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1 Introduction

The damped linear oscillator
X' +at)X +w’x=0 (L)

is one of the most famous models which describe a number of physical phenomena. Here,
the prime denoted/dt, the spring constar is positive, the damping coefficieaft) is
continuous and nonnegative fior 0. This model has been researched from many angles in

a wide range of fields which covers pure science, applied science, and technology. Needless
to say, in this model, the damping force is assumed to be proportional to the velocity in this
model. However, in specific types of phenomena, this assumption is not necessarily suitable.
For example, in fluid mechanics, it is well known that the air resistance is approximately
proportional to the square of the velocity. A model of viscosity in which the damping force

is proportional to the square of the velocity is calidewtonian damping

When a small fishing vessel is on still water, the extinction of free rolling motion is
caused by wave and vortex that occur because of the rolling of the vessel. The damping
forces are called wave resistance and eddy-making resistance, respectively. Besides, it is
thought that resistance of the friction works in the rolling motion of the vessel. The wave
resistance is said to be proportional to the angular velocity. On the other hand, the eddy-
making resistance and the frictional resistance are said to be proportional to the square of the
angular velocity. Hence, the damping term is regarded as a function of the angular velocity.
In the latter half of the 19th century, the expressions of such a function were first given
by William Froude who was an English engineer and by LdEnsile Bertin who was a
French naval engineer. Afterwards, by experiments, a lot of engineers examined causes that
influence the extinction of free rolling motion (for example, see [4,5, 7,10, 12,19, 24, 30]).
Because analysis is difficult, in most cases, damping coefficients of the function is assumed
to be constants.

Since Eq.K) is very simple, it may be difficult to apply it to a specific model such as
Newtonian damping. We intend to establish an attenuation criterion which is applicable even
to physical models with Newtonian damping. For this purpose, we consider the second-order
differential equation

X' +a(t)@(X) + w’x =0, (E)

and present a necessary and sufficient condition for the equilibriurg)aio(be globally
asymptotically stable. In EgE], the damping coefficier#(t) is continuous and nonnegative
for t > 0 and the functiory(z) is defined by

w2 =122  zeR

with g > 2. It is clear that the only equilibrium of) is the origin(x,x') = (0,0). Eq. E)
naturally contains EqL{ as the special case in which= 2. Sinceq > 2, we call Eq.E) a
damped superlinear oscillator

Letx(t) = (x(t),X(t)) andxo € R?, and let]| - || be any suitable norm. We denote the so-
lution of (E) through(to, Xo) by X(t;to, Xo0). The global existence and uniqueness of solutions
of (E) are guaranteed for the initial value problem.

The equilibrium is said to bstableif, for any € > 0 and anytg > O, there exists a
d(&,t0) > 0 such that|xo|| < d implies ||x(t;to,%0)|| < € for all t > to. The equilibrium is
said to beattractiveif, for any tog > 0, there exists & (tp) > 0 such that|xe|| < & implies
|IX(t;to,%0)|| — O ast — 0. The equilibrium is said to bglobally attractiveif, for anyty > 0,
anyn > 0, and anyxo € R?, there is aT (tg,17,X0) > 0 such that|x(t;to,xo)|| < n for all
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t > to+ T(to,N,X%o). The equilibrium isasymptotically stabléf it is stable and attractive.

The equilibrium isglobally asymptotically stabli it is stable and globally attractive. With
respect to the various definitions of stability, the reader may refer to the books [2, 6, 8, 9, 13,
14, 23,27, 31] for example.

Stability and attractivity are local properties of the equilibrium. In general, the equi-
librium is not always globally attractive (resp., globally asymptotically stable) even if it is
locally attractive (resp., locally asymptotically stable). However, it is correct in the linear
differential equations such as Ef)( The research of the (global) asymptotic stability is
one of the qualitative theoretical main themes of the differential equation. A large num-
ber of papers has been devoted to find sufficient conditions and/or necessary conditions for
the asymptotic stability ofL() and more general equations (for example, see [1, 3,11, 15—
18, 20, 22, 25, 26, 28, 29]). The historical development of this research is concisely summa-
rized in Sugie [29, Section 1]. Among them, we should mention specially the following
result given by Hatvani and Totik [18, Theorem 3.1].

Theorem A Suppose that there existgmwith 0 < yp < 11/ such that

t+yo
liminf a(s)ds> 0. (1.2)

t—oo  Ji

Then the equilibrium ofL) is asymptotically stable if and only if

o [LeA®ds

where

Alt) = /0 ‘a(s)ds

The criterion (1.2) is the so-called growth condition a&t). This condition was first
presented by Smith [28, Theorems 1 and 2] under the assumption that the lower bound of
a(t) was positive. Clearly, this assumption is stronger than condition (1.1). Even if intervals
wherea(t) becomes zero are infinitely many, condition (1.1) may be satisfied if the lengths
of intervals are less tharr/w. Hence, Theorem A is a natural generalization of Smith’s
result.

Let us look at condition (1.2) from another viewpoint. We consider the scalar differential
equation

u+a(tu+1=0. (1.3)

Then, the solutiom(t) of (1.3) satisfying the initial condition(0) = 0 is given by
L A(s)
eAlt)

Hence, condition (1.2) coincides with

/Owu(t)dt — o

In other word, whether the integral oft) is divergent or convergent determines the asymp-
totic stability for Eq. (). Since Eq. (1.3) bears a close relation with the damped linear oscil-
lator (L), we call it acharacteristic equationWe will extend Theorem A from the viewpoint

of characteristic equations.
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Our main theorem is as follows:

Theorem 1.1 Under the assumptiofi.1),the equilibrium of(E) is globally asymptotically
stable if and only if

/ u(t)dt = — oo,
0
where yt) is the solution of
U+ w%a(t)@y(u) +1=0

satisfying 0) = 0.

2 Characteristic equation

Consider the scalar characteristic equation
U+ wi2a(t) gy(u) +1=0, (2.1)

wherew > 0 andq > 2, anda(t) is continuous and nonnegative for 0. As well as Eq.E),
the global existence and uniqueness of solutions of (2.1) are guaranteed for the initial value
problem. LefT be a nonnegative number. We denote the solution of (2.1) throLigh by
u(t; T). Then,
ut;T)<0 fort>T.

In fact, sinceu(T;T) =0andu (T;T) = —1, we see that(t; T) < 0 in a right-hand neigh-
borhood ofT. Suppose that there exist$;a> T such thau(ty; T) =0 and

ut;T)<0 forT<t<ty.

Then,U'(t1; T) = —1. Hence, there exists a small> 0 such that/(t;T) <O fort € [t; —
0,t1]. From this inequality it follows thati(t; — 6;T) > u(ty; T) = 0, which contradicts the
definition oft;.

In the special case in whiadh= 2, Eq. (2.1) coincides with Eq. (1.3). The solutiaft; T)
of (1.3) satisfying the initial condition(T;T) = 0 is given by

ut;T) = —/te’fsta(“““ds
T

fort > T > 0. Let us compare solutiongt;0) andu(t; T) of (1.3). For the sake of conve-
nience, let

W(t,s) = e JsaWdu 5 g
Then,y(t,t) = 1 andy(t,0) = e a99sis decreasing for > 0 and tends to zero as- oo.
It is clear that )
F¢(t9) =aleu(t,s) =0

for 0 < s<t, and therefore,

T 2T
/ Y(t,s)ds< Y(t,s)ds
0 T



Global asymptotic stability for oscillators with superlinear damping 5

Hence, we obtain

/:/Ttw(LS)dsdtg /Ooo/OtLﬂ(t,s)dsdt

—/ZT ' (t s)dsdt—i—/oo/T (t,s)dsdt
o ol'U ’ 21Jo it

[ s [ wssa
B /Ozr Otlll(tvs)dsdt+2/2r/r2Tw(tVS)det+Zéj/z:w(t’s)dsm

2T pt 2T pt oo ot
:/ w(t,s)dsdt—Z/ L,U(t,s)dsdt+2/ /Lp(Ls)dsdt
0 Jo T JT TJT
Since
2T rt 2T rt
/ Lll(t,s)dsdth/ Y(t,s)dsdt
o Jo TJT

is bounded for eacli > 0, we conclude that

/ u(t; 0)dt = — o0
0
if and only if ‘
/ u(t; T)dt = —oo.
-

If g> 2, then we cannot know a concrete expression(tfT) any longer. In general,
however, the integral from O te of u(t;0) has the following equivalence relation, which
plays a key role in this paper.

Lemma 2.1 Forany T> 0,
/ u(t; T)dt = —o0
-
if and only if
/ u(t; 0)dt = — o,
0

Proof Let us fix T arbitrarily and compare two solutionst; 0) andu(t; T) of (2.1). Since
u(T;0) <0=u(T;T), it follows thatu(t;0) < u(t; T) < 0 in a right-hand neighborhood of
T. Hence,
U (t;0) = — 1— ¥ 2a(t) gy(u(t; 0))
> —1- i 2at)@(ut;T)) =u(;T)
aslong asi(t;0) < u(t; T) < O.
If u(t*;0) = u(t*; T) for somet* > T, then
U (t%;0) = —1— @ 2a(t”) @ (u(t*;0))
= —1- @ 2at)@(ut;T)) = Ut T).

Hence, from the uniqueness of solutions of (2.1) for the initial value problem, it turns out

that
u(t;0) =u(t;T) for t >t*
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and therefore,
0 t* 0
/u(t;O)dt:/ u(t;O)dt+/ u(t; 0)dt
0 0 t*

t* )
:/ u(t;0)dt+ [ u(t;T)dt
0 t*

ot* ot* 0
:/0 u(t;o)dt—/T u(t;T)dH—/T u(t; T)dt,

as required.
If such at* does not exist, then

ut;0) <u(t;T)<0 fort>T.
Lett; > T be given. We choose@so that

u(ty;T)

0< U(t2;0)°

Then,p < 1. Define
n(t) = pu(t;0)
fort > 0. Then,
n'(t) = pu(t;0) = — p — pw¥2a(t) (u(t; 0))

- _n_ P q—2
P~ am? at)w(n(t)

fort > 0. Since O< p < 1 andg > 2, we see that
q-2
p (3) o1
®mp)  \p
Noticing thatn (t) < 0 fort > 0, we obtain

n'(t) > —1- ™ %at) @y(n (1))

fort > 0. From the definition op it follows that

0>n(t1) =pu(ty;0) > u(ty; T).

Suppose that there existsta> t; such thatn(t2) = u(tz; T) and n(t) > u(t;T) for
t1 <t <ty Then,

n'(t2) > —1- w0 %alt) @ (n(t2))
=-1- % 2alt)@utzsT)) = U (txT).

Hence,n’(t) > U'(t;T) in a left-hand neighborhood of; namely, there exists a smal> 0
such that
N >ut;T) fort,—d<t<ty.

Integrating both sides of this inequality fram— d to t; and using thak) (t2) = u(tz; T), we
obtain
ntz—90) <u(ta—o6;T),
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which is a contradiction. Thus, we see that
0>n(t)>ut;T) fort>t.

From this estimation, we obtain

/mu(t;T)dt:/tlu(t;T)dH— “u(t; Tdt
A

T tl

/(tT)dH— n(t)dt

_/ tTdt+p/ u(t; 0)d
:/T u(t;T)dtfp/o u(t;0)dt+p/0°°u(t;0)dt

On the other hand, sine€t;0) < u(t;T) < Ofort > T, it follows that

/wu(t;O)dt </wu(t;T)dt <0.
0 T

We therefore conclude that convergence and divergence of the integes®fandu(t; T)
happen simultaneously. O

We next consider a more general scalar differential equation
= f(t,u), (2.2)

where f(t,u) is continuous orf0,) x R and satisfies locally a Lipschitz condition with
respect tal. For Eq. (2.2), the following results are well known (for example, see [31, p. 5]).

Lemma 2.2 Let ut) be a solution of(2.2) on an interval[a, b]. Suppose thaf (t) is con-
tinuous onfa, b] and satisfies the inequality

n'(t)> f(t,n(t)) fora<t<h.
If n(a) > u(a), thenn(t) >u(t) fora<t <b.

Lemma 2.3 Let ut) be a solution of(2.2) on an interval[a, b]. Suppose thaf (t) is con-
tinuous onfa, b] and satisfies the inequality

n'(t) < f(t,n(t)) fora<t<h

If n(a) <u(a),thenn(t) <u(t)fora<t<h.
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3 Necessary and sufficient conditions for global asymptotic stability

By puttingy = X' /w as a new variable, EcEj becomes the planar system
X = wy,
(3.1)
Yy = —wx— o %a(t) gy(y).
The wholex-y plane is divided into four quadrants. As is customary,
Q1= {(xy):x>0 andy >0},
Q2= {(xy):x<0 andy > 0},
Qz={(xy):x<0 andy <0},
Qs={(xy):x>0 andy < 0}.

We call the projection of a positive semitrajectory of (3.1) ontoxtyeplane apositive orbit
and we denote by " (to,Xo) the positive orbit of (3.1) starting from a poirg = (Xo,Yo) €
R? at a timetg > 0.

The total energy

Vixy) = 3 (24y)

is the most suitable as a Lyapunov function for system (3.1). Differentigtey) along any
solution of (3.1) to obtain

Va(txy) =xX +yy = —w 2a(t)|y| <0

on [0,») x R2. SinceV (x,y) is positive definite anci/(g,l)(t,x, y) is nonpositive, by a basic
Lyapunov’s direct method, we obtain the following result.

Proposition 3.1 The equilibrium of(E) is stable

Now, let us move on to the next subject; namely, the global attractivity. To begin with,
we present necessary conditions for the equilibrium&)ft¢ be attractive.

Theorem 3.2 If the equilibrium of (E) is attractive then
/’ u(t)dt = — oo, (3.2)
Jo

where yt) is the solution of(2.1) satisfying 0) = 0.

Proof. Let L = max{1, w}. By way of contradiction, suppose that (3.2) does not holds.
Then, we can chooseTa> 0 so large that

- L
/T utdt> — =

As shown in the proof of Lemma 2.1, we see that

u(t) =u(t;0) <u(t;T) <O
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fort > T. Hence, we have

w 1
/Tu(t,T)dt>fﬂ. (3.3)

Consider the positive orbif *(T,(1,0)). From the vector field of (3.1), it turns out that
(T,(1,0)) goes intoQ, afterwards. Letx(t),y(t)) be the solution of (3.1) corresponding
tor *(T,(1,0)). Thenx(T) =1 andy(T) = 0. If

X(t) > % fort>T, (3.4

then the solutior{x(t), y(t)) does not approach the origin; namely, the equilibriumefié
not attractive. This completes the proof. Hereafter, we will show that (3.4) holds. Suppose
that there exists & > T such that(T1) = 1/2 and /2 < x(t) <1forT <t < Ty. Then,

yt)<0 for T <t<Ti.

Letn(t) =y(t)/L < 0. Then, from the second equation of (3.1) it follows that

for T <t <Ty. Let f(t,u) = —1— w9 2a(t)gy(u). Then,n’(t) > f(t,n(t)) for T <t < Ty.
We comparei (t) with the solutionu(t; T) of (2.1) satisfyingu(T;T) = 0. Sincen(T) =
y(T)/L =0, by Lemma 2.2, we see that

Lu(t;T) <Ln(t) =y(t) <0
for T <t <Tj. Hence, we have
X(t) > wlu(t;T) for T<t<T;.
Integrating both sides of this inequality fromto T, we obtain

T 00
X(Ty) > x(T)+wL/ lu(t;T)dt >1+ wL/ u(t; T)dt > %
T T

by (3.3). This contradicts the assumption tk@; ) = 1/2.
We have thus proved the theorem. ad

We next transform system (3.1) to polar coordinates by
x=rcos6 and y=rsind
tofind r' = — i %a(t)@y(r)|sinb|Y,
(3.5)
0 = — w— w¥%a(t)r92g@y(sind) cosh.

Consider the positive orbit * (tp,xg) starting from a poinky € Q; UQz at a timetg > 0.
Let (r(t),6(t)) be the solution of (3.5) corresponding to this positive orbit. Since

20’ = — w(x* +y?) — w2a(t)xyly|9 2 <0
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if (x,y) € Q1UQs, we see thaf ™ (tg, Xg) moves clockwise around the origin as long as it is
in Q1 UQs. Then, since
sinf(t)cosOB(t) >0 fort > to,

it follows that

0'(t) = —w— w¥%a(t)(r(t)) 2@y (sind(t)) cosA(t)
= —w—a(t)(wr(t)|sind(t))42sinf(t)cosh(t) < — w

fort > tg. Hence, we obtain
B(t) < 8(to) — w(t —to),

which tends to- o ast — o, This is a contradiction. Thus, we have the following result.

Lemma 3.3 There is no positive orbit 0{3.1) which continues staying in QU Qs ulti-
mately

Judging from Lemma 3.3, system (3.1) has three types of positive orbits. Positive orbits
of the first type keep rotating around the origin. Those of the second type rem@p in
(resp.,Q2) and approach the origin througdy (resp.,Qz). Those of the third type stay in
Q4 (resp.,Q2) and tend to an interior point iQ4 (resp.,Qz).

We are now ready to prove ‘if’-part of the main theorem; namely, Theorem 1.1.

Theorem 3.4 Assumé1l.1)and (3.2). Then the equilibrium ofE) is globally attractive

Proof. Recall that Eq.E) is equivalent to system (3.1). Lett) be any solution off) with
the initial timeto > 0 and let(x(t), y(t)) be the solution of (3.1) correspondingti). Define

fort > to. To prove the theorem, it is enough to show that
v(t) >0 ast— oo,

SinceV (t) :V(gll)(t,x(t),y(t)) = — w9 2a(t)|y(t)|9 < 0fort > to, v(t) has the limiting value
Vo > 0. If vo = 0, then the proof is complete. We will show that the caseyaf 0 does not
happen provided (1.1) and (3.2) hold.

Suppose thaip is positive. Then the closed curve given¥yx,y) = vp is the circum-
ference of a circle whose center is at the origin and whose radif2Jg. Hence, this curve
crosses with the-axis only at two pointg./2vp, 0) and(—+/2vp,0). Let xo = (X(to), y(to))
and consider the positive orbit" (to, Xo).

As already mentioned, if *(tp,Xo) does not rotate around the origin, then it remains in
Q2 or Q4 ultimately; that is, there exist a poirt € Q4 (resp.,Q2) and a timeT > tg so that
I " (to,%0) passes througRk; at T and remains irQ, (resp.,Q,) afterwards. We consider
only the case in which " (to,Xo) remains inQq ultimately, because the other case is carried
out in the same way.

Since(x(t),y(t)) € Q4 fort > T, we see thax'(t) = wy(t) < 0 fort > T. Hence, there
exists ama > 0 such thak(t) — a ast — «, and therefore, it follows that

1 1
Eyz(t) —Vo— E012 ast — oo,
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Of courseyg > a?/2. If vo > a?/2, then we can chooseTa > T so large that
y2(t) > vo— %az >0 fort>Ty.
Hence, we have
V(t) = — 0™ 2a(t)y(t)|9 < — o 2(vo— a2/2)%a(t)
fort > Ti. Integrating this inequality frori; tot, we obtain

Vo —V(T1) < V(t) —V(Ty) < — ¥ ?(vo — c,‘{Z/Z)Q/Z/T‘t a(s)ds

which tends to- . This is a contradiction. Thus, we see that /2vg. We therefore con-
clude that"™ * (to,x0) approaches the poirit/2vo,0) which is an intersection of the closed
curveV (X,y) = Vg and thex-axis.
Let go = min{1, wv/2vp}. Then, taking into account thak (&) < &, and
V2V <X(t) <x(T) and yt)<O0

fort > T, we can estimate that

<y(t))' L wx(t) ot Pat)gy(y(t)

& &0 &
Wy Wi 2alt) (y(t)) 2 y(t)
& @(&) sl a(t)qq,( £ )

fort > T. Letn(t) =y(t)/& fort > to and letf (t,u) = — 1— w9~2a(t) @ (u). Then,n’(t) <
f(t,n(t)) fort > T. We compare) (t) with the solutioru(t; T) of (2.1) satisfyinqu(T;T) =
0. Sincen(T) =y(T)/& < 0, by Lemma 2.3, we see that

yt) =n()<u(t;T)<O0
&

fort > T. Hence, we have
X(t) <weut;T) fort>T.

Integrate both sides of this inequality fromto t to obtain
t

V2 —X(T) <x(t) —x(T) < wso/ u(s;T)ds

T

By (3.2) and Lemma 2.1, however,
t
/ u(sT)ds— —c ast — oo,
-

This is a contradiction. Thug, * (to, Xg) have to keep rotating around the origin.
Let € be so small that
T— WY
5
where yp is the number given in (1.1). Consider the straight liges (tane)x andy =
(tan(rt— €))x. Sincel *(to,Xo) continues going around the origin, it naturally crosses the

O<e<

(3.6)
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lines and they-axis infinitely many times. Letr(t),8(t)) be the solution of (3.5) corre-
sponding tol” " (to,Xo). Then, we can find four divergent sequendes}, {t,}, {on} and
{sn} with tg < Tnh <ty < On < & such thaid (1) = 311/2, O(ty) = m— ¢, 6(on) = /2 and
0(sh) = €. AlthoughT™ T (tg, Xo) moves clockwise around the origin when it passes through
(Q1UQ3), the behavior of *(tg,Xo) is not so simple when it is i6Q2 U Qq). Since

0'(t) = —w—a(t)(wr(t)|sind(t)|)92sinb(t) cosa(t),

I" " (to,%0) does not always move clockwise (@, U Q4); namely, it might advance tem-
porarily anti-clockwise. In such a case, we should select the supremunt ef @ih, o) for
which 8(t) > m— € as the point,. Then, we have

eE<OBt)y<m—e forth<t<s.

Recall that the closed curé(x,y) = Vo is the circumference of a circle with radius
Vv2Vo, and ™ T (tg,Xo) does not enter in the circle. The curve intersects with the half-line
6 = ¢ at only one point. Leh(¢) be they-coordinate of the intersection. Then, it turns out
thaty(t) =r(t)sinf(t) > hfort, <t <s,. Hence,

V(1) = — w9 2a(t)|y(t)|9 < — wl~?h%a(t) (3.7)

for tn <t < s;. Needless to say,(t) < 0 otherwise.
Suppose that there exists Ane N such thats, —t, > y for n > N. Then, it follows
from (3.7) that

Sh th+Yo
ww—ww<—w4m/ammg—w4m/ a(t)dt
th th
for n > N. Sincev(th1) — V(s) < 0 forn € N, we obtain
th+Yo
V(th1) — V(tn) < qu‘th/ a(t)dt for n>N,

th

and therfore,
N ity
Vo= V) < Vltas2) ~Vlt) < & 7H 5 [ et
=Nt

However, from (1.1) it turns out that
had th+Yo
/ a(t)dt = oo.
n=N"tn

This is a contradiction. Thus, there exists a sequéngpwith n, € N andny — o ask — oo
such that

S’Ik _tnk < Yo (3.8)
Sincer’(t) = — w92a(t) g (r(t))|sin@(t)|9 < 0 for t > to, we see that(t) < r(to) for
t > to. Hence,
a(t)(wr(t)|sinB(t)])%2|sinB(t)|| cosO(t)|
(wr (o))" a(t)

0't)>-w—
> —w-
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fort > to. From (3.8) it follows that
&— (T[— 5) = G(SWk) - e(tnk)
Sn
>~ (s, ~tn) — (@r(10)* 2 "alt)c

. tnk
Sn

> — Wy — (wr(tg))92 / “at)dt
tn

for eachk € N; namely,

Sh

(wr(to))q’z/ “a(t)dt > m— wy — 26 for ke N.
tny

Using this estimation and (3.7), we obtain

a

V(sn) — Vitn,) < — 2 ™a(t)dt < - r(t:w(

tn,

T— WYo — 2€)

for k € N. Sincev(ty,,,) —V(sn,) < 0 fork € N, we see that
ha

W(rr— wy—2¢) for ke N.
0

V(tnk+1) - V(tnk) <=

Taking (3.6) into consideration, we can conclude that

8

Vo—V(to) < Y (Vltn,y) —V(tn,)) = —,
k=1

which is a contradiction.
The proof of the theorem is now complete. a

Combining Theorems 3.2 and 3.4 with Proposition 3.1, we can conclude that Theo-
rem 1.1 holds.

4 Explicit conditions

As shown in Section 1, in the special case in which 2, we can seek the solutiart) of
(2.1) satisfyingu(0) = 0 concretely. In general, however, it is difficult to confirm whether
condition (3.2) is satisfied or not. For this reason, it is safe to say that Theorem 1.1 will
give an implicit necessary and sufficient condition for global asymptotic stability. Hereafter,
we will give some explicit sufficient conditions for the equilibrium d&)(to be globally
attractive.

To state our results, we define the inverse functiomads follows. Lety* be the conju-
gate number off; namely,

thenq® is also greater than 1. Let

A1 if z>0

W=a@ = —(-291 if z<o.
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Then,z> 0 if and only ifw > 0, andz = ¢ (w). In fact, since
wl/(a-1) if w>0
7=
—(—w)¥@D if w< 0,

it follows from (q—1)(q* — 1) = 1 thatw® (@1 = w1 = jw|9 ~2w = @, (w) if w> 0 and
—(~w) YO = — (—w)9 1 = (—w)9 2w = w9 2w = @y (W) if w< 0.

Corollary 4.1 Suppose that assumptigh.1) holds Suppose also that there exist a differ-
entiable function ft) and a T> 0 such that

b(t) >0 and &t)<b(t)

fort > T. If, in addition b(t) is nondecreasing fort T and

oo

then the equilibrium of E) is globally attractive

Proof. Define
1
9t) = — @ @ 2b(t)
fort > T. Then, itis clear thag(t) < 0 and
@i 2b(t)@y(g(t)) = -1 fort>T.

From the assumption &t) it follows thatg(t) is negative, differentiable and nondecreasing
fort >T.

Consider the solution(t; T) of (2.1) satisfyingu(T;T) = 0. Sinceu/(T;T) = —1, we
can find a > 0 such that

ut;T)<0 forT<t<T+0.
Taking into account thay(T) < 0=u(T;T), we see that
gt*) <u(t*;T)<O

for somet* € (T, T +9).
Let us comparei(t; T) with n(t) = A g(t), where
uts;T)
A= .
g(t*)

Note thatr(t) <0 fort > T and
n(t") =Agt") = ut’;T).
Since 0< A <1, we have

W 2b(t) @ (n(t) = @A) 2t @y(g(t) = — @A) > ~1
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fort > T. Let f(t,u) = — 1— w9 2a(t)@(u). Then,

n'(t)=Agt)>0>—1-w2b(t)gy(n(t))
> —1-wtat)@(n(t) = f(t.n(t)
fort > T. Hence, by Lemma 2.2,
n(t) >u(t;T) fort>t"
Integrating both sides of this inequality frarnto t, we obtain

t t
n(s)dsz/u(s;T)ds for t >t*
t* tx

Hence, it follows that
00 t*
/u(t;T)dt:/ (tT)dt+ “u(t; Tdt
T T
.
/ U T)dt+ | n()d

t*
7/ u(t; T)dt— r] dt+/n

:/((tT) N dt—i—)\/

—/t* (t;T)—n(t))dt— w?q/w% <b(1t)>dt:—oo

and therefore, by Theorem 3.4 and Lemma 2.1, we conclude that the equilibrid) isf (
globally attractive. O

In Corollary 4.1, we assumed the existence of an upper nondecreasing fubion
for the damping coefficiera(t). The nondecreasenesstit) is not always necessary for
the equilibrium of E) to be globally attractive. The following result shows that another
condition onb(t) can substitute for the nondecreaseness.

Corollary 4.2 Suppose that assumptigh.1) holds Suppose also that there exist a differ-
entiable function ft) and positive number8 and T such that

b(t)>B and &t)<b(t)
fort > T. If, in addition,

then the equilibrium ofE) is globally attractive

Proof. As in the proof of Corollary 4.1, we define

A =)
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fort > T. Then, it is easy to verify that

- %*(Flzﬁ> <gt) <0, I Pht)gy(g(t) =1

and
/ * 1 2 b/ * bl
gt)=(q"—1) (wq—zb(t)) wQ—Z(tt}(t) =—(a"-1)g(t) b((tt))

fort > T. Sinceg(t) is bounded and¥ (t) /b(t) tends to 0 as — o, we see that

|g'(t)] =0 ast— oo.
Hence, we can choodg > T so that
gt)>—-1 fort>T.

Consider the solution(t; Ty) of (2.1) satisfyingu(T1; Tp) = 0. Sinceu/(Ty;T1) = — 1,
we can find & > 0 such that

ut;Ty) <0 for Ti<t<Tp+0.
From the inequality(T1) < 0= 2u(Ty; Ty) it follows that
g(t") <2u(t*;Ty) <0
for somet* € (T1,T1 + 0).
Let

u(t*; o)

g(t)
Then, O< @y(M) < 4 <1/2,n(t) <0and

p= and n(t) = ug(t).

W 2b(t) @ (n(t) = @)W 2b(t) (9(t) = — (k) > —

N| =

fort > T. Hence, we obtain
1O =nd @) > —p> 5 >~ 1- o BO@N )
> —1-w"2at)@(n(t) = f(t,n(t))
fort > Ty, wheref (t,u) = — 1— w9 2a(t) @ (u). Since
n(t") = ugt’) = ult’;T),
it follows from Lemma 2.2 that
nt) >ut;Ty) fort>t"

By means of the same argument as in the proof of Corollary 4.1, we can estimate that

/ u(t; To)dt = — o,
. Tl

Hence, by Theorem 3.4 and Lemma 2.1, we see that the equilibriug)af (globally
attractive. 0
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Karsai and Graef [21, Corollary 2.4] have given a sufficient condition for the equilibrium
of the damped nonlinear oscillator

X'+at)@(X)+f(x)=0 4.2)
to be globally attractive. Herd,(x) is continuous and satisfied the signum condition that
xf(x) >0 if x#0. 4.2)

Their result is as follows.

Theorem B Suppose that (k) is nondecreasing and

O<a<at) <aft) <aft) 4.3)
fort > 0. Suppose also that
im &V g (4.4)
t—o0 Q(t) ) .

and eithera(t) /(a(t))(@2/(@-Y is nondecreasing or

- (at)/(a(t) @A/ aDy
t'ﬂl *(t)/(g(t))(q—Z)/(Q—l) =0 (4.5)

= (a(t))@2/@D

then the equilibrium of4.1)is globally attractive

Let us compare our results with Theorem B. The biggest difference between our results
and Theorem B is whether the lower bound is allowed to be zero. Theorem B can be applied
to only the case in which(t) is not less than a positive constant for 0. Such a case is
often calledlarge damping On the other hand, our results can be applied to not only the
case of large damping but also the case in which thétsgto: alt) = 0} is permitted to be
the union of infinitely many disjoint intervals whose length are less thésee, condition
(1.1).

In the case of large damping, it is easy to extend our results to be able to apply Eq. (4.1),
because strong assumptions, such as (4.2) and nondecreasing, are impbsgd on

Actually, condition (4.4) is unnecessary in Theorem B. To confirm this fact, let

fort > 0. Then, (4.3) implies that

a(t) a)
@y (b(t)) = (@)@ 2/@ 1 ~ (a{))@2/@D
);

= (@)’ =g @)

namelya(t) < b(t) fort > 0. Hence,

b(t) >a and a(t) <b(t)
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/O w‘“*‘(%t)) dt = /O ° (a(t)):(t? O

(4.6) coincides with
[l )os
0 b(t)

If a(t)/(a(t))@ /(@1 is nondecreasing, thésit) is also nondecreasing. Since
PPN 1 (9)
arbo) 1 Vo)

fort > 0. Since

if (4.5) holds, then
lim o)
5% b(t)
Thus, all the conditions of Corollaries 4.1 and 4.2 are satisfied, and therefore, Theorem B
follows from Corollaries 4.1 and 4.2 without assuming (4.4).
Corollary 4.1 yields the following simple result.

=0.

Corollary 4.3 Assumdl.1)holds Suppose that there exist positive numbzi@nd T such
that
0<a(t)<t? fort>T.

If o <q-— 1, then the equilibrium ofE) is globally attractive

Proof. Letb(t) =t9. Then, itis clear thal(t) is positive and nondecreasing for T. Let
Ti=max{1,T}. If c <q-1,then

1 1 q-1 1 o/(g-1) 1
i — | = — =( = > =
‘“*(b(t)) (b(t)) (t) 1
fort > T;. Hence,

/w <1>dt>/T1 <i>dt+ “Lit—w
@b )= L ® b S
Thus, from Corollary 4.1, it turns out that the equilibrium & (s globally attractive. 0O
Remark 4.1Letb(t) =t°. Then,
lim bL)
t—wo P(t)
Hence, we can also lead Corollary 4.3 from Corollary 4.2.

=0.

Applying Corollary 2.5 of Karsai and Graef [21] to E) we see that if¥ < a(t) <t?
with
0O<y<o and 0-1< 9-2
y= < Vq_ 1
then the equilibrium is globally attractive. Sinag) > tY fort > 0, our assumption (1.1) is
naturally satisfied. Also, since€ y < g, we obtain
q-2 q-2
—l<y-——<og—=;
o 17yq_170 7

Ko
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namely,o < q— 1. Thus, Corollary 4.3 essentially includes their result.

Next, we give some explicit necessary conditions for the equilibriurkpfd be attrac-
tive. We judge that the equilibrium oE{ is not attractive by using a lower function instead
of the damping coefficierd(t).

Corollary 4.4 Suppose that there exist a differentiable functi¢r) and positive numbers

B and T such that
B<c(t)<a(t)

c(t 1
tIm)T_O and / (T)dt<oo,

then the equilibrium of E) is not attractive

fort >T.If

Proof. Let

o0) =~ 2o )

fort > T. Then, we can easily verify tha(t) is negative and bounded for> T, and it
satisfies
c(t)

W Zet)@(gt)) =—1 and g(t)=—(d"~ l)g(t)@
fort > T. Sincec(t)/c(t) tends to 0 as — o, we see that
|g'(t)] =0 ast— oo,

and therefore, there existsTa> T such that
, 1
gt) < 5 for t > Ty.

Consider the solution(t; T1) of (2.1) satisfyingu(Ty; T1) = 0. As in the proof of Corol-
lary 4.2, taking into account that(T;; T;) = — 1, we can choosetd > T; such that

I\J\n—\

gt*) < Zu(t*;T1) <O.
Letn(t) = 2g(t). Then,n(t) <0 and
Wt Ze(t)@y(n (1) = @ Zet)@y(g(t) = — w(2) < -2

fort > T. Hence, we obtain
n't)=2g(t) <1< —1—wi2ct)@(n(t))
< —1-wat)gy(n(t)
fort > Ty. Let f(t,u) = — 1— w¥2a(t) @ (u). Then,n’(t) < f(t,n(t)) fort > Ty. Since
n(t’) =2g(t) <u(t*;Ty),
it follows from Lemma 2.3 that

n(t) <u(t;Ty) fort>t"
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Integrate both sides of this inequality frdmto t to obtain

t
t*

t
/n(s)dsg/u(s;Tl)ds for t >t*.
t*

From this inequality, we can estimate that
00 ot* 00
/ u(t;Tl)dt:/ u(t;Tl)dt—i—/ u(t: Ty)dt
Ty T1 t*

> /I*u(t;Tl)dt—i— /:n(t)dt

T1

= / t*(U(t:Tl) —n(v)dt+ T'mn (t)dt

T1
t*

= [ (T ~n()at+ 2/T:°g(t)dt

t*

= [ (ut;Ty) — n(t))dt— 2/T'Tlg(t)dt+2/:g(t)dt

T

v t* 2 1

Hence, by Theorem 3.2 and Lemma 2.1, we conclude that the equilibriu®)a$ (hot
attractive. O

The following result is a direct consequence of Corollary 4.4.

Corollary 4.5 Suppose that there exist positive numbeand T such that
tY<a(t) fort>T.
If y> q— 1, then the equilibrium ofE) is not attractive

Proof. We may assume without loss of generality tiiat> 1. Letc(t) =t¥ andf3 = TY.
Then, it is clear tha < c(t) < a(t) fort > T and

c(t)
o, ct) 0.

Sincey > g— 1, we can choose ag > 0 so that

|4 x
< 0 = —_ .
1+80_q71 y(q —1)

Hence, we obtain

o 1 w0/ 1\V(@-1) o/ 1\
Fola)a- k() asf(7) wes

and therefore, by Corollary 4.4, we see that the equilibriunkdfg not attractive. O
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5 Growth condition on a(t)

Hatvani, Krisztin and Totik [17] have considered the damping linear oscilldfpragd
proved that under the assumption thét) tends too ast — o, the growth condition (1.2)
ona(t) is equivalent to

8

(Al (o)~ A (n—1)¢)) = (5.1)

n=1

for anyc > 0, where
A7Y(s) =min{t > 0:A(t) > s}.

It is clear that ifa(t) > 0 fort > 0, thenA(t) is increasing fot > 0, and thereforeA=1(s)
is the inverse function o = A(t). Using their ingenious idea and method, we see that the
discrete condition (5.1) is also equivalent to

Jo A ds, _
/ Tgan dt= 00 (5.2)

for anyk > 0. Consequently, we have the following result.

Lemma 5.1 Suppose that @) tends toeo as t— . Then conditiong1.2) and (5.2) are
equivalent

Combining Theorem 3.4 with Lemmas 2.1, 2.2, and 5.1, we obtain the following result.
Corollary 5.2 Assumg1.2) and suppose that there exist positive numi@isnd T such
that

at)>p fort>T. (5.3)

Then the equilibrium ofE) is globally attractive

Proof. Let yp > 0. From (5.3) it follows that

Alt+y0) — A(t) > By > 0.

Hence, condition (1.1) holds.

Define
w28 [tewi2A(s)
g(t) = fef{i))q*ZA(t)
fort > 0. Then,
! wq—2 —
g =P o

fort > 0. By (5.3), we have

At)—A(s) > B(t—s) for T <s<t.
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Hence,
2 (T a2 _
0> glt) = Wl ZB]oTewq A(S)ds_ wd Zﬁ/tequ’z(A(t)fA(s))ds
2w 2A(t) 2 Jr
_ -2 _
> _ wi2B fy &’ A(S)ds_ w zﬁ/te—wqiﬁ(t—s)ds
- 2w A 2 Jr
wq72Bﬂ;|' e ?Ads 1 ewi2pT
T e AR T2\ 7 et

_ T a-2
. wI 2B [, e A<S)ds_ 1
= 2ewi2A(t) 2

fort > T. SinceA(t) diverges too ast tends towo, we can find & > T so that

wq*ZBfoTe‘*’q*zA@ds
260 ?AD)

1
— fort>Ti.
<2 > 11

We therefore conclude that
—1<g(t)<0 fort>T.

Consider the solution(t; Ty) of (2.1) satisfyingu(T1; T1) = 0. Sinceu'(Ty;T1) = — 1,
we can choose & > 0 such that

ut;T1) <0 for Ti<t<Tpi+0.
Letv = min{1, 2/(w%2B)}. From the inequalitg(T;) < 0= u(Ty;T1)/v, it turns out that
vg(t*) <u(t*;T1) <0
for somet* € (T1, T1 +0).
Let
u(t*;T1)

H="g1) and n(t) = pg(t).

Then, O< u <v and
—1<-v<nt)<0 fort>T,

and therefore,

-2
10 =ng© =~ L PEwranug)

> —1-w"at)n(t) > —1- " Palt)@(n(t) = f(t,n (1),
wheref (t,u) = —1— w9 2a(t) @(u). Since
n(t") = pg(t") = u(t™; T,
it follows from Lemma 2.2 that

n(t) >u(t;Ty) for t >t~
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Using Lemma 5.1, we see that (1.2) implies that

/Omg(t)dt S

Hence,
00 t* 00
/u(t;Tl)dt:/ u(t;Tl)dt—i—/ u(t; Ty)dt
T1 JTy Jt*
t* 0
g/ u(t;Tl)dt—i—/ n(t)dt
Jn Jr+

t* 0
- / u(t T dt + / g(t)dt
Jn Jre

t* t* 0
— [ utTdt—p [ gt)dt+ u/ g(t)dt = — co.
JT 0 0
Thus, by means of Theorem 3.4 and Lemma 2.1, we conclude that the equilibrinisf (
globally attractive. O

Recall that the proof of Theorem 3.4 was divided into three steps as follows:

(i) For any solution(x(t),y(t)) of (3.1), the functionv(t) defy (x(t),y(t)) is nonincreasing
for t > 0. Hence,v(t) has the limiting value/q > 0. If vy is zero, then the proof is
complete. In the second and third steps, it is shown that the cagedofes not occur.
Afterwards, we assume theg is positive.

(i) If the positive orbit of (3.1) corresponding tfx(t),y(t)) does not rotate around the
origin, then it has to converge to a point on theaxis. However, comparing(t) with
a certain solution of (2.1) and using condition (3.2), we can conclude that the positive
orbit does not approach the point. This is a contradiction.

(iii) The positive orbit keeps rotating around the origin, Singes positive, the orbit does
not enter in the circle of radiug2vg. However, by using condition (1.1), we can show
that the orbit approaches the origin by a constant distance each time it passes through a
sector whose central angle is almastHence, the orbit arrives at the origin. This is a
contradiction.

Condition (3.2) was used only in the second step of the proof of Theorem 3.4. Making
use of the growth condition (1.2) instead of condition (3.2), we obtain the following result.

Corollary 5.3 Assumdl.1)and(1.2). Then the equilibrium ofE) is globally attractive

Proof. As mentioned above, the proof is completed in the three steps. The first and third
steps are the same as those of Theorem 3.4. We will confirm only the second step by using
(1.2). Letx(t) be any solution of ) with the initial timety > 0 and let(x(t),y(t)) be the
solution of (3.1) corresponding gt ). Suppose thai(t), y(t)) stays inQz or Q4 ultimately.
We consider only the case in whi¢k(t),y(t)) is in Qs ultimatey, because the other case is
carried out in the same manner.

As in the proof of Theorem 3.4, we can show that

(X(t),y(t)) = (v/2v,0) ast — oo,



24 Jitsuro Sugie et al.

wherevp > 0 is the limiting value ofv(t) = (x2(t) +y?(t))/2. Hence, there exists > 0
such that

V2vp <X(t) <x(T) and —1<y(t)<O0
fort > T. Sinceq > 2, we see that

0> @y(y(t)) = (—y(t)T?y(t) > y(t),
and therefore,
Y (t) = —wx(t) — w¥%at) gy(y(t)) < —wx(t) — o Zat)y(t)

fort > T. Hence, we get

(e"’quA( ) < —w/2vpe” AY  fort>T.

Integrating both sides of this inequality fromto t, we obtain

ewq*ZA(t)y(t) < ewq*ZA(T)y(T) —w tho /t ewq—zA(s) ds< —w /72\/0 / t ewq*ZA(s)
T T
namely,

q2/.\
X(t) = wy(t) < — wZ\/ZVO/equA

fort > T. From Lemma 5.1 and (1.2) it follows thaft) tends to—c ast — . This is a
contradiction.
Thus, the theorem is proved. a
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