Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 10, pp. 27-29 Dec. 20, 1976

On Images of Topological Ordered Spaces under Some Quotient Mappings II

Takuo Miwa

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1976)

In section one, we deal with a problem which arises from the theorem in the previous paper [3]. In section two, some examples are established as supplement to [3].

§1. In this paper, we use the terms and notations in our previous paper [3]. In [3, Theorem (3)], we proved that if f is a continuous closed mapping of a normally ordered space (X, \mathcal{U}, ρ) onto a topological ordered space (Y, \mathscr{V}, τ) where τ is the quotient order of ρ induced by f, then (Y, \mathscr{V}, τ) is also a normally ordered space. In connection with this theorem, it naturally arises a question whether "normally ordered" can be replaced by " T_4 -ordered". First, we show that the answer to this question is negative in the following example.

EXAMPLE 1. Let X be a set $\{(a, x, y): a=0 \text{ or } 1, x, y \in [0, \infty)\}$. The topology \mathscr{U} on X is the usual topology. Next, we define a partial order ρ in X as follows: $(a, x, y)\rho(b, u, v)$ if and only if a=0, b=1, $x=u \neq 0$, y=1/x; or (a, x, y)=(b, u, v). Let A be a set $\{(1, q/p, p): p \text{ and } q \text{ are positive integers}\}$, then A is closed in X. Let Y be the quotient space X/A equipped with the quotient topology \mathscr{V} , and f the projection of X onto Y. If we introduce the order τ on Y by the quotient order of ρ induced by f, then f is a closed mapping and (X, \mathscr{U}, ρ) is T_4 -ordered. However, (Y, \mathscr{V}, τ) is not T_1 -ordered. Because for $a^*=f(A) \in Y$, $b^*=\{(0, b, 1/b)\} \in Y$ where b is a positive irrational number, $a^* \parallel b^*$ holds and each increasing neighborhood of b^* necessarily contains a^* .

This example shows that the closed image of T_1 -ordered (resp. T_4 -ordered) space is not necessarily T_1 -ordered (resp. T_4 -ordered). So the questions naturally arise: under what conditions hold the generalizations of the well-known facts that the closed image of T_1 (resp. T_4) space is also T_1 (resp. T_4) space? For these questions, we obtain the next theorem.

We call (X, \mathcal{U}, ρ) a *C*-space if, whenever a subset *F* of *X* is closed, $i_X(F)$ and $d_X(F)$ are closed (see [4]).

THEOREM. Suppose (X, \mathcal{U}, ρ) is a C-space and f a continuous mapping of (X, \mathcal{U}, ρ) onto (Y, \mathcal{V}, τ) where τ is the quotient order of ρ induced by f.

Takuo Miwa

(1) If f is a closed mapping and (X, \mathcal{U}, ρ) is a T_1 -ordered space, then (Y, \mathcal{V}, τ) is a T_1 -ordered space.

(2) If f is a closed mapping and (X, \mathcal{U}, ρ) is a T_4 -ordered space, then (Y, \mathscr{V}, τ) is a T_4 -ordered space.

This theorem is immediately proved by the following two lemmas and [3, Theorem (3)].

LEMMA 1. Under the assumptions of Theorem, if f is a closed mapping and (X, \mathcal{U}, ρ) is a C-space, then (Y, \mathcal{V}, τ) is a C-space.

PROOF. Let F be a closed set of Y. Then $i_Y(F) = f(i_X(f^{-1}(F))), d_Y(F) = f(d_X(f^{-1}(F)))$. Therefore $i_Y(F)$ and $d_Y(F)$ are closed in Y. Q. E. D.

LEMMA 2. If (X, \mathcal{U}) is a T_1 space and (X, \mathcal{U}, ρ) is a C-space, then (X, \mathcal{U}, ρ) is T_1 -ordered.

PROOF. Since $\{x\}$ is closed for each $x \in X$, $i_X(x) = [x, \rightarrow]$ and $d_X(x) = [\leftarrow, x]$ are closed in X. Therefore by [2, Theorem 1], (X, \mathcal{U}, ρ) is T_1 -ordered. Q.E.D.

§2. Suppose f is an open mapping of a T_2 -ordered space (X, \mathcal{U}, ρ) onto (Y, \mathscr{V}, τ) where (X, \mathcal{U}) and (Y, \mathscr{V}) are T_2 spaces. As was shown in [1, Proposition 5], if f is isotonic and dually isotonic, then (Y, \mathscr{V}, τ) is a T_2 -ordered space. In connection with this proposition, in [3, Example 1] it is shown the hypothesis that f is dually isotonic is essential. The next example shows that the assumption "f is isotonic" is essential.

EXAMPLE 2. Let X be the real numbers, the topology \mathscr{U} on X the usual one and the order ρ in X the natural order. We define a partial order τ in X as follows: $x\tau y$ if and only if $x \leq y$ for rational numbers x, y; or x = y where \leq is the natural order of X. If f is the identity mapping of (X, \mathscr{U}, ρ) onto (X, \mathscr{U}, τ) , then all assumptions except that f is isotonic are satisfied. However (X, \mathscr{U}, τ) is not T_2 -ordered.

In Theorem of the previous paper [3], the hypothesis that τ is the quotient order of ρ induced by f is essential. Indeed this hypothesis cannot be replaced with one that either f is dually isotonic or f is isotonic. In case f is dually isotonic, see Example 2. In the other case, see the next example.

EXAMPLE 3. Let X be the real numbers the topology on X the usual one, the order ρ the discrete order on X (i. e. $a\rho b$ if and only if a=b) and the order τ in X the same one with Example 2. If f is the identity mapping of (X, \mathcal{U}, ρ) onto (X, \mathcal{U}, τ) , then f is isotonic. However τ is not the quotient order of ρ induced by f. (X, \mathcal{U}, ρ) is T_2 -ordered, T_3 -ordered and T_4 -ordered, but (X, \mathcal{U}, τ) is neither T_2 -ordered nor T_3 -ordered nor normally ordered.

References

- D. ADNADJEVIĆ: Topology and order, Dokl. Akad. Nauk SSSR 206 (1972), 1273–1276; Soviet Math. Dokl. 13 (1972), 1384–1387.
- [2] S. D. MCCARTAN: Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965–973.
- [3] T. MIWA: On images of toplogical ordered spaces under some quotient mappings, Math. J. Okayama Univ. 18 No.2 (1976), 99-104.
- [4] H. A. PRIESTLEY: Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507-530.

.