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A simplified method is proposed to discuss a completely random dilute Heisenberg
ferromagnet with isotropic nearest neighbor exchange. A formulation is given in the context
of Takagi’s cluster variation method in alliance with the Green’s function method.

§1. Introduction

Phase transition of a dilute Heisenberg ferromagnet reveals certain oddities unlike
the dense case. The most striking one lies in the relation between the transition tem-
perature T, and the magnetic ion concentration x. As dilution is advanced with
magnetic ions replaced with nonmagnetic ions, the transition temperature T, goes
down monotonically as a function of the dilution. And ultimately there arises a certain
nonzero critical concentration x, of magnetic ions below which the transition tempera-
ture vanishes or the long range order does not occur.

This intrinsic peculiarity has been attracting the interest of theoretical physicist.
Three sorts of fairly typical methods are identified so far to evaluate x,, including the
classical spin case; the further improvements on the conventional lines of Weiss’ mean
field approximation (or the cluster theories),!’~5) the direct expansions in the concentra-
tion (or temperature)®)—°) and the applications of Green's function.!®-13)  Their
estimates for x, seem to lie rather close both in the classical spin case and in the Heisen-
berg spin case. It will do for the present to note that Tahir-Kheli’s result!3) obtained
recently by his dynamical magnon scattering theory is 0.33(sc), 0.25(bcc) and 0.17
(fec) for each regular cubic lattice.

However those theories never seem to be well established. In this work we
present somewhat different approach. In §2, adopting Takagi’s variation method!#)
15) we work out a form of the reduced Hamiltonian which is linked to the Green’s
function method. In §3, the Green’s function method is introduced to take the neces-
sary formulation for the transition temperature and the spin pair correlation.
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§2. Reduced Hamiltonian

We consider a system of N equivalent Heisenberg magnetic ions randomly dis-
tributed on L lattice sites (N<L). Hamiltonian is written as

L L \ L
H=— 22 tit;J;;8: s;—yvH 3 1;5%, (¢))
<7 7

where ¢; is the occupation parameter which takes unity or zero according as the site i
is occupied by a magnetic ion or not, satisfying the relation

L
2 t=N=Lx. )

The partition function is defined as

Z=T, T, ¥ €))
{ti} {si}
where 1 stands for kT and each trace is taken over all possible configurations for
site sets {;} or spin sets {s;}. We somewhat drastically assume that each trace is to be
taken quite independently on its own. In addition to this, the subsequent assumption
of the nearest neighbor approximation

J (i, j nearest neighbor)
J ij= A 4)
0 (otherwise).
enables us to take the following substitution and denotement,
ti—)ii=x9 (5,8.)
Lty 5= Lty 5= 0l 5= 00X 2, (5,b)
SZi — EIZ =0, (5 ,C)
si'st+5—’;i'—3i+a=X1, (5,d)
where « is one variational parameter for the nearest neighbors. Then we have
Z= 3, 2 exp {BJ Z‘; liti 168" Siv5+ ﬁyHZt,-S%}
{ti} {s:} i, i
~ ¥ > exp [Lﬁ(i.fz ox2y, + nya)] , 6)
() 51y 2

where z; is the number of the nearest neighbors. Consequently the summand of
Eq. (6) is found to be independent of the sets {t;} and {s;}.
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Now let us denote the summations Z 1 and Z 1 by g(«) and g, respectively
and Helmholz free energy of this system w111 be glven 1n the form

F= —’%m Z= —%{m g,()+1n gs}—L{—;—leocxle +nya} .o

Apparently g(«) means the total number of possible site configurations of N magnetic
ions on L lattice sites. Therefore the version of Takagi’s conbinatory method!4)-15)
into the present case leads to

SO AL TR IS
gt(a) aa'Nah 'Nha'Nhh’ \ L' ’ (8)
where, the label, ah say, indicating magnetic-nonmagnetic ion pair,
N,,=Z Lt tivs= Z‘IZL ax?= Zzlivocxz, (9,a)
— Z1L TR 2 2
Nu=Nypo=1"1.(1—1;15) = ,, (x ax )— («\ ax?), (9,b)
Nuw= ST 1) (U=t = 5, 00
which satisfies
Naa+Nah_“1—v Nha'l‘Nhh—LLz_‘]‘vl’ (lO,a)
_z:L
Naa+Nah+Nha 2 . (loab)
From Egs. (7)-(10), it follows that
Eﬁ_]\f_-_ —-ln gy~ 2Ly ln v+ (1-3) In (1-0))
+—§—1—{owc2 In ax?4+2(x—ax?) In (x —oax?)
+(1=2x+ax2) In (1 -2x+ax?)} ——;—ﬁleocxxl — ByHo . (11)
We see that the parameter « is determined by the solution of the equation
201 2 '
g_) = 21X g ox (1-2x+ax?) —~1—ﬁlexx1=O. (12)
oo /T,N,L 2

2 (x—ox?)2

Re-forming Eq. (12) we find
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2(1—cy) )
= R 13
* 1=2xc ++/1-4x(1—x)c, (13)

where
cy=1—exp(BJy). (14)

Now that fl_tj or o« has been given as a function of y; by Eq. (13), the Hamiltonian (1)
may be reduced to

N N __ N
%5= <‘%p>!= —Z<Z tlthijsi.sj_sziisf
i<t 13

=_$<§fijsi-sj—hg:siz, (15)

where
Fiy=1itJ,;=ax?J= g (nearest neighbor approx.), (16)
h=yHi,=yHx. (17)

§3. Green’s Function of the Spin System

The application of Green’s function method to the reduced Hamiltonian (15) in
turn will allow us to represent the quantity y, and T, as functions of a. Following
Tyabricov,19) we introduce the double time Green’s function

G(t)=<«s7(t); sp>»>=—i0(@)<[s], spml> . (18)

For the present, we content ourselves with the crudest approximation (RPA),
KSF)sT (D)5 5> = <5F> K5f15(0); 5> =0G 4 5 ) (19,a)
KST(O5F4 ()3 5> = <574, > <5T(1); 5, =0G, (1) (19,b)

Then we have the equation of motion
i 90D 26506 1= FO LG = Grrp, w®]+hGun@ . (20)
p

The Fourier transform of Eq. (19) yields

_© 1
Gk(w)—_n:_ w—g’ (21
g=h+goz,(1-7), (22)

where
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Gin(@) =5 ZGs(@)elt 4=, (23)

Y= ek, (24)
Zy 6
Meanwhile, from the spectrum theorem, a spin pair correlation <s,s7(f)> is
derived generally as follows

_ . 26 . eik-(-m)—iext
<SmS"i(t)> =Tv—§ eﬁgk—‘l (25)
For the temperature region TS T, and vanishingly small magnetic field (h~0), assuming

reasonably

<S5Es%y 5> =—71)—<s,-‘s’§+5>(isotropic) , (26)
=0, 27
we obtain
3 _ 30 eik-d
X1=—75-<¢ 157 +5(0)> =Tzk: Fe— 1
30. eik-d 3 eik-a
~=2% = 28)
25 9 (
k ﬁek B kle(l“yk)"l‘fXZl,
”
where
X//=~—Z—G‘- (29)
Tt is recast in the form
PEELLL () (h=0, TS T,) (30)
Fz4
3kpT
- < W. (1 h=0, y ,=+®), 31
71, (1) ( Xu ) 3D
where
wyw=-L 5’ (32)
W= 2=
1
n=l+—. (33)

Xn
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Again from Eq. (25), we get

-t _2_0' 1
<s75%(0)>= NV %’_—eﬁsk—l (34)
=s(s+1)— <85> —<(s7)%2> %’%s(s+1)—0', (35)
and hence
s(s+1) Bey
serD N S Zcoth £k (36)

In close analogy of Eq. (31), finally we come up to the formula for the tempera-
ture, that is,

BT = 225+ 1) win) (TS T,, h=0), (37
where
_ 1 -
W)= -~ (38)
Particularly in the limit x5! —0, we get
s 3 " = ,
BT, ~ Zzsap P #=0). %
W(1) is the so-called Watson integral which has the value
W(1)=1.51638 (sc); ‘1_.39‘_320 (bee); 1.34466 (fcc). (40)

§4. Short Summary

Three simultaneous Eqgs. (13), (31) and (39) derived above offer the relation between
the concentration x and the critical temperature T,: Thus we have established a self
consistent formulation within the present scheme. Incidentally, on scrutiny in detail,
we-mention that room is yet left for further improvement. The assumption imposed
to compute the partition function (3) seems a bit too drastic to be in very decent con-
sideration of the connectivity between randomly diluted magnetic ions. It causes the
reduced exchange integral ¢ to be linearly proportioned to x near zero critical tem-
perature, which is, we regret to say, 1espons1b1e for MFA like behaviour of our present
formulation in the limit T,—0.

Such being the case, research for more decent treatment is currently under way
and the numerical calculation will be published in due course.
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