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On Random Fields on Hyperbolic Spaces

Yasuhiro Asoo

Department of Mathematics, Shimane University, Matsue, Japan
(Received September 6, 1976)

In this paper, we examine the spectral representation of the covariance function of w-homo-
geneous random field on hyperbolic spaces and compare it with the case of Euclidean space.

§1. Geometric concepts

1. Let E,; be a real (n+1)-dimensional vector space with a metric ground
form

[X, X]1=X{+--+X2-X2,, (1)

A set of X €E,; such that [X, X]<0 is a cone with vertex at origin. By a hyper-
bolic rotation we shall mean a linear transformation which does not change the dis-
tance of points from the origin, preserves the orientation of the space and transforms
both halves of the cone into themselves. These transformations form a group and we
shall call it the group of hyperbolic rotations of E, ;, and denote it by SO(n, 1).

2. Let

Hi =[X€E,;; [X, X]=~1, X,4+,>0] )

The group SO(n, 1) acts transitively on the space H;,, and a subgroup SO(n) leaves
the point £=¢(0,..., 0, 1) invariant and it is the isotropy subgroup at this point. Thus,
the space H},, is the coset space SO(n, 1)/SO(n). When n=+3, we call it the real
hyperbolic space with dimension 7.

3. With X, ;=1, [X, X]=01is equivalent to X?+..-+X2=1. The real hyper-
bolic space can also be interpreted as the interior of the n-dimensional ball of radius 1.

4. When n=2, it is also the coset space SL(2; R)/SO(2).

5. The n-dimensional real Euclidean space E, is the coset space M(n)/SO(n),
where M(n) is the group of real matrices of the order (n+1),

h a
g=g(a, h)= ( )
0 1

where h is an element of the group SO(n), a is a column vector with n real elements, and
0 is a zero n-row vector.
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§2. Irreducible unitary representations and zonal spherical functions

1. We denote by x the pair x=(I, ) of complex number ! and number ¢ taking
values 0 and 1/2. With each such pair we associate a space D, of functions ¢(z) of
the complex variable z=x+ iy, such that:

1) the function ¢(z) is infinitely differentiable with respect to x and y at all points
z=x+1y, except the point z=0;
2) for any positive number a one has the equality

P(az)=a*'¢(2) ;
3) the function ¢(z) has given parity:
P(—z)=(=1**¢(2).

If I is the unit circle, then for e=0 the space D, is realized as the space of infinitely
differentiable even functions on I', and for e=1/2, as the space of infinitely differentiable
odd functions on I. Let us define a function f(expif) as the following: for ¢&D,,

P(exp if/2), e=0
J(expif)= 3
exp (i0/2)p(exp i0/2), e=1/2.
1
i c
matrix h=C-1gC, which forms a group SU(1, 1), and isomorphic to the group SL(2;
R).

b
2. Let C=< >of SL(2; R), we correspond a
d

i a
and for any g=
1

o
3. With each element g=( > of SU(1, 1) we associate an operator T,(g) in

&
the space D of infinitely differentiable functions on the circle, defined by the formula
T(9)f (exp i6)
=(Bexp if+&)"+(Bexp —i0+a)' 2 f((eeexp i0+ B)/(Bexp if + &)) 4

4. All representations T,(g), x=(—1/2+1ip, ¢) are unitary and we shall call T,(g),
x=(—1/2+ip, 0) unitary representations of the first principal series, and T,(g),
x=(—1/2+1ip, 1/2) unitary representations of the second principal series.

5. The representations T(g), —1<I<0 and &=0 are unitary and irreducible
and we shall call them unitary representations of the supplementary series.

6. Now let I+¢ and [—¢ be both integers. We shall denote by D the subspace
in D consisting of functions of the form exp —i(l—e)f(exp if)), where f(z) is analytic
inside the unit circle and D7 the subspace in D consisting of functions of the form exp i(l
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+¢) f(exp i0), where f(2) is analytic outside the unit circle. For I—&<0, in D there are
two nonintersecting invariant subspaces. We shall denote by Ti(g) the representa-
tions induced by the representations in subspaces DF. These are unitary and ir-
reducible. The representations TZ,_,(g), which are equivalent to T#(g) and act in
the factor spaces DZ,_,/D9,_, respectively, where D2,_, =D, , nDZ,_; are also
unitary and irreducible. We shall call them unitary representations of the discrete
series.

7. In the space D of the representation T,(g) we choose a basis, consisting of the
functions [exp —inf]. We have an expression

T[g)exp —in@=(Bexpif+a)*"+*(Bexp —i0+o) " cexp —ind (5)

When ¢=0, we get a class 1 representation with respect to the subgroup SO(2)
and we get the corresponding zonal spherical function P(cht), where g=g(¢, 7, )
in the Euler angles in SU(1, 1), the Legendre function with index I;

B, (chr) =%Sh(ch 4+ shcos0)1dO (6)
0

In summary, we get class 1 representations for the first principal series, for the
supplementary series, and for ] integers. With respect to corresponding zonal spherical
functions, when [ is an integer, the Legendre function P (z) coincides with the Legendre
polynomial Py(z), and the Legendre functions ®B_,,,,;,(cht), are called conical func-
tions.

8. We shall denote by V**1:s the space of functions f(X) given on the upper half
of the cone [X, X]=0, X,,,>0, and such that
1) the functions f(X) are infinitely differentiable at every point of the upper half of

the cone, ' '
2) the function f(X) are homogeneous of degree s:

flaX)=asf(X), a>0.
We define an operator S"*1:5(g), g€ SO(n, 1), in the space V"*1:s by the formula
SHLHf(X)=f(¢g'X), geS0(m, 1), (7

Then (S"*1:5(g), V**1:5) is a representation of the group SO(n, 1).
With each function f of the space V"* L.s we associate the function F,

F@=0f(): =1 Exponr Ew 1)

on §™1, (n—1)-sphere, and to the operator S+ 1:5(g) correspohd operator of a repre-
sentation o T o :

. Tn+l,s(g)=QSn+..1.,s(g)Q—1 ) ) (8)
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in the space D of infinitely differentiable functions on the sphere S"~1.

9. The representations T"*1:5(g), s= —(n—1)/2+ip, are unitary and irreducible
and we shall call them the representations of the principal series of the group SO(n, 1).

10. The representations T"+1:5(g), s: nonintegers and —(n—1)<s<0, are uni-
tary and irreducible and we shall call them the representations of the supplementary
series of the group SO(n, 1).

11. Let D"k be the space of polynomials of degree k in the variables &,...,
¢, When s=—n—k+1, where k are nonnegative integers, the representations .
(T+1:5(g), D**) are unitary and irreducible, and we shall call them the representa-
tions of the discrete series of the group SO(n, 1).

12. These representations are representations of class 1 with respect to the sub-
group SO(n).

13. 1In the space D(S*1), we introduce the scalar product

F 0= _ Fecwe.

We complete it relative to the norm |F|2=(F, F), and we obtain the Hilbert space
L2(S*~1). Functions of the form
n—3 . .
Gx(O)= C(K)jl,_l Cgc'}:%,_fx)/”k” 1(COS Py j—1)SIN K1,y

€xp _I—- ikn-2¢ls

where CZ(f) are Gegenbauer polynomials, ¢,..., §,—; are geographical coordinates
on 8" 1, K=(ko,..., +kn_»), ko=k,>++>k,_,>0, and C(K) is a normalizing con-
stant, form an orthonormal basis in the space L2(S"~!). The function Gy(¢), 0=(0,...,
0), is equal to 1, and invariant for all h of SO(n). The zonal spherical functions depend
only on the Euler angle 07 of g=g(0%; 1<k<n, 1<j<k) of g in SO(n, 1). Let g,(0)
be a hyperbolic rotation by the angle 6 in the (X,, X, )-plane.

Then, we have an expression for zonal spherical functions

(n—2)/2
Zr15(g,(0)) =2 2L U2 - 22303, (o), ©)

where P;{#72{?%(z) are associated Legendre functions. We have also an integral
representation

Zr+Ls(g,(0)) = \FTF(?;:—/E)T)TT)XO (chO—cos shO)sin"2¢d¢  (10)

In particular, when n=2, we have an expression

Z3:5(g 5(8))="PB3(chB) =P(chb).

14. Let R be a complex number and with each element g =g(a, h) of the group
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M(n) we associate the operator

Tr(9)f(&)=expR(a, O)f(h710),

where (a, ) is the scalar product, in the space L2(S*"*). When R *0, are purely imagi-
nary numbers, the representations are unitary and irreducible, and they are class 1.
The zonal spherical functions depend only on the length of a; thus let g=g(r, e),
where r=(0,..., 7), then we get a expression of the zonal spherical functions

Z5g)=T(n]2) 272240 (11)
where J,_,)/2(yr) are Bessel functions.
When R=0, we get Tr(9)f(E)=f(h~1&), g=g(a, h), which is the quasi-regular
representation of the subgroup SO(n).
15. Summary:

(a) Let (T(g), $) be an irreducible (unitary) representation of a group G and K be a
closed subgroup of G. A representation T(g) is called a representation of class 1
relative to K if in its representation space there is a nonzero vector invariant rela-
tive to K and the restriction of T(g) to K is unitary. Let f be a normalized in-
variant vector in the space $; then a function

J@)=(T). )

is called a zonal spherical function.

(b) When representation T(g) is unitary, the zonal spherical function is positive
definite.

(c) For the case of hyperbolic spaces, the zonal spherical functions are functions of
the form

20-2I2F (n)2) g1
2 D) g cho),

where s= —(n—1)/2+ip (principal series),
or s: nonintegers and —(n—1)<s<0 (supplementary series),
or s=—n—k++1, k nonnegative integers (discrete series).
These are positive definite functions. Py(z) are associated Legendre functions.
(d) For the case of Euclidean spaces, the zonal spherical functions are functions of
the form

where %0 is a real number and J, - 5),(y¥) is a Bessel function. These functions
are positive definite.
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§3. w-homogeneous random fields on the hyperbolic spaces

1) By a random field on the space X, we shall mean a bounded measure on the
space @=RX, Taking any weRX and X,,..., X, of X we get a n-tuple (o(X,),...,
o(X,)), and let E,,..., E, be Borel fields in R, then consider [w; w(X ;)€ E,,..., o(X,)
€E,]. We define a function F(X,,..., X,; Ey,..., E,) by a formula

F(Xi,.... X, Eq,e.., E)=plo; o(X,)€E4,..., o(X,)€ E,] (12)

where u is a measure on (RX, B(RX)).
Let X be a homogeneous space G/K. We shall call a random field homogeneous
when

F(gXys.., 9X,; Eqs..., E))=F(X,,..., X,,; E{»...., E,)
for any gegG,
and (K-)isotropic when
F(kX,,..., kX,; Eq,..., E))=F(X4,..., X;; E4,..., E,) for any keKkK.
2) Given random field u, we define a function
f(P, ®): =w(P), PeX.

We assume that
[, 1P, o)due)={ oP)2due)<+oo (13)
We also assume that

tim | 1(P, @)=1(0, o)?du(w)=0,
-0J0 _

and SQ £(P, w)du(@)=0.

When the condition (13) holds, we can define a covariance function C(P, Q),
P, Qe X, by the formula

e, 9= S, )@ w)iu@). (14)

The random field is called w-homogeneous when C(gP, gQ)=C(P, Q) for any geG
and w-isotropic when C(kP, kQ)= C(P, Q) for any ke K.
3) Let P=gP,, where P, is an invariant point with respect to the subgroup K
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and fo(w) be f(P,, w), then we have a relation f(P, w)=f(gPg, w). The random field
f spans the Hilbert space $, with the scalar product (14). The group G acts on $ by
the formula

T(9)f(P)=f(g~'P) (15)

Then, we have f(P)=T(g~1)f,, and for any ke K, T(k)fo=f,- (T(g), H) is a repre-
sentation of the group G.
4) (a) A necessary and sufficient condition for the random field f to be w-homo-
geneous is that the representation (T(g), $) is unitary and which has
an invariant vector f, with respect to the subgroup K.
(b) A necessary and sufficient condition for the random field f to be w-
isotropic is that the representation (T(k), $) restricted to the subgroup
K is unitary and which has a invariant vector f,.
5) 1In the following we assume that the random field f is w-homogeneous.
Then the covariance function C(P, Q) is of the form C(P, Q)=C(g3'g Py, Py), where
P=g,P,, Q=g,P,. We define a function B(g) on G by the formula

B(g)=C(gPy, Po)=(T(g™ ") o, fo) -

The function B(g) is a positive definite and K-biinvariant functions.
6) Now let X be a hyperbolic space. Then, we get the spectral representation

2m=2)/2 2 ©® (e
B(9) =2t 7w chorar (o)

(n—2)/2 0
[ g2 cn)ar, @+ 3 =il (cho) | (16)

-n/2
, where ¢, are nonnegative and g=g,(6). Since P32} ,(ch6)=Py23/2(ch),
we get a formula

. 2(m=-2)/2 2 © (n=2)/2
B(g) =22 (ot cho)ac o)+ |

-n

B DI2(chO)IF (1) + 3 o BaftzRle(chs) | (16)
k=

7) 1In the cace of X being a Euclidean space, we get the spectral representation

Bo)=T n/2) -2 32U ar(y). an

Thus, with P=g,P,, 0=g,P, and g;=g(a;, h;) (i=1, 2), we have an expression

P, 0= B(g3'9) =T )TNt ar). ()
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8) Let X be the real hyperbolic plane. In this case we have a formula
0

Bo)={ P12 chO)AF()+ | Blcht)IGD+ F epich),  (19)
for g=g(¢, 0, ). We have also when B(g) e L%(G), G=SU(1, 1),

B(g) =z | AP 2 11y(@) i)y, (20)

where a(.y)=SB(g)—as-l,zﬁy(g)dg,
dg=sh0d0dody.

When P=gP,, and Q=g,P,, to get the function C(P, Q) we substitute in the
formula (19), chf=chf,chf,—sh6,sh0,cos(¢d,—d,) with g;,=g(¢d;, 0, V), i=1, 2.
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