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SMITH-TYPE CRITERION FOR THE ASYMPTOTIC STABILITY
OF A PENDULUM WITH TIME-DEPENDENT DAMPING

JITSURO SUGIE

(Communicated by Yingfei Yi)

Abstract. A necessary and sufficient condition is given for the asymptotic stabil-
ity of origin of a pendulum with time-varying friction described by the equation

x′′ + h(t)x′ + sinx = 0,

where h(t) is continuous and nonnegative for t ≥ 0. This condition is expressed as
a double integral on the friction h(t). The method that is used to obtain the result
is Lyapunov’s stability theory and phase plane analysis of the positive orbits of an
equivalent planar system to the above-mentioned equation.

1. Introduction

We consider the damped pendulum equation

(P ) x′′ + h(t)x′ + sin x = 0,

where the prime denotes d/dt and the damping coefficient h(t) is continuous and
nonnegative for t ≥ 0. The origin (x, x′) = (0, 0) is an equilibrium of (P ).
Let x(t) = (x(t), x′(t)) and x0 ∈ R2, and let ∥ · ∥ be any suitable norm. We denote

the solution of (P ) through (t0,x0) by x(t; t0,x0). The uniqueness of solutions of (P )
is guaranteed for the initial value problem.
The origin is said to be stable if, for any ε > 0 and any t0 ≥ 0, there exists

a δ(ε, t0) > 0 such that ∥x0∥ < δ implies ∥x(t; t0,x0)∥ < ε for all t ≥ t0. The
origin is uniformly stable if it is stable and δ can be chosen independent of t0. The
origin is said to be attractive if, for any t0 ≥ 0, there exists a δ0(t0) > 0 such that
∥x0∥ < δ0 implies ∥x(t; t0,x0)∥ → 0 as t → ∞. The origin is uniformly attractive
if δ0 in the definition of attractivity can be chosen independent of t0, and for every
η > 0 there is a T (η) > 0 such that t0 ≥ 0 and ∥x0∥ < δ0 imply ∥x(t; t0,x0)∥ < η
for t ≥ t0 + T (η). The origin is asymptotically stable if it is stable and attractive.
The origin is uniformly asymptotically stable if it is uniformly stable and is uniformly
attractive. With respect to the various definitions of stability, the reader may refer
to the books [1, 6, 7, 12, 16, 25] for example.
The purpose of this paper is to establish a criterion for judging whether the origin

of (P ) is asymptotically stable or not. Our main theorem is as follows:
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Theorem 1. Suppose that there exists a γ0 with 0 < γ0 < π such that

(1) lim inf
t→∞

∫ t+γ0

t

h(s)ds > 0.

Then the origin of (P ) is asymptotically stable if and only if

(2)

∫ ∞

0

∫ t

0
eH(s)ds

eH(t)
dt = ∞,

where

H(t) =

∫ t

0

h(s)ds.

The criterion (2) is the so-called growth condition on h(t). This condition has first
been given by Smith [17, Theorems 1 and 2]. He has considered the damped linear
oscillator

(L) x′′ + h(t)x′ + x = 0

under the assumption that there exists an h > 0 such that h(t) ≥ h for t ≥ 0
and showed that condition (2) is necessary and sufficient for the origin of (L) to be
asymptotically stable. It is known that if h(t) is bounded from above or h(t) = t,
then condition (2) holds; if h(t) = t2, then condition (2) fails to hold (for details,
see [10]).
The case in which h ≤ h(t) < ∞ for t ≥ 0 is often called large damping . Later,

many attempts were carried out to taken off the lower bound h from the assumption
of h(t) (for example, see [2, 8, 9, 11, 14, 15, 18–22]). Among them, we should mention
specially about Hatvani and Totik’s result [11, Theorem 3.1]. They showed that the
growth condition (2) is necessary and sufficient for the origin of (L) to be asymptoti-
cally stable provided that condition (1) is satisfied. It is clear that condition (1) holds
in the case of large damping. Hence, Hatvani and Totik’s result is a generalization of
the result by Smith. Even if intervals where h(t) becomes zero are infinitely many,
condition (1) may be satisfied if the lengths of intervals are less than π. This is a
good point of condition (1).
A lot of researches were carried out to solve the problem of the preservation of

uniform asymptotic stability from the n-dimensional linear system

(S) x′ = A(t)x

to the quasi-linear system

(Q) x′ = A(t)x+ f(t,x),

where f(t,x) is continuous in (t,x) ∈ R
def
=
{
(t,x) : t ≥ 0 and ∥x∥ < a

}
for some

a > 0 and has continuous first-order partial derivatives with respect to x in R, and
f(t,0) = 0. As is well known, under the assumption that f has the property

(3) lim
∥x∥→0

∥f(t,x)∥
∥x∥

= 0

uniformly in t, if the origin of (L) is uniformly asymptotically stable, then the ori-
gin of (Q) is also uniformly asymptotically stable. However, if we drop the terms
“uniformly”, then the above statement is not true. Perron [13] has shown that the
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asymptotic stability of the origin of (L) do not always imply the asymptotic stabil-
ity of the origin of (Q). As to Perron’s example, see the books [3, pp. 42–43], [4,
pp. 169–170], [5, p. 71], [23, pp. 92–93], [24, pp. 315–317], etc.
Equations (L) and (P ) are rewritten as systems (S) and (Q), where

A(t) =

(
0 1

−1 −h(t)

)
and f(t,x) =

(
0

x− sin x

)
,

respectively. It is easy to verify that f possess the property (3). However, Theorem 1
is not an immediately consequence of Hatvani and Totik’s result, because their result
is a criterion for the asymptotic stability of the origin of (L), but it is not a criterion
for the uniform asymptotic stability.
As can be seen from Theorem 1 and the result of Hatvani and Totik, a necessary

and sufficient condition for the origin of the damped pendulum equation (P ) to be
asymptotically stable is the same as that of the linear approximation (L). Judging
from this fact, there might be room for a further research on the problem of the
preservation from system (S) to system (Q).

2. Phase plane analysis

To examine the asymptotic behavior of solutions of x(t; t0,x0), it is very useful to
change equation (P ) into planar equivalent systems. By putting y = x′ as a new
variable, equation (P ) becomes the system

(4)
x′ = y,

y′ = − sin x− h(t)y.

The whole x-y plane is often called the phase plane of (4) and the phase plane is
divided into four quadrants. We denote by Qi the i-th quadrant (i = 1, 2, 3, 4). We
call the projection of a positive semitrajectory of (4) onto the phase plane a positive
orbit and we denote by Γ+

(4)(t0,x0) the positive orbit of (4) starting from a point

x0 = (x0, y0) ∈ R2 at a time t0 ≥ 0. Since system (4) is nonautonomous, the forms of
positive orbits starting from the same point x0 are different according to the initial
time t0.
As a suitable Lyapunov function, we adopt

V (x, y) = 1− cosx+
1

2
y2,

which is regarded as a total energy for system (4). Then, we obtain

V̇(4)(t, x, y) = (sin x)x′ + y y′ = −h(t)y2 ≤ 0

on [0,∞)× R2. Hence, we see that the domain

D =
{
(x, y) ∈ R2 : |x| ≤ π and V (x, y) ≤ 2

}
is a positive invariant set of (4), namely, for any x0 ∈ D and t0 ≥ 0, the positive
orbit Γ+

(4)(t0,x0) stays in D for all future time. Since V (x, y) is positive definite and

decrescent in a neighborhood of the origin (0, 0), we conclude that

Lemma 1. The origin of (P ) is uniformly stable.
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Let

x = r cos θ and y = r sin θ.

Then, we can transform system (4) into the polar coordinates system

(5)
r′ = r sin θ cos θ − sin θ sin(r cos θ)− h(t) r sin2 θ,

θ′ = − 1

r
sin(r cos θ) cos θ − sin2 θ − h(t) sin θ cos θ.

Hence, r2θ′ = −x sin x − y2 − h(t)xy ≤ 0 if (x, y) ∈ (Q1 ∪ Q3) ∩ D. This means
that every positive orbit turns clockwise around the origin (0, 0) as long as it moves
through Q1 ∩D or Q3 ∩D. Then, does this orbit enter Q4 or Q2 by passing through
the x-axis? The answer is yes.

Lemma 2. There is no positive orbit which continues staying in (Q1 ∪Q3) ∩D.

Proof. Suppose that there exists a point x0 ∈ Q1 ∩ D (resp., Q3 ∩ D) and a time
t0 ≥ 0 such that the positive orbit Γ+

(4)(t0,x0) stays in Q1 ∩D (resp., Q3 ∩D). Let

(r(t), θ(t)) be the solution of (5) corresponding to this positive orbit. Then,

θ′(t) ≤ − sin2 θ(t) for t ≥ t0

and there exists a θ0 ∈ (0, π/2) (resp., (π, 3π/2)) such that

θ(t) ↘ θ0 as t → ∞.

Hence, we have

θ′(t) < − sin2 θ0 for t ≥ t0.

Integrating this inequality from t0 to t, we obtain

θ(t) < θ(t0)− (sin2 θ0)(t− t0) → −∞ as t → ∞.

This is a contradiction. Thus, such a positive orbit does not exist. �

From the vector field of (4), we see that the positive orbit moves to the left in Q4,
and moves to the right in Q2. However, it does not always rotate around the origin
(0, 0) in a clockwise direction, and may go up and down in Q4 and Q2.
Let (x(t), y(t)) be any solution of (4) with the initial time t0 ≥ 0 and define

v(t) = V (x(t), y(t))

for t ≥ t0. Since v′(t) = −h(t)y2(t) ≤ 0 for t ≥ t0, v(t) is nonincreasing, and
therefore, it has the limiting value v0 ≥ 0. If v0 is zero for all solutions of (4) staying
in D, then the origin of (P ) is attractive. If v0 is positive for a solution of (4) staying
in D, then the positive orbit corresponding to this solution remains in the annulus

A =
{
(x, y) ∈ R2 : v0 < V (x, y) ≤ 2

}
⊂ D.

Since the closed curve given by V (x, y) = v0 > 0 is a symmetric oval, this curve
intersects with the x-axis only at two points (α, 0) and (−α, 0), where 0 < α =
arccos(1− v0) < π. In the next section, we will show that the case of v0 > 0 does not
occur provided conditions (1) and (2) hold.



SMITH-TYPE CRITERION FOR THE ASYMPTOTIC STABILITY 5

3. Proof of Theorem 1

We first prove that if the origin of (P ) is attractive, then the growth condition (2)
holds. We then prove the converse.

Necessity . Suppose that (2) does not hold. Then, we can choose a T ≥ 0 so large
that

(6)

∫ ∞

T

∫ t

0
eH(s)ds

eH(t)
dt <

1

2
.

Consider the positive orbit Γ+
(4)(T, (1, 0)). From the vector field of (4), it follows that

Γ+
(4)(T, (1, 0)) goes into Q4 ∩ D afterwards. Let (x(t), y(t)) be the solution of (4)

corresponding to Γ+
(4)(T, (1, 0)). Note that x(T ) = 1 and x′(T ) = y(T ) = 0. We will

show that x(t) > 1/2 for t ≥ T .
By way of contradiction, we suppose that there exists a T1 > T such that x(T1) =

1/2 and x(t) > 1/2 for T ≤ t < T1. Since

x′′(t) + h(t)x′(t) = − sinx(t) ≥ −1,

we have (
x′(t)eH(t)

)′ ≥ −eH(t) for t ≥ T.

Integrating both sides of this inequality from T to t, we get

x′(t)eH(t) ≥ x′(T )eH(T ) −
∫ t

T

eH(s)ds = −
∫ t

T

eH(s)ds,

and therefore,

x′(t) ≥ −
∫ t

T
eH(s)ds

eH(t)
for t ≥ T.

Integrate both sides of this inequality from T to T1 to obtain

x(T1) ≥ x(T )−
∫ T1

T

∫ t

T
eH(s)ds

eH(t)
dt

≥ 1−
∫ ∞

T

∫ t

T
eH(s)ds

eH(t)
dt ≥ 1−

∫ ∞

T

∫ t

0
eH(s)ds

eH(t)
dt.

From this estimation and (6) it follows that x(T1) > 1/2, which contradicts the
assumption that x(T1) = 1/2. Hence, we see that x(t) > 1/2 for t ≥ T .
We therefore conclude that Γ+

(4)(T, (1, 0)) stays in the region{
(x, y) ∈ R2 : 1/2 < x ≤ 1, y ≤ 0 and V (x, y) ≤ 2

}
for all future time and the origin of (P ) is not attractive.

Sufficiency . As mentioned in the preceding section, v(t) has the limiting value
v0 ≥ 0 for any solution (x(t), y(t)) of (4). We prove that if conditions (1) and (2) are
satisfied, then v0 have to be zero for any solution of (4). This means that the origin
of (P ) is attractive. Condition (1) implies that H(t) → ∞ as t → ∞.
The proof is by contradiction. Suppose that v0 is positive. Then, there exist a

point x0 ∈ A and a time t0 ≥ 0 such that the positive orbit Γ+
(4)(t0,x0) remains in

the annulus A for all future time. Will Γ+
(4)(t0,x0) keep rotating around the origin

(0, 0)? From Lemma 2, we see that Γ+
(4)(t0,x0) cannot stay in (Q1 ∪Q3) ∩ A, and it

inevitably enters (Q4 ∪Q2) ∩ A.
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If Γ+
(4)(t0,x0) does not rotate, then we can find out a point x1 ∈ (Q4 ∪Q2)∩A and

a time T ≥ t0 so that Γ+
(4)(t0,x0) passes through x1 at T and remains in (Q4∪Q2)∩A

afterwards. From the uniqueness of solutions of (4) to initial value problems, we see
that the positive orbit Γ+

(4)(T,x1) is contained in Γ+
(4)(t0,x0). There are two cases

that should be considered: (i) Γ+
(4)(T,x1) remains in Q4∩A for all the future and (ii)

Γ+
(4)(T,x1) remains in Q2∩A for all the future. We consider only the former, because

the latter is carried out in the same way.
Let (x(t), y(t)) be the solution of (4) corresponding to Γ+

(4)(t0,x0). Since x′(t) ≤ 0

for t ≥ T , there exists a c ∈ R with 0 ≤ c < π such that x(t) ↘ c as t → ∞. Recall
that v(t) = 1− cos x(t) + y2(t)/2 ↘ v0 as t → ∞. Hence, it follows that

1

2
y2(t) → v0 − 1 + cos c as t → ∞.

Note that 1− cos c ≤ v0. If 1− cos c < v0, then we can choose a T2 ≥ T so that

y2(t) > v0 − 1 + cos c > 0 for t ≥ T2.

Hence, we have

v′(t) = −h(t)y2(t) ≤ − (v0 − 1 + cos c)h(t)

for t ≥ T2. Integrating this inequality from T2 to t, we obtain

v0 − v(T2) < v(t)− v(T2) ≤ − (v0 − 1 + cos c)

∫ t

T2

h(s)ds,

which tends to −∞ as t → ∞. This is a contradiction. Thus, we see that 1− cos c =
v0, namely, c = α = arccos(1− v0). We therefore conclude that (x(t), y(t)) → (α, 0)
as t → ∞. In other words, Γ+

(4)(T,x1) approaches (α, 0), which is the intersection of

the symmetric oval V (x, y) = v0 and the positive x-axis.
Let β = min{sinα, sin x(T )}. Since 0 < α < x(t) ≤ x(T ) < π for t ≥ T , we have(

x′(t)eH(t)
)′
= − sinx(t)eH(t) ≤ −βeH(t)

for t ≥ T . Hence, we obtain

x′(t)eH(t) ≤ x′(t)eH(t) − y(T )eH(T )

= x′(t)eH(t) − x′(T )eH(T ) ≤ − β

∫ t

T

eH(s)ds

for t ≥ T . Since h(t) ≥ 0 for t ≥ 0, it follows that
∫ t

0
eH(s)ds → ∞ as t → ∞. Hence,

there exists a T3 > T such that∫ t

T

eH(s)ds =

∫ t

0

eH(s)ds−
∫ T

0

eH(s)ds >
1

2

∫ t

0

eH(s)ds for t ≥ T3.

Using this estimation, we obtain

x′(t)eH(t) < − β

2

∫ t

0

eH(s)ds for t ≥ T3,

namely,

x′(t) < − β

2

∫ t

0
eH(s)ds

eH(t)
for t ≥ T3.
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Integrating this inequality from T3 to t, we get

−π < α− x(T3) < x(t)− x(T3) < − β

2

∫ t

T3

∫ u

0
eH(s)ds

eH(u)
du

for t ≥ T3. This contradicts condition (2). Thus, Γ+
(4)(t0,x0) have to keep rotating

around the origin (0, 0).
Since Γ+

(4)(t0,x0) turns around the origin while remaining in the annulus A, it

crosses with the y-axis, the straight lines y = (tan ε)x and y = (tan(π−ε))x infinitely
many times, where ε is any number satisfying

(7) 0 < ε <
π − γ0

2

(γ0 is the number given in condition (1)). Let (r(t), θ(t)) be the solution of (5)
corresponding to (x(t), y(t)). Then, there exist four divergent sequences {τn}, {tn},
{σn} and {sn} with t0 ≤ τn < tn < σn < sn such that θ(τn) = 3π/2, θ(tn) = π − ε,
θ(σn) = π/2 and θ(sn) = ε. Recall that

r2(t)θ′(t) = −x(t) sinx(t)− y2(t)− h(t)x(t)y(t) ≤ 0

as long as Γ+
(4)(t0,x0) is in (Q1∪Q3)∩A. This means that Γ+

(4)(t0,x0) moves clockwise

in (Q1∪Q3)∩A. However, since θ′(t) is not necessarily negative in (Q2∪Q4)∩A, the
form of Γ+

(4)(t0,x0) may be not so simple. The point in the set {t ∈ (τn, σn) : θ(t) =

π − ε} might not be only one. In such a case, we should select the supremum of all
t ∈ (τn, σn) for which θ(t) ≥ π − ε as the point tn. Then, we have

ε < θ(t) < π − ε for tn < t < sn.

Since the closed curve V (x, y) = v0 is a symmetric oval, it intersects with the half-
line θ = ε at only one point. Let δ(ε) be the y-component of the intersection. Since
Γ+
(4)(t0,x0) does not go out of the annulus A, we see that y(t) > δ for tn ≤ t ≤ sn.

Hence, we obtain

v′(t) = −h(t)y2(t) < −h(t)δ2 for tn ≤ t ≤ sn.

Needless to say, v′(t) ≤ 0 otherwise.
Suppose that there exists an N ∈ N such that sn − tn ≥ γ0 for n ≥ N . Then, we

can estimate that

v(sn)− v(tn) < − δ2
∫ sn

tn

h(t)dt ≤ − δ2
∫ tn+γ0

tn

h(t)dt

for n ≥ N and v(tn+1) − v(sn) ≤ 0 for n ∈ N. Adding these two evaluations, we
obtain

v(tn+1)− v(tn) < − δ2
∫ tn+γ0

tn

h(t)dt for n ≥ N.

This inequality yields that

v0 − v(tN) ≤ v(tn+1)− v(tN) < − δ2
n∑

i=N

∫ ti+γ0

ti

h(t)dt.

This contradicts condition (1), because tn tends to ∞ as n → ∞. Thus, there exists
a sequence {nk} with nk ∈ N and nk → ∞ as k → ∞ such that

(8) snk
− tnk

< γ0.
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Since

θ′(t) ≥ − 1

r(t)
| sin(r(t) cos θ(t))|| cos θ(t)| − sin2 θ(t)− h(t)| sin θ(t)|| cos θ(t)|

≥ − cos2 θ(t)− sin2 θ(t)− h(t) ≥ −1− h(t)

for t ≥ t0, it follows from (8) that

ε− (π − ε) = θ(snk
)− θ(tnk

)

≥ −(snk
− tnk

)−
∫ snk

tnk

h(t)dt > −γ0 −
∫ snk

tnk

h(t)dt

for each k ∈ N. Hence, from (7) it turns out that∫ snk

tnk

h(t)dt > π − γ0 − 2ε > 0 for k ∈ N.

Repeating the above-mentioned argument with this estimation, we obtain

v(snk
)− v(tnk

) < − δ2
∫ snk

tnk

h(t)dt < − δ2(π − γ0 − 2ε)

and v(tnk+1
)− v(snk

) ≤ 0 for k ∈ N. Hence, we have

v(tnk+1
)− v(tnk

) < − δ2(π − γ0 − 2ε) for k ∈ N,
and therefore,

v0 − v(t0) ≤
∞∑
k=1

(
v(tnk+1

)− v(tnk
)
)
= −∞.

This contradicts the assumption that v0 is positive.
The proof of Theorem 1 is thus complete. �
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