained in [3] (Theorem 2) by making use of Proposition 1 in the above.

THEOREM 1. Let X be a regular space satisfying (C). Assume that p is a proper mapping. If X/R is a topological ordered space, then X/R is a regular space satisfying (C). Therefore, X/R is T_2 -ordered by Proposition 1.

Using the Proposition 2 in the above, we obtain the following theorems.

THEOREM 2. Let X be a Hausdorff space satisfying (C) and the second countability axiom. Assume that p is a proper mapping. If X/R is a topological ordered space, then X/R is a Hausdorff space satisfying (C) and the second countability axiom. Therefore, X/R is T_2 -ordered by Proposition 2.

We use the following topological lemma in the proof of this theorem.

LEMMA. Let X be a topological space satisfying the second countability axiom. If the natural projection from X to X/R is a proper mapping, then X/R also satisfies the second countability axiom.

This lemma is clear by [2] Chapter 5 Theorem 20, [2] Chapter 3 Theorem 12 and [1] §10 Theorem 1.

PROOF (of Theorem 2). First, X/R is a Hausdorff space by [1] § 10 Corollary 2 of Proposition 5, and by the lemma above X/R satisfies the second countability axiom. Next, X/R satisfies (C) by the fact that for any closed set F of X/R $i_{X/R}(F) = p(i_X(p^{-1}(F)))$, $d_{X/R}(F) = p(d_X(p^{-1}(F)))$, hence these sets are closed in X/R. Q.E.D.

THEOREM 3. Let X be a Hausdorff space satisfying (C) and the first countability axiom. Assume that p is a proper and open mapping. If X/R is a topological ordered space, then X/R is a Hausdorff space satisfying (C) and the first countability axiom. Therefore, X/R is T_2 -ordered by Proposition 2.

PROOF. In general, if a topological space T satisfies the first countability axiom, then f(T) satisfies the same axiom for any open continuous mapping f from T to the other space. Hence, we can prove this theorem in the same way of Theorem 2. *Q.E.D.*

REMARK 1. In connection with the above propositions and theorems, the topological assumptions of Proposition 1 (Theorem 1) and Proposition 2 (Theorem 2 or 3) are independent, respectively. In fact, [5] Example 103 shows the fact that there is a regular space not satisfying the first countability axiom, and [5] Example 74 shows the fact that there is a Hausdorff space, but not a regular space, satisfying the second countability axiom. Moreover, [5] Example 72 shows the existence of a Hausdorff, but not regular, space satisfying the first countability axiom which does not satisfy the second countability axiom. REMARK 2. In Theorem 3, the condition that p is open is essential. In fact, an example of [2] Chapter 5 Problem N (a) shows that if p is not open, X/R does not satisfy the first countability axiom even if X satisfies the second countability axiom. Moreover, this example shows that in the above lemma the assumption that p is proper cannot be replaced by the one that p is closed.

§ 2. In this section, we shall study an analogue of the following well known theorem in the theory of general topology. For a topological space X, and an equivalence relation R on X, if the quotient space X/R is Hausdorff, then R is closed in the product space X^2 . If the projection p of a space X onto the quotient space X/Ris open and R is closed in X^2 , then X/R is a Hausdorff space. We begin with the following definitions.

DEFINITION 1. Let X be a topological (ordered) space, and R be an equivalence relation on X. Then a subset A of X is a *saturated* set (with respect to R) if and only if a saturation of A by R is also equal to A.

DEFINITION 2. Let X be a topological ordered space and G(R) be the graph of an equivalence relation R on X. Then G(R) is said to be *saturated order closed* (or s. o. closed) in X^2 if for $(x, y) \notin G(R)$ such that $p(x) \leq p(y)$, there exist a saturated increasing neighbourhood U of x and a saturated decreasing neighbourhood V of y such that $U \times V \cap G(R) = \phi$. (For an increasing or a decreasing set, see [3] Definition 1.)

Now, we obtain the following theorem.

THEOREM 4. Let X be a topological ordered space. Assume that X/R is a topological ordered space. If X/R is T_2 -ordered, then G(R) is s. o. closed in X^2 . If the natural projection p of X onto X/R is open and G(R) is s. o. closed in X^2 , then X/R is T_2 -ordered.

PROOF. The first part is shown in the following manner. We assume $p(x) \leq p(y)$ for $(x, y) \in G(R)$. Since X/R is T_2 -ordered, there exist an increasing neighbourhood U of p(x) and a decreasing neighbourhood V of p(y) such that $U \cap V = \phi$. Then, we easily see that $p^{-1}(U)$ is a saturated increasing neighbourhood of x and $p^{-1}(V)$ is a saturated decreasing neighbourhood of y such that $p^{-1}(U) \times p^{-1}(V) \cap G(R) = \phi$. Hence G(R) is s. o. closed in X^2 .

Next, we shall show the second part. We assume that $p(x) \leq p(y)$ for $p(x), p(y) \in X/R$. Then since $(x, y) \in G(R)$, $p(x) \leq p(y)$, using the assumption that G(R) is s. o. closed in X^2 , there exist a saturated increasing neighbourhood U of x and a saturated decreasing neighbourhood V of y such that $U \times V \cap G(R) = \phi$. It now is easy to show that p(U) is an increasing neighbourhood of p(x), p(V) is a decreasing neighbourhood of p(y) and $p(U) \cap p(V) = \phi$. Therefore, X/R is T_2 -ordered. Q.E.D.

REMARK 3. In the second part of this theorem, the assumption that p is open is essential. For this, see next example.

EXAMPLE. Let X be a closed interval [0, 1] in real line. We define the topology on X as follows: the neighbourhood system of 0 is $\{V_m: m=1, 2, ...\}$ where $V_m = \{x: 0 \le x \le \frac{1}{m}, x \ne \frac{1}{m+1}, \frac{1}{m+2}, ...\}$ and the neighbourhoods of other points as usual. Next, we introduce the discrete order as the partial order in X, and we define an equivalence relation R on X as follows: xRy if and only if $x, y \in \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ or x = y. Then, by this topology and order X is a Hausdorff space but is not a regular space, and X/R is not Hausdorff (T_2 -ordered). In this example, it is easily seen that G(R) is s. o. closed in X^2 and the natural projection p is not open.

ACKNOWLEDGEMENT. It is a pleasure to acknowledge the advice and encouragement of Professor Osamu Takenouchi.

References

- [1] N. BOURBAKI: Topologie générale. Chap. 1, Hermann, Paris, 1965.
- [2] J. L. KELLY: General topology. Van Nostrand, New York, 1955.
- [3] Takuo MIWA: On the quotient topological ordered spaces. Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 7 (1974) 37-42.
- [4] L. NACHBIN: Topology and order. Van Nostrand, Princeton, 1965.
- [5] L. A. STEEN and J. A. SEEBACH, Jr.: Counterexamples in topology. Holt, Rinehart and Winston, Inc. 1970.