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Quantum mechanical treatment of the forced harmonic oscillator under the influence of 

an arbitrary time-dependent force is treated. The unitary time development operator, phase 

factor and excitation probability are calculated. The 'phase factor 'is unable- to derive in other 

representations . These quantities depend on the types of forces and are evaluated explicitly 

for several cases in adiabatic approximation 

The response of a system to an external time-dependent force ~is treated in the 

formalism of quantum mechanical perturbation theory . I ) The treatment parallel 

to the corresponding classical mechanics is the Heisenberg representation . The 

more general perturbation is the interaction representation,2) which is also the basic 

framework in the field of quantum field theory . This article will demonstrate the 

application to the forced linear harmonic oscillator. 

If an external time-dependent force F1 (t) is applied to a generalized harmonic-

oscillator, the Hamiltonian for this system is expiess~d in terms of two canonical 

obervables p and q . We asswne a Hamiltonian of the form 

1
 H= 2m P2+ ~ mco2q2 qF (t) ' (1) 

where F1 (t) is a real function of t. This is generalized further by introducing a 

velocrty-dependent term 

H= I ,･p2+ ~ mco2q2 qF (t) pF (t) ' ' ' (2) 
2m 

where F2 (t) is also a real function of t. The Hermitian operators p and q satisfy the 

relation 

qp - pq = th . _ (3) 
It is convenient to introduce a operatprs, 

V
 
=: (~+i 9 )

 
a mco p 2h tuco 

V
 =; ( ' ) 
mco "p-a+ q'-1'~~~;' '~ 
2h : '

(4) 
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The commutator of a and a+ is 

[a, a+] = _ (5) aa+ a+a=1. 

By the use of commutation relation, the Hamiltonian (2) may be written in the form 

( + I ) H=hco a a+ 2 +f(t)a+r(t)a+, (6) 
provided we define the function f(t) such that 

f(t) V V h . mhco = ~ 2mco F1(t) +1 2 F2(t) (7) 
The Hamiltonian is split into zero-order part 

H0=ha)(a+a+ I ) 
2
 

and the perturbation 

IT = f(t)a + f * (t)a+ (8) 
The equation for the Sch6dinger representation is 

ih O~ =H~ (H +H)~ (9) ~ t 

We are interested in the changes produced by the time-dependent forces in an 

initially unperturbed linear harmonic oscillator. It is reasonable to assume the 

disturbance is almost limited in the finite time interval, that is, H' tends to O when 

t goes to :b oo . Ho Will be assumed time-independent . We define a state function 

~'(t)=exp h Hot) ~(t) (10) 

At the tme, t = - oo the system Is m the ground state u ofthe harmomc oscillator 

and 

~ = uo ' (1 1) At t = + oo , the state is in different excited states, ~(+ oo) will be a linear combin-

ation of eigen states 

u I (a+)"u (12) ~n " V! 
If ~' isdif~erentiated, and the Schr6ding~r equation is used, we obtaln 

a~' _ ~~ 

ih -H11-~t,, - (13) 6t 
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where 

(i , _ i o) h H: t)H exp( h H t HI' = ex p o = f(t)a ~~i~t + f * (t)a+ei~t (1 4) 

Eq. (13) gives 

I
 
r
 

~'(+00)=exp - ' ~'(-oo) HI' (t') dt ( 1 5) h
 " 

Eq. (13) can be formally solved by a linear relation 

~'(t) = U(t, - oo)~(- oo) , (16) 
and the unitary time development operator is 

J
l
 

U(t, - oo) =Pexp - HI'(t') dt' =exp [-i(Ka+K*a+)] , (17) h
 

co 

where 
J
i
c
o
 K= F(t)e~i~tdt (18) co 

and P is the Dyson time ordering operator, which is expressed by the phase factor 

exp [i6(t)]. To prove this, we use the theorem 

eA+B = eAeBeC/2 (1 9) 
for the rearrangement of the order of pairs of operators A and B, which satisfy 

the commutation relation [B, A] = C(c-number) . We find using the group property 

U(tl' t3)U(t3' t2) = U(tl' t2) for U(t+ At, - oo) with 

A= - ~ AtH (t) (20) 
ane 

=_ i f:co 

B HI'(t')dt' (21) h
 

that 

exp [-i~(t)]U(t+ At, - oo) 

= [ exp - ~ AtHl'(t)]exp [-ia(t)]U(t oo) 
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h AtH (t)] exp ( h oo - f: 

exp - HI'(t)dt 
= (- j: At exp 2h [HI'(t), HI'(t')]) 

" 

- j:+At ( i ,) x exp HI'(t') dt . (22) h
 

co 

Comparison with Eq. (16) requires that 

= flco iAt 
A~(t) 2h [HI'(t), HI'(t')]dt' 

= J:_ iAt 
2h Fi(t)F1(t') [ql(t) , ql(t')] 

l
:
~
 

_ At ~ 2mhco F1(t)F1(t:).sin [co(t'-t')] , (23) 

where we have considered Fl (t) only, and 

H (t) = - qlF1(t) (24) 
an d 

ql = exp (iHotlh)q exp ( - iHot/r~) 

(25) 
= q cos cot + ( p/mco) sin cot 

Integrating with respect to t gives 

J:_ dt'JC F1(t')F1(t") sin [co(t'-t")]dt" . 1
 

-" 

Phase is a common factor for any wave function and it disappears from the transition 

probability. While our treatment ~nables 'to gi,ve' it . 

We can find j
:
c
o
 

1
 6(t) = 2henco2 F~(t')dt' (27) 

by approximating F1 (t') ~- F(t") in'the adiabatic limit, so that the integration over t" 

gives I / co , and the double integral of Eq . (26) reduces to the single integral . 

Next, Eq. (17) is transformed by using the theorem Eq. (19) and the conmuta-

tion relation into 

exp [ - i(Ka + K*a+)] = exp ( - I K 1 2/2) exp ( - iK*a+) exp ( - iKa) , (28) 

and thus Eq. (15) is tewrittei with ~ll:o ~ O ahd 'with '~q. (12) f~r u* 
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~( + oo) =exp [ - i(Ka + K*a+)] ~' (- oo) =exp [ - i(Ka + K*a+)] uo 

exp ( I Kl /2) exp (-iK*a+)uo (29) 
'oo (_ik*)~ 

=exp (- I K12/2.) ~ uo ' 
n=0 ~n ! 

The probability amplitude for finding the system in one of the excrted states with 

quantum number n rs grven by 

2 (lK12)n (30) Pn=~'(+00)~ (+aD) exp( IKI ) n! 

after the interaction ceased. This is a Poisson distribution and satlsfy conservation 
co 

of probabilrty ~ Pn = I . 
n=0 

The transition probability depends on constant K, which Is the Founer transform 

off(t) . We examine the form of K and phase factor 6(oo) for several cases. K 

is assumed to be a real function (velocity-dependent force Is neglected) 

a) F(t)=hexp (-t2/T2) 
l
 
i
Q
o
 

K = he~t2/c2 e~icotdt = Vrlc ~Te~o)2t2/4 

_ ~2 _ ~lz:~2T 
l
i
 

~(oo) ~2t2/t2dt -~ 2mhco2 e 2~~mhco2 oo 

A
 b) F(t)=t2+12 

-i cot2 2 K h e~icotdt lr~ e~coc -r 
+T 

dt _ 
co 

6(oo) 2mhco2 2mhco2T3 ' -co (t2+1c2)2 ~ 

c) F(t) =hsin (t/T) 
t
 

j
 

K=~ co sin (t/T) e~i(otdt 7ch 

-eo t 

~2 _ Iv~2 
co sin2(t/1:) dt 

6(oo) 2mhco2 ~ 4mhco2 ' - co t2 
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