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This is a supplement to the previous papers [8], [9] and [10]. In [8], [9] and [10],
the concept of a complete regular product S of a band B and an inverse semigroup I,
and the concept of a half-direct product T of a left regular band E, an inverse semi-
group I'’ and a right regular band F were introduced. In this paper, we first show
that a semigroup M is inversive [quasi-(C)-inversive] if and only if M is isomorphic to
a complete regular product of a band and a weakly C-inversive semigroup [a half-di-
rect product of a left regular band, a weakly C-inversive semigroup and a right
regular band]. If in particular I" and I'’ are weakly C-inversive, both the spined
product of B, I' and that of E, I'’, F can be considered. When I" [I"'] is weakly C-
inversive, we investigate the relationship between the complete regular products of
B, I' and the spined product of B, I' [the half-direct products of E, I'’, F and the
spined product of E, I'’, F].

§0. Introduction.

Hereafter, the notation “‘an inversive semigroup!) G=3>{G,: yeI'}” will mean
an inversive semigroup G whose structure semilattice is I" and whose structure decom-
position is G~ 22{G,: yeI'} (see [5]). Since a band is inversive, “a band G=3{G,:
yeI'}’ means a band G whose structure semilattice is I" and whose structure decom-
positionis G~ > {G,:yel'}. Ifaband Thas K as its structure semilattice, T is some-
times denoted by T(K). Similarly, an inverse semigroup M having N as its basic
semilattice (see [5]) will be sometimes denoted by M(N). Now, let I'(A)=X{I';:
Ae A} (where A is the basic semilattice (=the structure semilattice) of I' and each I',
is the greatest subgroup containing A) be a weakly C-inversive semigroup (that is, an
inverse semigroup which is a union of groups), and B(4)=>.{B,: Ae A} a band. Of
course, each A-kernel B, (see [5]) is a rectangular bubband of B. Let I, be a maximal
left zero subsemigroup of B,, and J; a maximal right zero subsemigroup of B,. Then,
as was shown in [9], U{I,: Ae A} and U {J,: A€ A} are a lower partial chain of the left
zero semigroups {I,: Ae A} and an upper partial chain of the right zero semigroups
{J,: A e A} respectively with respect to the multiplication in B. We shall denote these
lower partial chain U {I;: A€ A}, upper partial chain U{J;: Aed} by £#=(I,: 1e 4],

1) A regular semigroup G is said to be inversive if the set of idempotents of G is a subsemigroup and
if for any element a of G there exists an inverse a* of a such that aa*=a*a.
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F=[J,: Ae A) respectively. Let u, be a representative of B, for each leA. By
[7], each element x of B can be uniquely expressed in the form x=iu,j, iel,, jeJ,,
Ae, and B is written in the form B={iu,j: Ae A, iel,,jeJ,}. Let {u,: Aed}=U.
Then, the following result follows from Warne [3] (also the author [9]): For each
pair (y, 8) of y,0€erl, let a, s, B(,s be mappings such that o, s5: J,-1,xI55-1—
Lsiysy-12) and B, syt Jy-1y X Lss-1=J (y)-1,6.  If the system Ad={o, 52y, 6 €T} U {B, 5
y, 6 € T'} satisfies the condition

(Cl) fOl‘jEJ,,-xy, pelaa—l, qu&—la, 11161&—1

02 P)Of(y,a)((ja P)ﬁ(y,a)q, m)“(ya,g)=(j, p((q, m)a(a,g))“(y,ag)

and

(J, (g, m)“(é,é)))ﬁ(y,ag)(q, m)ﬁ(.s,g) =((, P)B(y,a)q, m)ﬁ(ya,g),

then S={(i, y, j):yel,iel,,-1, jeJ,-1,} becomes an orthodox semigroup (see Hall
[2]) with respect to the multiplication defined by

(ia Vs ])(Il, 5, k)=(l((.]’ h)oc('y,é))y '})5, (.]5 h)ﬁ(y,a)k)'

Further, it follows from the author [9] that if the subset Q={oy: &, 1€ A} U {Bsp:
&, ne A} of A satisfies the condition

(C 2) u}jkut = ((j’ k)oc(l,t))ult((jy k)ﬂ(/’l.,r)) fOI’ /19 TE Aa j € Jﬂ.’ k € I‘t ’

then B is embedded as the band of idempotents of S.

In this case, S is called the complete regular product of B(A) and I'(A) determined
by {#, 7, {u,}, 4}, and denoted by C(I'(A4), B(A); £, £, {u}, {0y.5}> Bu.at) We
shall call 4 (whose subset Q satisfies (C2)) above a CR-factor set in B={iu,j: Ae A,
iel,, jeJ,} belonging to I'(A) (see [10]). In[9], it has been shown that every regular
extension of B(A) by I'(A) can be obtained as a complete regular product of B(A)
and I'(A) (up to isomorphism). Since I'(4)= > {I';: A€ A} is weakly C-inversive (hence
each I', is a group), we can consider the spined product B>II" (4) (see [5]) of B(A)
and I'(A) with respect to A. In this paper, we shall show a necessary and sufficient
condition on {u;5:7, 0€I'}U{B35:y, 0€l} in order that C(I'(A), B(A); & ¢
{3}, {0p.0))> {Bey,5))) e isomorphic to BT (4).

Next, let E(A)=2{E;: Ae A}, F(A) =Y .{F,: A€ A} be a left regular band, a right
regular band (see [7], [8]) respectively. The concept of a half-direct product (abbrev.,
an H.D-product) of E(A), I'(A) and F(A) was introduced by the author [8] as follows:

2) If G is an inversive semigroup, then for each element x of G there exists a unique inverse x* of x /
such that xx*=x*x. This x* is denoted by x~%. If G is in particular a weakly C-inversive semi-
group, then G is of course an inverse semigroup and hence x~! is 2 unique inverse of « for each x&G
(see [1]). The notation “p: X— Y means “¢p is a mapping of X into ¥”.
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Let ¢: I'->End(E) (where End(E) is the semigroup of all endomorphisms on E),
¥ : '-End (F) be two mappings, and put y¢=p,, yW=0c, for all yelI'. If {p,:yel},
{o,: y eI} satisfy

(C3) each p, [0,] maps E, [F,] into E - 14)[Fy)-14,] for all ae A; especially, p,
[o,] is an inner endomorphism (see [8]) on E [F] for ye 4,

and
(C 4) fOI‘ any ee Eﬁ" lﬁ [Fﬁ" 1ﬁ]’ fE E(aﬁ)' laB[F(aﬂ)_ ldﬂ] )
PaPpd ;0= Pud 0, [0,046 10, =046 0,]

where J, denotes the inner endomorphism on E [F] induced by & (see [8]), then M=
{(e,;y,f):vel, ecE, -1, feF,-1, (=F,,-1)} becomes a quasi-inverse semigroup with
respect to the multiplication defined by

(€5 (e, v, ), T, v)=(eurr=te, yt, vf =v)=(eurr-1, y1, f o),

where x?-1[x°<] means xp,-1i[xo,].
(See Theorem 6 of [8]).

This M is called the half-direct product (the H.D-product) of E(A), I'(A) and F(A)
determined by {¢, ¥}, and denoted by ExI' x F. If the band of idempotents of an

inversive semigroup H is a regular band %seg [8]), then H is said to be quasi-(C)-
inversive. We shall show in §2 that a semigroup is a quasi-(C)-inversive semigroup
if and only if it is isomorphic to an H.D-product of a left regular band, a weakly C-
inversive semigroup and a right regular band. On the other hand, we can consider
the spined product EDII'DF (A4) of E(A), I'(A) and F(A)®. In §2, we shall give a
necessary and sufficient condition on {¢, Y} in order that Ex I'x F be isomorphic to
EDIIIIF (). Y

Throughout this paper, I'(A)={I;: Ae A}, B(A)={B,;: Ae A}, E(A)=3{E,:
Aed}, F(A) =2 {F,: Ae A} will denote a weakly C-inversive semigroup, a band, a
left regular band, a right regular band respectively (their structure decompositions are
r(A)~ > {I';: Ae A} (A: the basic semilattice (=the structure semilattice) of I'; each
I, is the greatest subsemigroup containing A), B(A)~ X {B,;: Ae A}, E(A)~ > {E,:
Aed} and F(A)~ Y. {F,: AeA}). For each Ae A, I,, J, will denote a maximal left
zero subsemigroup of B, a maximal right zero subsemigroup of B, respectively. Let
#, ¢ be the lower partial chain of {I,: 1€ A}, the upper partial chain of {J,: Ae 4}
(with respect to the multiplication in B). Hence, #=(I;: 1eA) and #=[J,: le

3) Let A;(A)=%{44:2€4} (i=1,2,..., n) be an inversive semigroup having 4 as its structure semilat-
tice. Then, A= {[ay, ay,..., a,]: a;€4} (i=1,2,...,n), A€ A} becomes a semigroup with respect to
the multiplication defined by [ay, a,..., az] [b1, bs,..., by]l=[a1by, asbs,..., a,b,]. This 4 is called
the spined product of 4;(4), 4,(4),..., 4,(4), and denoted by A;><A,[><---><] 4, (4).
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A). Any other notation and terminology should be referred to [5], [8] and [9], unless
otherwise stated.

§1. Complete regular products.

Let S=C(I'(A), B(A); 2, 7, {u,}, {06} 1B,5}) be the complete regular prod-
uct of B(A) and I'(A) introduced in §0. Let B* be the set of all idempotents of S.

LemmA 1. S is an inversive semigroup.

Proor. The set B* of all idempotents of S is {(i, 4, j): e d,iel,, jeJ,}.
It is obvious from Lemma 5 of [9] that B* is isomorphic to B. Hence, B* is a band.
For any element (h, y, k)€ S, the element (h, y~1, k) is an inverse of (h, y, k) and
satisfies (h, y, k) (h, y~1, k)=(h, y~1, k)(h, y, k) (since for any element y of I" the equal-
ities ypy~t=9y"1y and (y~!)~! =y are satisfied in I'). Therefore, S is an inversive semi-
group.

THEOREM 2. A semigroup is inversive if and only if it is isomorphic to a com-
plete regular product of a band and a weakly C-inversive semigroup.

Proor. The “if” part is obvious from Lemma 1. Let T be an inversive semi-
group, and 7 the least inverse semigroup congruence (see [2], [6]) on'T. Let A4 be the
band of idempotents of 7. Then, it follows from §6 of [9] that T is isomorphic to a
complete regular product of A and T/n (where T/n denotes the factor semigroup of T
mod 7). Since T is a union of groups and since Ty is a homomorphic image of T,
the factor semigroup T/y is also a union of groups. Hence, T/y is a weakly C-inversive
semigroup.

According to [4], S is isomorphic to the spined product B*P<IC (A) of the band
B*(A) and a weakly C-inversive semigroup C(A) if and only if S is strictly inversive,
that is, S satisfies the following condition (1.1).

(1.1) e, fe B¥, xe 8, xx"1=e, f<e imply xf=fx.
By using this fact, we have

THEOREM 3. S is isomorphic to the spined product BD><}IC (A) of the band B(A)
and a weakly C-inversive semigroup C(A) if and only if the CR-factor set A={a, s:
y, 6 €T} U {P(;5): 7, 0 €I} satisfies the following (1.2):

1.2) yel,Aed, yy~t=p=A,iel, jel, imply
a(y’l)1i=a(”,l)li on Jﬂ X iIl, and

Bamvi=Bamvion Jajx1,
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where L, v; are the left multiplication by i and the right multiplication by j respec-
tively®.
Further, in this case I'(A) can be selected as C(A).

PrOOF. Suppose that S is isomorphic to the spined product B><IC (4) of the band
B(A) and a weakly C-inversive semigroup C(4). Then, it follows from [4] that S is
strictly inversive. Letyel, Aed, yy"*=p=A,iel,and jeJ,. For any idempotent
(ua '19 U)GB*9 (ls K, ])(lu, Aw D])=(l((], iu)a(u,}.))a )'9 ((]: iu)ﬂ(y,}.))vj)=(i((ja iu)a(u,).)), /"-9
vj). On the other hand, i(u,jivuy)=i((j, iu)ot, i)t a(j, i)B,. Hence, iu=i((J,
i), ). Therefore, (i, u, j)(iu, A, vj)=(iu, 4, vj). Similarly, we have (iu, 4, vj)(i,
u, j)=C(iu, A, vj). Since S is strictly inversive and since (i, y, j)~* =(i, y~1, j), the equal-
ity (iu, A, vj)(i, y, )=, 7, j)(iu, A, vj) holds. Hence, (iu, Ay, (vj, B, ,»))="{(u, 4,
v, v, =i, v, P)(iu, A, v))=(i((j, i), 2), Y4, 0f), and hence i((j, iu)o,, 2))=iu and
((vj, DBy)i=vj. Thatis, the condition (1.2) holds. In this case, if we put {(i, 7, ) €
S:iel,, jed, yel with ypy"1=2}=S, for each 1€ A then each S, is a rectangular
group (that is, the direct product of a rectangular band and a group) and S is a semi-
lattice A of rectangular groups S;. Let B} be the set of idempotents of S;,. Then,
the structure decomposition of B* is clearly B*~ > {B%: Ae A}. It follows from the
proof of Theorem 4 of [4] that the relation & on S defined by

(1.3) x&y if and only if x, ye€ S, and x~'y e Bf for some 7€ 4

is a congruence on S, and S is isomorphic to the spined product of B*(A) and S/&(A).
Now, for x=(i, y, j), y=(h, 9, k) it is easily seen that

(1.4) @i, 7, )&h, 8, k) if and only if y=6.

Hence the mapping ¢: S/é—I'(A) defined by (i, y, ))p=y is an isomorphism, where
(i, 7, j) denotes the ¢-class containing (i, , j). Since B2 B* (where =~ means ‘‘isomor-
phic”) and since S/¢=T'(A), S is isomorphic to the spined product B><II" (4).
Conversely, suppose that S=C(I'(4), B(A); £, 2, {u}, {045} {Be.5)) satisfies
the condition (1.2). If S is strictly inversive then S is isomorphic to the spined product
of B*(A) and a weakly C-inversive semigroup C(A) (Theorem 4 of [4]). Hence, in
this case S22 B><IC (A) since B*~B. Therefore, we next prove that S is strictly inver-
sive. Let (i, 9, j)€S, (u, 4, v) e B¥ be two elements such that (i, y, j)(i, y~%, )=,
yy~1, )=(u, 4, v), and put yy~t=p. Then, A<y, iel, and jeJ,. Now, (i, y, j)u,
A, 0)=(i((J, W)ty 2), ¥4, v) and (u, 4, v)(i, y, )=(u, by, ((v, DP,y)J).- On the other
hand, (u, 4, v)=C(i, p, )1, 4, V)=(((j, W)ot(,2)s 4 v) and (u, 4, vV)=(u, 4, V)(i, p, )=
(s A (v, D)Beaw) ). Since i((f, u)e,,2)=u and (v, )B,u)Jj=0, it follows that iu=u
and vj=v. Hence by (1.2), i((j, i)y, z) =i((j, iu)o, ) =1u=u and ((vj, DB,»)i=
(W), DB m)i=vi=v. Since yA=Ay, this implies that (i, y, ) u, 4, v)=(u, y4, v)=

4) That is, 4;, v; are mappings such that x4; =ix and xv;=xj.
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(u, 4, v)(i, v, ).
From the theorem above, we obtain the following result.

CoRrROLLARY 4. If in particular B(A) is a normal band®, then a complete
regular product of B(A) and TI'(A) is uniquely determined up to isomorphism and is
isomorphic to the spined product of B(A) and I'(A).

Proor. We need only to show that for any complete regular product §= C(I'(A),
B(A); # 7 {u;}s {446} {Bp.s}) of B(A) and I'(A) the system A={a,;:y, €I} U
{B.5): v, 0€T'} necessarily satisfies the condition (1.2). Let yel, Aed, yy 1=
uzl iel,andjeJ, Foreel,, we have il,=il,e=iel,e (by the normality of B(A))
=ie. Similarly, for feJ, we have J;j=fj. Therefore, each of il, and J,j consists of
a single element. Hence, 4 satisfies the condition (1.2).

REMARK. The spined product BD<IT" (A4) of a band B(A) and a weakly C-inversive
semigroup I'(A) is always isomorphic to some complete regular product of B(A) and
I'(A4). Infact:

{Bl><ll” (Ad)={[e, y]: eeB,, yel,, Ae A}, and

(1.5) the multiplication in BIXIT" (4) is given by

Le, y1Lf, 61=Lef, yd]

Let u, be a representative of B, for each A of 4. For ee B, e is uniquely expressed in
the form e=e'ue”, e A, e’ el,, e"eJ,. In this case, we shall denote ¢’, e” by ¢, e,
respectively. Hence, e=eju e, (=ee,). Now, for each pair (4, t) of 4, te 4, define
mappings o 2 J, x I,—1I, and B, ,: J, xI,—J,, by

uy fhu,=((f, h)a(/'l,t))ult((j; h)ﬁ(z,r)) for feJ, hel,.

Then, for e=ee,€B,, f=ff,eB, we have ef=efe, f)otntiler HBunf Next,
for y, 6e T, define mappings o, ), B(y5 DY 05 =0uy-1,55-1) and B, 5= Byy-1,56-1)-
Then, Ad={0,5:7,0€l}U{Bs:7, €I} becomes a CR-factor set in B={iu,j:
iel,, jeJ,, AeA} belonging to I'(A). Hence, we can consider the complete regular
product C(I'(A), B(A); £, 2, {u;}, {05} {Bua)=A4. If we define a mapping
@: A—-BDT (A4) by (e, v, e,)p=1[ee,, ], then it is easily verified that ¢ is an isomor-
phism. Hence, BD>XII (4) is isomorphic to the complete regular product A.

5) A band is said to be normal [left normal, right normal] if it satisfies the identity x xavy,=1x;¥5%5%,
[12093g=2125%g, #1295 =Xa%1X5]-
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§2. H.D-products.
Let M=ExI'x F be the H.D-product of E(A), I'(A) and F(A) introduced in §0.
[
Let V be the set of all idempotents of M.

LEMMA 5. A semigroup is quasi-(C)-inversive if and only if it is isomorphic to
an H.D-product of a left regular band, a weakly C-inversive semigroup and a right
regular band.

ProOF. By [8], M=E x I x F is a quasi-inverse semigroup. Since I'(4) is a union

of groups, it is easily proved that M is inversive. Hence, M is a quasi-(C)-inversive
semigroup. From this result, it follows that if a semigroup A is isomorphic to an
H.D-product of a left regular band, a weakly C-inversive semigroup and a right regular
band then A is quasi-(C)-inversive. Conversely, assume that a semigroup 4 is quasi-
(C)-inversive. Then, 4 is of course a quasi-inverse semigroup. Hence, it follows from
[8] that if ¢ is the least inverse semigroup congruence on A then 4 is isomorphic to an
H.D-product of a left regular band, A/¢ and a right regular band. Since A/¢ is a homo-
morphic image of 4 and since 4 is a union of groups, 4/¢ is also a union of groups.
Therefore, A/ is a weakly C-inversive semigroup.

Next, consider the spined product of E(A), I'(A) and F(A):
JEMFNF (A)={[e, y,fl:7eTl,, ecE,, feF;, Ae A},

2.1) and the multiplication in ED<IT' DX F (4) is given by

[e: Vs f][u, 69 v]=[eu, y(ss fU] .

For each Ae A, let e,, f, be representatives of E,, F, respectively. Define mappings
@,: T—End(E), ¢,:—End(F) by y¢,=0., _,792=0s,,_, respectively, where
d.,[6,,] denotes the inner endomorphism on E [F] induced by e, [f;]. Foreach ye
I, put yp,=p, and yp,=0,. Then, it is easy to see that each of the systems {p,:vel}
and {o,: yeI'} satisfies (C3) and (C4). Accordingly, we can consider the H.D-
product E><F><F For any (e, y, f), (u, 9, v)eExeF (e, v, f)(u, 8, v)=(eu?r-1,
y5, foev)= (eew-lue ~1, V0, fs5-1ffs5-10)=(eu, y9, fv) Hence @: EDII'D]F (A)—»
ExI'xF defined by [e, y, f19=(e, y, f) is an isomorphism. From this result, w

ca(;lsa(gzzthat the spined product of E(A), I'(A) and F(A) is isomorphic to an H.D-product
of E(A), I'(A) and F(A). Conversely, next we shall investigate about necessary and
sufficient conditions on {¢, Y} in order that M=E >; I’ x F be isomorphic to the spined

product EDITDXF (4). v
LEMMA 6. M is strictly inversive if and only if it satisfies the following (2.1):

(2.1) yel,Ae A, yyt=pu=A, icE, jeE, imply



8 Miyuki Yamapa

p,A;=the identity mapping on iE,, and
o,v;=the identity mapping on F,j.

ProoF. Assume that M is strictly inversive. Let yel, Aed, yy~l=p=A,
i€E, and jeF,. For an element (u, 4, v)e M, (iu, A, vj)(i, g, j)=C(iu, A, vj). Simi-
latly, (i, p, j)(iu, 4, vj)=(iu, 4, vj). Since M is strictly inversive, we have (i, v, N(iu,
A v))=(iu, 4, vj)i, y, j). Therefore, we have (i(iu)*v-1, pi, ( Jo)vj)=(iu(ir+), Ay,
(v)°7j), whence i(iu)?-1=iu and (vj)°»j=vj. That is, p,-14;=the identity mapping
on iE,, while ¢,v;=the identity mapping on F,j. Since y~ly=yy~1, it follows that
p,A;=the identity mapping on iE, and o,v;=the identity mapping on F,j. Thus, the
condition (2.1) holds.

Conversely, assume that M satisfies (2.1). Let (u, 4, v), (i, u, j) be idempotents
of M such that (u, A, v)(i, u, )=, u, j)u, 4, v)=(u, 4, v), and (¢, y, s) an element of
M such that (t,y,s)t, v, )" =(i, u, j). Since (uirs, A, v j)=(iurs, pl, jorv)=
(u, 4, v), we have A<y, u=iure and v°«j=v. Further, (1,7, s)t, 7, ™ t=(, u, j)
implies yp~t=p>1. Hence by (2.1), p,A;=the identity mapping on iE; and o,v;=
the identity mapping on F,j. Since iu=u and vj=v, we have also iu=i(iurv)=
i((iu)«) and vj=(vj)°«j. The equality (1, y, s)t, y~1, s)=(i, u, j) implies (ttor-1,
7771 s9v-15)=(i, p, j), and hence (t, u, s)=(i, u, j). That is, (1,7, s)=(i,y, j). From
this result, it follows that (i, y, ))(u, 4, v)=(iurr-1, yA, jeav)=(iurr-1, yi, v)=(i(iu)rr-+,
Y4, ©)=(i(iu), yA, v)=(iu, yA, v)=(u, yA, v). Similarly, (u, A, v)@i, 7, D=, Ay, v).
Since y=yl is satisfied, the equality (i, y, j)(u, A, v)=(u, 1, v)(i, 7, j) holds. Hence,
M is strictly inversive.

THEOREM 7. M is isomorphic to the spined product of a regular band and a
weakly C-inversive semigroup if and only if it satisfies (2.1). Further, in this case
M is isomorphic to ED]ITDXIF (A).

Proor. If M satisfies the condition (2.1), then it follows from Lemma 6 that M
is strictly inversive. Hence, in this case M is isomorphic to the spined product of the
regular band V (the band of idempotents of M) and a weakly C-inversive semigroup
T (Theorem 4 of [4]). It is also easily seen that V2 ED<IF (4). For each Ae A, put
M,={(h,y, k): yy"*=A,yel, heE,,-1, ke F,,-1}. Then, the structure decomposi-
tion of M is M~ 3 {M,: Ae A}. If we define a relation & on M by

2.2) for any (h, y, k), (u, 6, v)e M, (h, y, k) & (u, 6, v) if and only if
(h, y, k), (u, 6, v)e M, and (h, y, k)(u, 8, v)~! € E(M,) for some LeA,
where E(M,) is the set of idempotents of M,

then M= EDIM/EDIF (A) follows from the proof of Theorem 4 of [4]. On the
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other hand, it is easily proved that (h, y, k) ¢ (u, 8, v) if and only if y=9J. Hence, @:
M/|E-T defined by (h, y, k)®@=1y, where (h, y, k) is the &-class containing (h, y, k), is
an isomorphism. Hence M/é=T, and accordingly M=~ ED<II' D F (A).

Conversely, if M is isomorphic to the spined product of a regular band and a
weakly C-inversive semigroup then M is clearly strictly inversive (Theorem 4 of [4]).
Hence, in this case it follows from Lemma 6 that M satisfies the condition (2.1).

CoROLLARY 8. If in particular E(A), F(A) are a left normal band, a right
normal band respectively, then an H.D-product of E(A), I'(A) and F(A) is uniquely
determined up to isomorphism and is isomorphic to the spined product of E(A), I'(A)
and F(A).

Proor. We need only to show that for any H.D-product ExI' x F, {¢, Y}

(hence, {p,:yeI'} U{o,: yeI'}, where p,=7¢ and o,=7y) satisfies the gonc'lpition (2.1).
For u, A, e, f, i such that A, pe A, p=4, i€E, and e, fe E;, we have ie=ief=ife=if.
Hence, iE, consists of a single element. Therefore, p,A;,=the identity mapping on
iE, if yy~t=p. Similarly, o,v;=the identity mapping on F,j if je F,, p=24, yerl,
W l=p.

§3. Special cases.

In [8], the concept of an L.H.D-product of a left regular band and an inverse
semigroup [an R.H.D-product of an inverse semigroup and a right regular band]
has been introduced. For L.H.D-products and R.H.D-products, we can obtain the
following results in the same manner as we established Theorem 7 and Corollary 8.

THEOREM 9. An L.H.D-product ExT [an R.H.D-product I' x F] is isomorphic

¢ ¥
to the spined product of a left regular band and a weakly C-inversive semigroup
[a weakly C-inversive semigroup and a right regular band] if and only if it satisfies
the following (3.1):

3.1 yel,Ae A, yy"i=pzA, icE, imply
p,A;=the identity mapping on iE,, where p,=7¢.
[yel,Aed, yyt=p=A, jeF, imply
o,v;=the identity mapping on F,j, where o,=y}y].

Further, in this case Ex ' EDII (A) [ x F=I'D<F (4)].
¢ v

CorOLLARY 10. If E(A) [F(A)] is a left normal band [a right normal band],
then an L.H.D-product of E(A) and I'(A) [an R.H.D-product of I'(A) and F(A)] is
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uniquely determined up to isomorphism and is isomorphic to the spined product of
E(A) and I'(A) [I'(A) and F(A)].

ExAmPLE. Let Q and K be the weakly C-inversive semigroup and the band given
by the multiplication tables (D 1) and (D 2) respectively. The basic semilattice IT of
Q consists of two elements 0, 1, and the structure decomposition of Q is Q~ 3 {Q,:
AelIl}, where Q,={0} and Q,={1, y}. On the other hand, the structure decomposi-
tion of Kis K~ > {K,: AeIT}, where K,={e, f}, K;={1}. K is clearly a right regular
band. Now, QD<K (II)={[0, €], [0, 1, [1, 1], [y, 11}. Let 64, 6, be the inner

Q 0 1 K e f 1
0|01 0] O0 el e | f| e
1o 1]y Sflel|f|f
Y0y |1 1le| f|1

D 1) (D 2)

endomorphisms on K(II) induced by 0, 1, and ¢, an endomorphism on K(II) such
that o, maps 1, e, fto 1, f, e respectively. Define ¢: @—End (K) by tp=p, (z=0, 1, y).
Since {g, 0, 0,} satisfies (C3) and (C4), we can consider the R.H.D-product 2 x K.

Of course, 2xK={(0, e), (0, ), (1, 1), (y, 1)}. However, 2xK is not str(fctly

inversive. In fact: (1, 1)>(0, ¢) and (y, 1)y, 1)~ =(1, 1), but (0, &)y, 1)=(y, e*)=
0, /)#(0, )=(0, 1°0e)=(y, 1)0, ¢). Hence, 2x K£Q><K (II). Thus, we can say
@

that an R.H.D-product of a weakly C-inversive semigroup C and a right regular band
R is not necessarily isomorphic to the spined product of C and R.
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