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In section one, we deal with a problem which arises from the theorem in the previous paper
[3]. In section two, some examples are established as supplement to [31

§1. In this paper, we use the terms and notations in our previous paper [31.
In [3, Theorem (3)], we proved that if f is a continuous closed mapping of a normally
ordered space (X, %, p) onto a topological ordered space (Y, 7", 1) where 1 is the
quotient order of p induced by £, then (Y, 7, 7) is also a normally ordered space.
In connection with this theorem, it naturally arises a question whether ‘‘normally
ordered” can be replaced by “‘T,-ordered”. First, we show that the answer to this
question is negative in the following example.

ExamPLE 1. Let X be a set {(a, x, y): a=0 or 1, x, ye[0, c0)}. The topology
@ on X is the usual topology. Next, we define a partial order p in X as follows:
(a, x, y)p(b, u, v) if and only if a=0, b=1, x=ux0, y=1/x; or (a, x, y)=(b, u, v).
Let A be a set {(1, g/p, p): p and q are positive integers}, then A4 is closed in X. Let
Y be the quotient space X/A equipped with the quotient topology #~, and f the projec-
tion of X onto Y. If we introduce the order 7 on Y by the quotient order of p induced
by f, then f is a closed mapping and (X, %, p) is T,-ordered. However, (Y, 77, 7)
is not T,-ordered. Because for a*=f(4)eY, b*={(0, b, 1/b)} € Y where b is a posi-
tive irrational number, a*||b* holds and each increasing neighborhood of b* necessarily
contains a*.

This example shows that the closed image of T;-ordered (resp. T,-ordered) space
is not necessarily T,-ordered (resp. T,-ordered). So the questions naturally arise:
under what conditions hold the generalizations of the well-known facts that the closed
image of T (resp. T,) space is also T; (resp. T,) space? For these questions, we obtain
the next theorem.

We call (X, %, p) a C-space if, whenever a subset F of X is closed, ix(F) and d x(F)
are closed (see [4]).

THEOREM. Suppose (X, %, p) is a C-space and f a continuous mapping of (X,
, p) onto (Y, ¥, ©) where t is the quotient order of p induced by f.
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(1) Iffis a closed mapping and (X, %, p) is a Ty-ordered space, then (Y, ¥, 1)
is a Ty-ordered space.

(2) If fis a closed mapping and (X, %, p) is a T,-ordered space, then Y, v,
1) is a Ty-ordered space.

This theorem is immediately proved by the following two lemmas and [3, Theorem

3]

LemMA 1. Under the assumptions of Theorem, if f is a closed mapping and (X,
«, p) is a C-space, then (Y, 7", ©) is a C-space.

Proor. Let F be a closed set of Y. Then iy(F)=f(ix(f~1(F))), dy(F)
=f(dx(f~1(F))). Therefore iy(F) and dy(F) are closed in Y. Q.E.D.

LemMmA 2. If (X, %) is a T, space and (X, , p) is a C-space, then (X, %, p)
is Ty-ordered.

Proor. Since {x} is closed for each xe X, iy(x)=[x, =] and dy(x)=[«, x]
are closed in X. Therefore by [2, Theorem 1], (X, %, p) is T;-ordered. Q.E.D.

§2. Suppose f is an open mapping of a T,-ordered space (X, %, p) onto
(Y, 7", ©) where (X, %) and (Y, ¥°) are T, spaces. As was shown in [1, Proposition
5], if fis isotonic and dually isotonic, then (Y, #°, 7) is a T,-ordered space. In connec-
tion with this proposition, in [3, Example 1] it is shown the hypothesis that f is dually
isotonic is essential. The next example shows that the assumption °‘f is isotonic”
is essential.

ExampLE 2. Let X be the real numbers, the topology # on X the usual one and
the order p in X the natural order. We define a partial order 7 in X as follows: Xty
if and only if x<y for rational numbers x, y; or x=y where < is the natural order of
X. 1If f is the identity mapping of (X, %, p) onto (X, %, 7), then all assumptions
except that f is isotonic are satisfied. However (X, %, 7) is not T,-ordered.

In Theorem of the previous paper [3], the hypothesis that 7 is the quotient order
of p induced by fis essential. Indeed this hypothesis cannot be replaced with one that
either f is dually isotonic or f is isotonic. In case f is dually isotonic, see Example 2.
In the other case, see the next example.

ExAMPLE 3. Let X be the real numbers the topology on X the usual one, the order
p the discrete order on X (i.e. apb if and only if a="b) and the order 7 in X the same one
with Example 2. If f is the identity mapping of (X, @, p) onto (X, %, 1), then f is
isotonic. However 7 is not the quotient order of p induced by f. X, %, p) is T,-
ordered, Ts-ordered and T,-ordered, but (X, %, 7) is neither T,-ordered nor Tj-
ordered nor normally ordered.
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