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Quantum mechanical treatment of the forced harmonic oscillator under the influence of
an arbitrary time-dependent force is treated. The unitary time development operator, phase
factor and excitation probability are calculated. ‘The phase factor is unable to derive in other
representations. These quantities depend on the types of forces and are evaluated explicitly
for several cases in adiabatic approximation.

The response of a system to an external time-dependent force'is treated in the
formalism of quantum mechanical perturbation theory.l? The treatment parallel
to the corresponding classical mechanics is the Heisenberg representation. The
more general perturbation is the interaction representation,? which is also the basic
framework in the field of quantum field theory. This article will demonstrate the
application to the forced linear harmonic oscillator.

If an external time-dependent force F,(z) is apphed to a generalized harmonic-
oscillator, the Hamiltonian for this system is expressed in terms of two canonical
obervables p and g. We assume a Hamiltonian of the form

=1 » 1. 2 ' : _

where F,(¢) is a real function of ¢, This is generalized further by introducing a
velocity-dependent term: ’

2m ——p? .|. 5 mo q qFl(t) PFz(t)9 (2)

where F,(¢) is also a real function of #. The Hermitian operators p and g satisfy the
relation

gp—pq=ih. 3.

It is convenient to introduce a operators

4= J (q+z mm)
(e
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The commutator of ¢ and a* is
[a, at]l=aa*—a*a=1. 5)

By the use of commutation relation, the Hamjltonian_(Z) may be written in the form
H=ho(a*a+ ) +fOa+,*@a", ©)

provided we define the function f(¢) such that

0=~ Fy@) +iv/ P2 . Q)

2mw
The Hamiltonian is split into zero-order part
Hy=ho(a*a+ —%—)
and the perturbation
H =f®a+r*@)a*. (3

The equation for the Schédinger representation is

=Hy=(Ho+H)Y ®

.. O
ih 5t

We are interested in the changes produced by the time-dependent forces in an
initially unperturbed linear harmonic oscillator. It is reasonable to assume the
disturbance is almost limited in the finite time interval, that is, H' tends to 0 when
t goes to + 0. H, will be assumed time-independent. We define a state function

V@ =exp(£-Hot) V@) (10)

At the time, = — o0, the system is in the ground state u, of the harmonic oscillator
and

Y=u,. an

At t= 4 o0, the state is in different excited states, ¥ (+ c0) will be a linear combin-
ation of eigen states

1 n .
U,= \/n_' (a"‘) Ug . (12)
If Y’ isdifferentiated, and the Schr&dingéf equafion' is used, we obtain

in W —my, (13)
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where

Hj=exp (% £ )H' exp (— L H0z> = f(D)ae~ 1t +f(at et , (14)

Eq. (13) gives
v (+ o0y =exp( = £ (" mi@ar ' (- 0. 1)
Eq. (13) can be formally solved by a linear relation
V'@ =U@,—0)y(—x), (16)

and the unitary time development operator is
U(t,— 0) = Pexp (— %S' H () dt’>=exp [—i(Ka+K*aD],  (17)

where

+o .
K={""Fpyeerar (18)
)
and P is the Dyson time ordering operator, which is expressed by the phase factor
exp [i6(#)]. To prove this, we use the theorem

eA+B=eAeBeC/2 (19)

for the rearrangement of the order of pairs of operators A and B, which satisfy
the commutation relation [ B, 4]= C(c-number). We find using the group property
U(ty, t3)U(ts, 1) =U(#4, t,) for U+ 42, — o) with

A=—Lamo (20)
ane

B=-— —;;—St_ij(t’)dt' @)
that

exp [—id() U+ At, — o)

' =exp| L 40 |exp [~160T0 G~ )
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=exp [ - %AtH}(t)]exp (—— —%—Sr Hi(@®) a’t)
— — At ¢ i 1 (4!
=exp( -4 {" 180, H(1)])
i (ttae , P !
x exp(— -h—g_w H(@) dt ) . 22)
Comparison with Eq. (16) requires that

idt

450y =4 1m0, Hi()1ar

B %égt_mFl(t)Fl(") [a:(®), g:()]

At

= 2mho SimFl(l‘)Fﬁ(t_')vSill [O)(f—t')] s (23)

where we have considered F,(¢) only, and

Hi(t) = —qF(2) 24
and

qr=exp (iHot[h)gexp (—iHot[h)

(25
=g cos wt+ (p/mw) sin wt
Integrating with respect to ¢ gives
—_— 1 t ’ t’ ! " 3 ’ —_ 4 "
5(t) = mg_w dt S_QFI () F, (") sin [0 — ) ]dz" . (26)

Phase is a common factor for any wave function and it disappears from the transition
probability. While our treatment enables to give. it.
We can find '

60 = 5oz | FIO) @7

by approximating F;(¢') ~ F(¢") in the adiabatic limit, so that the integration over #”
gives 1/w, and the double integral of Eq. (26) reduces to the single integral.

Next, Eq. (17) is transformed by using the theorem Eq. (19) and the commuta-
tion relation into

exp [—i(Ka+ K*a*)]=exp (— |kl 2[2) exp (.—>z'Kv*‘a+)' exp (—iKa), (23)

and thus Eq. (15) is rewritten with au =0 and with Eq. (12) for u,
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V(+ 0)=exp[—i(Ka+ K*a")1Y'(— ) =exp [ —i(Ka+ K*a*)]u,
=exp (— | K|%/2) exp (—iK*a%)u, (29)

=exp (— 1K1 £ (Jff,)" o,

The probability amplitude for finding the system in one of the excited states with
quantum number 7 is given by

P =y (+ @)y (+00) =exp (— | K| UKD (30)

after the interaction ceased. This is a Poisson distribution and satisfy conservation
0

of probability > P,=1.
n=0

The transition probability depends on constant K, which is the Fourier transform
of f(©). We examine the form of K and phase factor é(w0) for several cases. K
is assumed to be a real function (velocity-dependent force is neglected)

a) F@)=Alexp (—#*/7?)

K= Sw Ae~t* P emiotg = [; Jre=0 4,
-0

/12 @© —212/72 \/EAZT
0= 32 S_me = e
) e
K=Sw tzi e ot = Ly —>
_ 22 *® dt _ A2
5(Oo)~2mha)2 S—oo ©2+1%)?2  2mhw?c3

o F@) =,13_in_§ﬂ9—

K=AS°° ﬁingﬂe-imdtwa,

-

A2 ® sin2(z/1) A2
6(00) = 2mhw? S_ 12 d= 4mhw? °
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