Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 9, pp. 29–31 Dec. 20, 1975

and the second second

A Theorem to Construct 3-Way BIB Designs

Michio KINOSHITA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1975)

In this paper, I give an extension of a theorem due to A. Hedayat and D. Raghavarao to construct 3-way BIB designs. By making use of this extension, a 3-way BIB design associated with two inequivalent (31, 15, 7) cyclic difference sets, and also a 3-way BIB design associated with (16, 6, 2) abelian difference set are constructed.

THEOREM 1. Let G be a group with the binary operation * and let v be the order of G. Let φ be an automorphism of G. Suppose that $\{d_i, i=1,...,k\}$ is a (v, k, λ) difference set on G, and so is $\{b_i, i=1,...,k\}$ and $\{\varphi(d^{-1}_i)*b_i, i=1,...,k\}$. Then, a 3-way BIB design can be constructed. And the (g_j*d_i, g_j) -component of this design is $\varphi(g_j)*b_i$, and other components are blank.

PROOF. Let A be a matrix whose (g_j*d_i, g_j) -component is $\varphi(g_j)*b_i$, and other components are blank. The matrix derived from the matrix A, by replacing (g_j*d_i, g_j) -component by 1 and blank by 0, is clearly incidence matrix of a design derived from the (v, k, λ) difference set $\{d_i\}$. Since the g_j -column of A is consist of $\{\varphi(g_j)*b_i, i = 1,..., k\}$, the condition about symbol-column is satisfied. The components, which are not blank, of the g_i -row of A are of the form (f_t*d_t, f_t) . Consequently the $(g_i, g_i*d_t^{-1})$ -component is not blank, and its value is $\varphi(g_i*d_t^{-1})*b_t$. Since $\varphi(g_i*d_t^{-1})*b_t$ $= \varphi(g_i)*(\varphi(d_t^{-1})*b_t)$, and $\{\varphi(d_t^{-1})*b_t, t=1,..., k\}$ is a difference set, the condition about symbol-row is satisfied. Then the proof is completed.

When φ is simply the identity mapping of G in Theorem 1, we get

COROLLARY 1. Let G be a group with binary operation * and let v be the order of G. Suppose that $\{d_i\}$ is a (v, k, λ) difference set and so is $\{b_i, i=1,...,k\}$ and also $\{d_i^{-1}*b_i, i=1,...,k\}$. Then a 3-way BIB design can be constructed. And its (g_j*d_i, g_j) -component is g_j*b_i .

EXAMPLE. Let D and B be two inequivalent (31, 15, 7) cyclic difference sets.

 $D = \{1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30\} \mod 31$

and let d_i be defined by this order, i.e., $d_1=1$, $d_2=2$,..., $d_{15}=30$.

 $B = \{28, 1, 20, 2, 10, 16, 5, 7, 19, 18, 25, 9, 8, 4, 14\} \mod 31$

and let b_i be defined by this order, i.e., $b_1=28$, $b_2=1,..., b_{15}=14$. Then $\{-d_i+b_i, i=1,..., 15\} = \{27, 30, 17, 29, 4, 8, 24, 23, 3, 1, 2, 16, 12, 6, 15\}$ is the same cyclic difference set as *D*. Consequently, by Corollary 1, we can construct a 3-way BIB design associated with (31, 15, 7) difference sets.

If we consider only the $\{b_i, i=1,..., k\}$ of the form $\{\varphi(d_i)*d_i, i=1,..., k\}$ in Theorem 1, we obtain

COROLLARY 2. Let G be a group with binary operation * and let v be its order, and let φ be an automorphism of G. Suppose that $\{d_i, i=1,...,k\}$ is a difference set and also $\{\varphi(d_i)*d_i, i=1,...,k\}$. Then a 3-way BIB design can be constructed. And the (g_j*d_i, g_j) -component of this design is $\varphi(g_j)*\varphi(d_i)*d_i$, and other components are blank.

REMARK. There is a simple method, almost same as the method of A. Hedayat and D. Raghavarao, which constructs the same 3-way BIB design. Superimposing the incidence matrix N of the design derived from (v, k, λ) difference set $\{d_i\}$ on the matrix M whose (g_i, g_j) -component is $\varphi(g_i)*g_j^{-1}*g_i$, and if $N_{ij}=1$, then replace 1 by M_{ij} , and if $N_{ij}=0$, then replace 0 by blank. The construction is completed.

EXAMPLE. Let us consider the (16, 6, 2) difference set $\{d_i, i=1,..., 6\} = \{a, b, c, d, ab, cd\}$ on G, where G is an abelian group generated by a, b, c, d satisfying $a^2 = b^2 = c^2 = d^2 = 1$. Consider an automorphism φ of G defined by $\varphi(a) = b$, $\varphi(b) = ab$, $\varphi(c) = cd$, $\varphi(d) = c$, then $\{\varphi(d_i) * d_i, i = 1,..., 6\} = \{ab, a, d, cd, b, c\}$ is a (16, 6, 2) difference set on G. Numbering 1, a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd, by the integers from 1 to 16, we obtain the next 3-way BIB design.

3 4 5 6 ** ** ** 11 ** ** ** ** ** 2 6 ** 2 ** ** 1 9 10 ** ** ** ** 15 ** ** 2 1 ** ** ** 3 ** ** 12 13 ** ** ** 16 ** 5 ** ** ** 1 ** 14 ** 15 ** 4 16 ** ** ** 11 ** ** 5 ** ** ** 7 ** 9 1 ** 12 ** ** ** 3 6 1 ** ** ** ** ** ** ** 7 8 ** ** 14 ** 10 ** 16 ** ** ** 3 14 ** ** 11 ** 9 ** ** ** 15 ** ** 12 ** 10 ** ** 7 ** ** 4 3 ** ** ** ** 13 14 ** ** 11 ** ** 6 ** 15 ** ** 12 ** ** ** 16 ** 7 ** ** 4 13 ** ** ** 9 ** 6 ** 4 ** ** 1 11 ** ** ** ** ** ** ** 8 10 13 ** ** ** 15 ** 8 16 ** 11 ** ** ** 2 ** ** 7 ** ** ** ** 9 14 ** 12 ** 4 ** 8 ** ** 2 9 ** ** ** ** 3 15 ** ** 13 ** ** ** 8 - 5 ** 12 ** ** ** ** 6 16 8 ** ** 5 ** 10 ** ** ** ** ** 7 ** ** ** ** 10 2 14 13 5 **

In Corollary 2, if we consider the automorphism φ of G, of the form $\varphi(g)=g^{b-1}$ for each integer b, we obtain Theorem 2.1 in the paper of A. Hedayat and D. Raghavarao [3].

References

- [1] M. HALL Jr., Combinatorial theory, Blaisdell, Waltham, Mass, 1967.
- [2] R. H. BRUCK, Difference sets in a finite group, Trans. Amer. Math. Soc., 78 (1955), 464-481.
- [3] A. HEDAYAT and D. RAGHAVARAO, 3-way BIB designs, Journal of combinatorial theory (A) 18 (1975), 207-209.
- [4] L. D. BAUMERT, Cyclic difference sets, Springer-Verlag, Berlin-Heidelberg-New York, 1971.