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In S 19 for a topological ordered space X and an equivalence relation R on X9 we 

shall study sona sufficaent conditioEas for X/R to be T ordered. In S 29 we shaln 

investigate the necessary and suffieient condition of R for X/R to be T2-0rdered9 which 

is an analogue of a known fact in general topology. ( [1] S 8 Proposition 8 or [2] 

Chapter 3 Theorem 11) 

S 1. We use the terms and notations in our previous paper [3]. Consider the 

following condition. 

(C) ix(F) and dx(F) are closed for each closed set F of X. (In [3], we wrote 

this condition by (C. II).) We proposed a question in [3] which states 

(Q) If X is a Hausdorff space satisfying (C), then is it T2-0rdered? 

If X is regular, the next result was obtained in [3] (Proposition 2). 

PROPOSITION 1. Let X be a regular space satisfying (C). Then X is T2-0rdered. 

If X satisfies the first countability axiom, then the answer to (Q) is affirmative 

PROPOSITION 2. Let X be a Hausdolffspace satisfying (C) and the first coun 

tability axiom. Then X is T2-0rdered. 

PROOF. Smce X satisfies the first countability axiom, we may replace "net" 

by "sequence" for convergence. ([2] Chapter 2 Theorem 8) Let G( ~ ) be the graph 

of order ~ in X. X is T2-0rdered if and only if G(~) is closed in X2. ([4] Chapter 

1, Proposition I and the definition of T2-0rdered in [3]) Therefore we shall show that 

G( ~) is closed in X2. Let {(x~, y*)} be a sequence in G(~) such that it converges 

to (x, y). Then, since A = {z: z=xi or z=x} rs closed in X, so ix(A) is closed in 

X by (C). On the other hand, since {yl, y2""} ~ ix(A) and the sequence {y~} converges 

to y, therefore y e ix(A). Hence x ~ y or there exists n such that x* ~ y. Let B = 

{(x~, y~) x 

we may assume B = ip from the beginning. Thus x ~ y, hence (x, y) e G(~). Next, 

if B is an infinite set, the sequence {x~ : (x~, y.) e B} converges to x. Moreover since 

{x. : (x~, y~) e B} ~~ dx(y) from the construction of B and dx(y) is closed by (C), we 

see that x e dx(y), i.e. (x, y) e G( ~ ). Thus, G( ~ ) is closed and the proof is complete 

Q.E.D. 
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Hereafter, we show main theorems of this section. First, the following theorem 

was obtained in [3] (Theorem 2) by making use of Proposition I in the above 

THEOREM 1. Let X be a regular space satisfying (C). Assume that p is a 

proper mapping. If X/R is a topological ordered space, then X/R is a regular 

space sa,tisfying (C). Therefore, X/R is T2-0rdered by Proposition 1 

Using the Proposition 2 in the above, we obtain the following theorems. 

THEOREM 2. Let X be a Hausdorff space satisfying (C) and the second coun-

tability axiom. Assume that p is a proper mapping. If X/R is a topological 
ordered space, then X/R is a Hausdorff space satisfying (C) and the second cotin-

tabtlity axiorn. Therefore, X/R is T2-0rdered by Proposition 2. 

We use the following topological lemma in the proof of this theorem 

LEMMA. Let X be a topological space satisfying the second countability axiorn. 

If the natural projection froln X to X/R is a proper mapping, then X/R also satisfies 

the second countability axiolll. 

This lemma is clear by [2] Chapter 5 Theorem 20, [2] Chapter 3 Theorem 12 and 

[1] S 10 Theorem 1. 

PROOF (of Theorem 2). First, X/R is a Hausdorff space by [1] S 10 Corollary 2 

of Proposition 5, and by the lemma above X/R satisfies the second countability axiom. 

Next, X/R satisfies (C) by the fact that for any closed set F of X/R ix/R(F) = p(ix(P~ 1 

(F))), dx/R(F) = p(dx(P~ 1(F))), hence these sets are closed in X/R. Q.E.D 

THEOREM 3. Let X be a Hausdorff space satisfying (C) and the first coun-

tability axiom. Assume that p is a proper and open mapping. If X/R is a topo-

logical ordered space, then X/R is a Hausdorff space satisfying (C) and the first 

countability axiom. Therefore, X/R is T2-0rdered by Proposition 2. 

PROoF. In general, if a topological space T satisfies the first countability axiom, 

then f(T) satisfies the same axiom for any open continuous mapping f from T to the 

other space. Hence, we can prove this theorem in the same way of Theorem 2 

Q.E.D. 

REMARK I . In connection with the above propositions and theorems, the topo-

logical assumptions of Proposition I (Theorem 1) and Proposition 2 (Theorem 2 or 3) 

are mdependent, respectively. In fact, [5] Example 103 shows the fact that there is 

a regular space not satisfying the first countability axiom, and [5] Example 74 shows 

the fact that there is a Hausdorff space, but not a regular space, satisfying the second 

countability axiom. Moreover, [5] Example 72 shows the existence of a Hausdorff, 

but not regular, space satisfying the first countability axiom which does not satisfy 

the second countability axiom. 
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REMARK 2. In Theorem 3, the condition that p is open is essential. In fact, 

an example of [2] Chapter 5 Problem N (a) shows that if p is not open, X/R does not 

satisfy the first countability axiom even if X satisfies the second countability axiom 

Moreover, this example shows that in the above lemma the assumption that p is proper 

cannot be replaced by the one that p is closed. 

S 2. In this section, we shall study an analogue of the following well known theo-

rem in the theory of general topology. For a topological space X, and an equivalence 

relation R on X, if the quotien,t space X/R is Hausdorff, then R is closed in the 

product space X2. If the projection p of a space X onto the quotient space X/R 

is open and R is closed in X2, then X/R is a Hausdorff space. We begin with the 

following definitions 

DEFINITION I . Let X be a topological (ordered) space, and R be an equivalence 

relation on X. Then a subset A of X is a saturated set (with respect to R) if and 

only if a saturation of A by R is also equal to A. 

DEFlNITION 2. Let X be a topological ordered space and G(R) be the graph 

of an equrvalence relation R on X. Then G(R) is said to be saturated order closed 

(or s. o. closed) in X2 if for (x, y) ~ G(R) such that p(x)~~p(y), there exist a saturated 

mcreasing neighbourhood U of x and a saturated decreasing neighbourhood V of y 

such that U x Vn G(R) = ip. (For an increasing or a decreasing set, see [3] Defini-

tion I .) 

Now, we obtain the following theorem. 

THEOREM 4. Let X be a topological ordered space. Assume that X/R is a 
topological ordered space. If X/R is T2-0rdered, then G(R) is s. o. closed in X2. 

If the natural projection p of X onto X/R is open and G(R) is s. o. closed in X2, then 

X/R is T2-0rdered. 

PROOF. The first part is shown in the following manner. We assume p(x) ~~ 

p(J') for (x, y) ~ G(R). Since X/R is T2-0rdered, there exist an increasing neighbour-

hood U of p(x) and a decreasing neighbourhood V of p(y) such that U n V= ip. Then, 

we easily see that p~ 1(U) is a saturated increasing neighbourhood of x and p~1(V) 

rs a saturated decreasing neighbourhood of y such that p~ 1(U) x p~ 1(V) n G(R) = ip 

Hence G(R) is s. o. closed in X2 

Next, we shall show the second part. We assume that p(x)~~p(y) for p(x), p(y) e 

X/R. Then since (x, y) ~ G(R), p(x)~p(y), using the assumption that G(R) is s. o. 

closed in X2, there exist a saturated increasing neighbourhood U of x and a saturated 

decreasing neighbourhood V of y such that U x V n G(R) = c. It now is easy to show 

that p(U) is an increasing neighbourhood of p(x), p(V) is a decreasing neighbourhood 

of p(y) and p(U) n p(V) = ip. Therefore, X/R is T2-0rdered. Q.E.D. 
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REMARK 3. In the second part of this theorem, the assumption that p is open is 

essential. For this, see next example 

EXAMPLE. Let X be a closed interval [O, I] in real line. We define the topology 

on X as follows: the neighbourhood system of O is {V~: In=1, 2,...} where V~= 

{
 

.

.

.
}
 

1
 x: O~x~ x~ 1 1 and the neighbourhoods of other points as usual 

~ ~ ' m+1'm+2' m Next, we introduce the discrete order as the partial order in X, and we define an equi-

valence relation R on X as follows : xRy if and only if x, y e {1 1 1 ,...} or x=y. 

'T' 3 
Then, by this topology and order X is a Hausdorff space but is not a regular space, 

and X/R is not Hausdorff (T2-0rdered). In this example, it is easily seen that G(R) 

is s. o. closed in X2 and the natural projection p is not open. 
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