Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 10, pp. 1-6 Dec. 20, 1976

Free Products of Orthodox Semigroups^{*)}

Teruo Імаока

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1976)

As an analogous construction to inverse semigroups (see [4]), we shall give the free products in the varieties of orthodox semigroups and of bands defined by a given identity. However, if the variety is the set of [left, right] normal bands, we can describe it in a more useful form. We shall discuss it in the later half of this paper. The notations and terminologies are those of [1] and [6], unless otherwise stated.

§1. Orthodox semigroups

At first, we shall study the free product in the class of orthodox semigroups. Let S_i , $i \in I$, be a family of orthodox semigroups, and let S be the free product $\Pi * S_i$ of the S_i in the class of semigroups. For $x = x_{i_1} x_{i_2} \cdots x_{i_k}$, $x_{i_j} \in S_{i_j}$, in a reduced form in S, set

$$W(x) = \{x'_{i_k} \cdots x'_{i_2} x'_{i_1} \colon x'_{i_i} \in V(x_{i_i})\},\$$

where $V(x_i) (= V_{S_i}(x_i))$ denotes the set of inverses of x_i in S_i . If $x \in S_i$, it is obvious $W(x) = V_{S_i}(x)$.

THEOREM 1.1. Let ~ denote the congruence on S generated by all pairs (x, xx'x) and $(x_1x'_1x_2x'_2\cdots x_rx'_r, x_1x'_1x_2x'_2\cdots x_rx'_rx_1x'_1x_2x'_2\cdots x_rx'_r)$ for x, x_1, x_2, \ldots, x_r in S and for $x' \in W(x)$ and $x'_j \in W(x_j)$, $j=1, 2, \ldots, r$. Then S/\sim is the free product of the S_i in the class of orthodox semigroups.

PROOF. Let $x = x_{i_1}x_{i_2}\cdots x_{i_k}$ be any element of S. For any element $x' = x'_{i_k}\cdots x'_{i_2}x'_{i_1}$ in W(x), each x_{i_j} is an inverse of x'_{i_j} in S_{i_j} , j=1, 2, ..., k. Then $(x', x'xx') \in$ ~, that is, $x' \sim$ is an inverse of $x \sim \text{ in } S/\sim$. Hence S/\sim is a regular semigroup.

Let e be an element of S and assume that $e \sim$ is an idempotent in S/\sim . For any $e' \in W(e)$,

$$(e' \sim)^{2} = (e'ee' \sim)(e'ee' \sim)$$

= $(e' \sim)(e \sim)(e'^{2} \sim)(e \sim)(e' \sim)$
= $(e' \sim)(e^{2} \sim)(e'^{2} \sim)(e^{2} \sim)(e^{2} \sim)(e' \sim)$

^{*)} This research was carried out while the author held a Monash Graduate Scholarship,

Teruo Імаока

$$= (e' \sim)(e^2 \sim)(e' \sim),$$

since $e'^2 \in W(e^2)$,

$$= (e' \sim)(e \sim)(e' \sim)$$
$$= e' \sim.$$

Then $e' \sim$ is an idempotent in S/\sim .

We now show that S/\sim is orthodox. For e, f in S, let us assume that $e\sim$ and $f\sim$ are idempotents in S/\sim . Then,

$$ef \sim = (e \sim)(f \sim)$$
$$= (e \sim)(e' \sim)(e \sim)(f \sim)(f' \sim)(f \sim)$$
$$= (e \sim)(e' \sim)^2(e \sim)(f \sim)(f' \sim)^2(f \sim),$$

since $e' \sim$ and $f' \sim$ are idempotents in S/\sim ,

$$=((ee')(e'e)(ff')(f'f)) \sim$$
$$=(ee'e'eff'f'fee'e'eff'f'f) \sim$$
$$=(ee'e'eff'f'f \sim)^{2}$$
$$=(ef \sim)^{2}.$$

Therefore the set of idempotents in S/\sim forms a band, and hence S/\sim is an orthodox semigroup.

It remains to show that S/\sim is the colimit of the S_i . Let T be any orthodox semigroup and let $\psi_i: S_i \rightarrow T$, $i \in I$, be any homomorphisms. Since $S = \Pi * S_i$, there exist monomorphisms $\phi_i: S_i \rightarrow S$, $i \in I$, and a unique homomorphism $\mu: S \rightarrow T$ such that $\phi_i \mu = \psi_i, i \in I$.

Let ϕ be the natural mapping of S onto S/\sim , and let $v_i = \phi_i \phi$, $i \in I$. Let x_i and y_i be elements of S_i such that $x_i \sim y_i$. Then there exist elements $z_1, z_2, ..., z_n$ in S such that

 $x_i = z_1 \longrightarrow z_2 \longrightarrow \cdots \longrightarrow z_n = y_i,$

where $z_j \rightarrow z_{j+1}$, j=1, 2, ..., n-1, is an elementary transition determined by (x, xx'x)or $(x_1x'_1x_2x'_2\cdots x_rx'_r, x_1x'_1x_2x'_2\cdots x_rx'_r, x_1x'_1x_2x'_2\cdots x_rx'_r)$, for some $x, x_1, x_2, ..., x_r$, $x', x'_1, x'_2, ..., x'_r$, depending upon *i*, in *S*. If $z_j \in S_j$, then any possible transition to z_{j+1} makes that z_{j+1} belong to S_j also. Hence, since $z_1 \in S_i$, we must have $z_j \in S_i$ for all *j*. Within S_i each transition can however replace an element only by an equal element. Then $z_1 = z_2 = \cdots = z_n$, and hence $x_i = y_i$. Thus we have each $v_i (=\phi_i \phi)$ is a monomorphism, $i \in I$. Let $x \in S$, and let $x = x_{i_1} x_{i_2} \cdots x_{i_r}$ be in reduced form in S. Then,

$$(xx'x)\mu = (x_{i_1}x_{i_2}\cdots x_{i_r}x'_{i_r}\cdots x'_{i_2}x'_{i_1}x_{i_1}x_{i_2}\cdots x_{i_r})\mu$$

= $(x_{i_1}\mu)(x_{i_2}\mu)\cdots(x_{i_r}\mu)(x'_{i_r}\mu)\cdots(x'_{i_2}\mu)(x'_{i_1}\mu)(x_{i_1}\mu)(x_{i_2}\mu)\cdots(x_{i_r}\mu)$
= $(x_{i_1}\mu)(x_{i_2}\mu)\cdots(x_{i_r}\mu)$

(since each $x'_{i_j}\mu$ is an inverse of $x_{i_j}\mu$, j=1, 2, ..., r, and it follows from [5, Lemma 1.3] that $x('_{i_r}\mu)\cdots(x'_{i_2}\mu)(x'_{i_1}\mu)$ is an inverse of $(x_{i_1}\mu)(x_{i_2}\mu)\cdots(x_{i_r}\mu)$ in T) = $x\mu$.

Similarly $(x_1x_1'x_2x_2'\cdots x_rx_r')\mu = (x_1x_1'x_2x_2'\cdots x_rx_r'x_1x_1'x_2x_2'\cdots x_rx_r')\mu$ for any x_1, x_2, \dots, x_n in S and any $x_j \in W(x_j), j = 1, 2, \dots, r$. Then $\sim \subseteq \mu o \mu^{-1}$, and hence we can consider a homomorphism $\theta: S/\sim \to T$ such that $\phi \theta = \mu$. Then,

$$v_i \theta = \phi_i \phi \theta = \phi_i \mu = \psi_i,$$

for all $i \in I$. Thus S/\sim together with the v_i is the free product of the S_i in the class of orthodox semigroups, and hence we have the theorem.

Let \mathscr{A} be the variety of bands defined by an identity P = Q. Next, we shall give the free product in \mathscr{A} of a given family of bands $\{S_i: i \in I\}$ from \mathscr{A} .

If P=Q is heterotypical, it follows from [3, Theorem 2] that \mathscr{A} is one of the varieties of rectangular bands, left zero semigroups, right zero semigroups and one element semigroups. Let \mathscr{A} be the variety of rectangular bands. By [2, Lemma 2], there exist a left zero semigroup L_i , say, and a right zero semigroup R_i , say, such that $S_i \simeq L_i \times R_i$, for each $i \in I$. We can assume without loss of generality that $L_i \cap L_j = \Box$ and $R_i \cap R_j = \Box$ if $i \neq j$. Let $L = \bigcup \{L_i : i \in I\}$, $R = \bigcup \{R_i : i \in I\}$ and $B = L \times R$. Define a product o on B as follows:

$$(a_1, b_1)o(a_2, b_2) = (a_1, b_2).$$

It is clear that B(o) is the free product of the S_i in \mathscr{A} . Similarly, we can easily construct the free products in the other three varieties of bands.

So we now consider the free product in the variety of bands defined by a homotypical identity.

THEOREM 1.2. Let \mathscr{A} be the variety of bands defined by a homotypical identity $P(X_1, X_2, ..., X_n) = Q(X_1, X_2, ..., X_n)$. Let S_i , $i \in I$, be a family of bands belonging to \mathscr{A} . Let σ be the congruence on $S = \Pi * S_i$, the free product of the S_i in the class of semigroups, generated by all pairs (x^2, x) and $(P(x_1, x_2, ..., x_n), Q(x_1, x_2, ..., x_n))$ for $x, x_1, x_2, ..., x_n$ in S. Then S/σ is the free product of the S_i in \mathscr{A} .

PROOF. By an argument similar to the proof of Theorem 1.1, we may prove the theorem.

Teruo Імаока

§2. [Left, right] normal bands

We have given the free product in the variety of bands defined by a homotypical identity. However, if \mathscr{A} is the variety of [left, right] normal bands, we can describe it in a more useful form.

Let E_i , $i \in I$, be a family of normal bands. It follows from [7, Theorem 4] that each E_i , $i \in I$, is isomorphic to the spined product $L_i \bowtie R_i(\Gamma_i)$ of a left normal band L_i , say, and a right normal band R_i , say, with respect to a semilattice Γ_i , say. Let $L_i \sim$ $\Sigma\{L_{\alpha_i}: \alpha_i \in \Gamma_i\}$ and $R_i \sim \Sigma\{R_{\alpha_i}: \alpha_i \in \Gamma_i\}$ be the structure decompositions of L_i and R_i , $i \in I$, respectively. Then the structure decomposition of each E_i is $E_i \sim \Sigma\{L_{\alpha_i} \times R_{\alpha_i}:$ $\alpha_i \in \Gamma_i\}$. We identify each E_i with $\Sigma\{L_{\alpha_i} \times R_{\alpha_i}: \alpha_i \in \Gamma_i\}$. To construct the free product of the E_i , we can assume without loss of generality that $E_i \cap E_j = \Box$ if $i \neq j$, and we assume $\bigcup\{L_{\alpha_i}: \alpha_i \in \Gamma_i, i \in I\} = L$, say, and $\bigcup\{R_{\alpha_i}: \alpha_i \in \Gamma_i, i \in I\} = R$, say, are both disjoint unions. Let $\Gamma = \{(\alpha_i)_{i\in I}: \alpha_i \in \Gamma_i^{(1)}, \text{ only finitely many but at least one <math>\alpha_i$ are different from 1}. For convenience, we write simply (α_i) instead of $(\alpha_i)_{i\in I}$. Let B be the subset of $L \times R \times \Gamma$ consisting of $(a, b, (\alpha_i))$ such that $a \in L_{\alpha_j}$ and $b \in L_{\alpha_k}$ for some $\alpha_j \neq 1$ and $\alpha_k \neq 1$ of (α_i) . Hereafter, we sometimes denote such $(a, b, (\alpha_i))$ by $(a, b, (\alpha_i; j, k))$. By $e(\alpha_i)$ and $f(\beta_j)$, we mean elements e and f of L_{α_i} and R_{β_i} respectively. Define a product o on B as follows:

$$(a, b, (\alpha_i; j, k))o(c, d, (\beta_i; m, n)) = (a \cdot e(\alpha_j \beta_j), f(\alpha_n \beta_n) \cdot d, (\alpha_i \beta_i)).$$

At first, we shall show that o is well-defined. Let e' and f' be another elements of $L_{\alpha_j\beta_j}$ and $R_{\alpha_n\beta_n}$, respectively. Since $L_{\alpha_j\beta_j}$ is a left zero semigroup and L_i is left normal, we have

$$ae = aee' = ae'e = ae'.$$

Similarly, we have fd = f'd. Hence the product *o* is well-defined.

We shall next prove B(o) is a normal band. Let $x_1 = (a_1, b_1, (\alpha_i; j, k))$, $x_2 = (a_2, b_2, (\beta_i))$ and $x_3 = (a_3, b_3, (\gamma_i; m, n))$ be any elements of B. Since L_{α_i} and R_{α_i} are a left zero semigroup and a right zero semigroup, respectively, and Γ_i is a semilattice, $i \in I$, we have

$$\begin{aligned} x_1^2 &= (a_1 \cdot e(\alpha_j^2), f(\alpha_k^2) \cdot b_1, (\alpha_i^2)) \\ &= (a_1, b_1, (\alpha_i)) \\ &= x_1, \\ (x_1 o x_2) o x_3 &= (a_1 \cdot e(\alpha_j \beta_j \gamma_j), f(\alpha_n \beta_n \gamma_n) b_3, (\alpha_i \beta_i \gamma_i)) \end{aligned}$$

and

$$= x_1 o(x_2 o x_3),$$

and

$$=((x_1 o x_3) o x_2) o x_1.$$

 $((x_1 o x_2) o x_3) o x_4 = (a_1 \cdot e(\alpha_i \beta_i \gamma_i), f(\alpha_k \beta_k \gamma_k) \cdot b_1, (\alpha_i \beta_i \gamma_i))$

Hence B(o) is a normal band.

THEOREM 2.1. (i) Let E_i , $i \in I$, be a family of normal bands, and let Γ_i , $i \in I$, be the structure semilattice of E_i . Then B(o) is the free product of the E_i , in the variety of normal bands.

(ii) The structure semilattice of B(o) is isomorphic to the free product of the Γ_i , in the variety of semilattices.

PROOF. We shall use the notations defined above. Let $\phi_i: E_i \rightarrow B, i \in I$, be mappings defined by

$$(a, b)\phi_i = (a, b, (\hat{\alpha}_i))$$
 if $(a, b) \in L_{\alpha_i} \times R_{\alpha_i}$

where $(\hat{\alpha}_i)$ is the element of Γ with the *i*-th entry equal to α_i and others equal to 1. It is clear that each ϕ_i is a monomorphism, $i \in I$.

Let T be any normal band, and let $\psi_i: E_i \to T$, $i \in I$, be any homomorphisms. Let us define a mapping $\mu: B \to T$ as follows: For an element $(a, b, (\alpha_i; j, k))$ in B such that only $\alpha_j, \alpha_k, \alpha_{r(1)}, \alpha_{r(2)}, \dots, \alpha_{r(n)}$ are not

equal to 1,

$$(a, b, (\alpha_i; j, k))\mu = ((a, c)\psi_j)((g_1, h_1)\psi_{r(1)})((g_2, h_2)\psi_{r(2)})$$
$$\times \cdots ((g_n, h_n)\psi_{r(n)})((d, b)\psi_k),$$

where $c \in R_{\alpha_j}$, $d \in L_{\alpha_k}$ and $g_s \in L_{\alpha_{r(s)}}$, $h_s \in R_{\alpha_{r(s)}}$ for s = 1, 2, ..., n.

Since T is normal and each ψ_i , $i \in I$, is a homomorphism, μ is a homomorphism satisfying $\phi_i \mu = \psi_i$, $i \in I$. It is clear that $B = \langle \bigcup \{E_i \phi_i : i \in I\} \rangle$, and hence B(o) together with the ϕ_i is the free product of the E_i , in the variety of normal bands. Thus we have (i).

The later statement of the theorem is obvious.

COROLLARY 2.2. Let L_i , $i \in I$, be a family of left normal bands whose structure decompositions are $L_i \sim \Sigma\{L_{\alpha_i}: \alpha_i \in \Gamma_i\}$. Let $L = \bigcup \{L_{\alpha_i}: \alpha_i \in \Gamma_i, i \in I\}$, and let Γ be as defined above. Set

$$E = \{(a, (\alpha_i; j)) \in L \times \Gamma : a \in L_{\alpha_i}, \alpha_i \neq 1\}.$$

We define a product o on E as follows:

$$(a, (\alpha_i; j))o(b, (\beta_i; k)) = (a \cdot e(\alpha_j \beta_j), (\alpha_i \beta_i; j))$$

Teruo Імаока

Then E(o) is the free product of the L_i , in the variety of left normal bands. Moreover, the structure semilattice of E(o) is isomorphic to the free product of the Γ_i , in the variety of semilattices.

COROLLARY 2.3. Let \mathscr{A} be the variety of [left, right] normal bands. Let E_i , $i \in I$, be a family of [left, right] normal bands, and let B together with the monomorphisms ϕ_i be the free product of E_i , in the variety of [left, right] normal bands. If F_i is a subband of E_i , $i \in I$, then

$$\langle \{F_i\phi_i: i\in I\}\rangle \simeq \Pi^*F_i$$

PROOF. It is clear that the corollary follows from the structure of the free product in \mathscr{A} .

References

- A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Amer. Math. Soc., Providence, R. I., Vol. I (1961), Vol. II (1967).
- [2] D. McLEAN, Idempotent semigroups, Amer. Math. Monthly 61 (1954), 110-113.
- [3] M. PETRICH, A construction and a classification of bands, Math. Nach. 48 (1971), 263– 274.
- [4] G. B. PRESTON, Inverse semigroups: some open questions, Proceedings of a symposium on inverse semigroups and their generalizations, Northern Illinois University, 1973, 122–139.
- [5] N. R. REILLY and H. E. SCHEIBLICH, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349–360.
- [6] M. YAMADA, The structure of separative bands, Doctoral dissertation, University of Utah, 1962.
- [7] M. YAMADA and N. KIMURA, Note on idempotent semigroups II, proc. Japan Acad. 34 (1958), 110-112.