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The isothermal and adiabatic magnetic susceptibilities are calculated by the method of
the linear response theory. The result for the former is the same as the Pauli paramagnetic
susceptibility.

First we summarize the linear response theory of irreversible process derived by
Kubo.!) The theory developed a general scheme for the calculation of admittance
to the external force statistical-mechanically.

Let us consider an isolated system, the natural motion of which is governed by
the Hamiltonian s#. We suppose that an external force F(¢) is applied to it from the
infinite past, = — o0, when it was at thermal equilibrium, the effect is represented by
the perturbation energy

#'=— AF(1) )

The motion of the system is perturbed by this force, but the perturbation is small
if the force is weak. We confine ourselves to weak perturbation and ask for the re-
sponse of the system in the linear approximation. The response of the system to the
force is iow observed through the change 4B(f) of a certain physical quantity B. The
problem is now to express 4B(f) in terms of the natural motion of the system. In
quantum-statistical mechanics the initial unperturbed state of the system is specified
by the density matrix p. Under the perturbation (1) the state is represented by p’(¢),
with the condition p'(— w)=p. We expand p'(¥) as

p'®=p+4p(®)
The response 4B of the quantity B is statistically

AB=Tr Ap(1)B

=7lr St_wTr{ [4, p1B(—t)}F(t')dt' @

Where B(f) is the Heisenberg representation of B,

B(t)=exp (is#t/{h)Bexp (—is#t|h)
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and
[4, BOT=— (4O B®) ~ BOAO)} .
The response function or delayed effect function is now
G a(0)=—4-Tr[4, p1B(®)
which may also be written using the cyclic properties of trace as
$pu0) = Trp[4, BOI= <[4, BO]>

which are sometimes more convenient.
Eq. (2) is written as

AB(f)= S'_ bpu(i—1)F(t)dL

3

“

(5)

which express the response AB as linear in the external force F as superposition of the
delayed effects. For the complex admittance we have by the Fourier-Laplace trans-

form

xB.4(w)=S:¢BA(t>e—fmdt

(6)

The expression of ¢,(f) may be written in the convenient form by using the identity

[4, exp(—p#)]

—exp(— ﬁyf)gi exp (L), Alexp(—A#)d2

h

=" exp (—B%)gﬁfi(—ihl)dl
l 0
or

[p, A= ihgz pA(—ihA)dA

=——exp (— ﬁ,%’)y:) exp (1o¢) A exp(—A#) dA

(M

®

which is easily seen by writing the expression in matrix form in the representation

diagonalizing #.

Let us now assume that the system we observe is statistically represented by the
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canonical matrix
p=exp{—p(#—-¥)}, B=1/kT
exp(—p¥)=Tr(—p#).

By Eq. (3) we have
$5.4(0)=—-Tr[p, A1B()
- S:’; Tr pA(— ihA)B(t)dA
- SzTr pA(—ihD)B()dA
With the aid of Eq. (10), the relaxation function

Ouu0={" b0
is transformed into

P palt) =—1 S:Trp[Ba'), Aldr’

B
- S Tr pA(— ihA)B(f)d)\— B Tr pA°BO
0

where A° and B are the diagonal parts of A and B with respect to 2.

There exists a relation between yg,(w) and @g,(1):
Ko@) = B (O) 0] "B (e 1tds
For t=0, we have from Eq. (12) and Eq. (13)
184(0)=5,(0)
=S': Tr pA(—ih2) Bd 4 — BTt pA°BO
=S’: Tr p{A(—ih2) — A%)(B— B°)dA

¥84(0) is the static admittance.
The isothermal admittance, y%,, is

B
X£A=S Tr p{A(— iid)— < A>B— <B>)dA
1)
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(10)

(1n

(12)

(13)

(14)

15)
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where <A> and <B> are the equilibrium expectations of 4 and B in thermal equi-
librium for F=0. Eq. (15) is obtained from the expression

Trexp {—B(s# —AF)}B Trexp (—p#)B

AB= Trexp {—pB(# —AF)} = Trexp (—p#)

and by using the expansion
B
exp{—p(s# — AF)} =exp (—p){1+ SOA( —ihA)dAF +O(F?)}

x% .4 is defined by
'YEA =ABIF

Expressions (14) and (15) are different without special cases.
Now in our case, the uniform magnetic field H(¢) is applied to a spin system of
free electrons. The perturbation energy due to H(f) is now

#'=—MH() (16)

where M is the magnetization of the spin system.
The response function ¢,,(?) for the magnetization in y- dlrectlon when the external
field H(t) lies in v-direction (y, v=x, y, z) is by Eq. (10)

¢,uv(t) —‘_<[M (t)a M]>

- S’; < M(— ih)M,> dA (17)
The susceptibility (admittance) is derived from the relation
@)= "D
The static susceptibility, in particular, for the case w=0, is written
2o0) = — S:dtg’; <M(~ ih)M()>dA (18)
Integration with respect to ¢ is easily performed by noticing that
S:Mu(t)dt=Mu(t)S:=M"(oo)—Mu(O)
and M (o) is taken as the diagonal parts of M,. The static susceptibility is thus

1@ = | < (M (= 1h1) = M}(M,,— M§)> (19
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which is the susceptibility for the isolated system and is not necessarily equal to the
isothermal susceptibility,

B
x{v=S0<Mv(—ihA)Mﬂ>dl—ﬁ<Mv> <M,> (20)

If we take the magnetic field of magnitude H along z direction, the magnetization
operator due to the spin of the electrons may be written in the second quantization
formalism as

M+=Mx+iMy=g”BkZa;1ak$
M_=Mx—iMy=gﬂB§azt Ayt (21)

M= Q.UB%% r@iag —aiiagy)
It may be easily seen that
<M,>,=0, <M,M,>,=<MZ:>d,,
and then
<M,> =S‘; <M (= ih)M, > Hb,,d2 22)

One can write <M,> =yxH for the susceptibility and obtain

1
1= ng,u,z,ﬁ%:g: <(afayr —a o) (ayfay +—apia ) >

2{<mymyey >0 — <My > o} (23)
where n,,=a,}a,, and the symmetry property of the direction of up and down spins.
For free electrons
<My > 0= <My >0 <My >
<HgMp s> 0= <My > <My >o— <Apfa 1 >0<ap1a;,7 >0 (24)
and <n,,> is the Fermi-Dirac distribution function

1
exp Be,—ep)+1

<me>=fi(e)=

Thus, Eq. (23) leads to
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1= =3B uETS1=1) 2)

where the function

_ 1
=L = (o Ber ey + T (1 Foxp (— Ben—2)] 20

has a peak for ¢, ~ &5, and tends to the delta-function at low temperatures. Summation
in Eq. (25) is carried out by the integral SD(&)ds, where D(¢) is the density of states.
Thus Eq. (25) gives

x=-3-9213D(er) @n

This is the isothermal susceptibility that correspond to the Pauli paramagnetism of
conduction electrons.?’> Eq. (19) differs from Eq. (20). The former is derived by
considering only the change of M with the external force and the probability of the state
is retained as it before. Thus Eq. (19) represents an adiabatic susceptibility. In
Eq. (19) the perturbation term s#' commute with the unperturbed Hamiltonian 5#.
The wave function does not change with time. Thus the adiabatic susceptibility is
equal to zero.
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