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Abstract

The present paper deals with the damped superlinear oscillator
X' +h(t) gy (X) + w?x =0,

wherew > 0 andgy(2) = |z/9 2z with g > 2. The origin(x,X) = (0,0) is the only equi-
librium of this oscillator. We herein establish a sufficient condition for the equilibrium
to be uniformly globally asymptotically stable. We conclude that under the assumption
that the damping coefficielhi(t) is integrally positive, if the integral froro tot + o of a
particular solution of the first-order nonlinear differential equation

u+h(t)@(u)+1=0

diverges to negative infinity uniformly with respectdgthen the equilibrium is uniformly
asymptotically stable. The above-mentioned result is expressed by an implicit condition.
We examine when the implicit condition is satisfied and when it is not satisfied. We also
give explicit sufficient conditions which assure that the equilibrium is uniformly globally
asymptotically stable. Using the obtained result, we present an example of which the
equilibrium is uniformly globally asymptotically stable everhit) is unbounded.
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1. Introduction

We consider the second-order differential equation
X' +h(t) @gy(X) + w?x =0, (1.1)

where the prime denotedt, the damping coefficiert(t) is continuous and nonnegative
fort > 0, the functiong(z) is defined by

w2 =1249%  zeR

with g > 2, and the spring constant is positive. It is clear that the only equilibrium of
(1.1) is the origin(x,X') = (0,0). The global existence and uniqueness of solutions of
(1.1) are guaranteed for the initial value problem. Eq. (1.1) naturally contains the damped
linear oscillator

X' +h(t)X 4+ w’x=0 (1.2)

as the special case in whigh= 2. Sinceq > 2, we call Eq. (1.1) @amped superlinear os-
cillator. Eq. (1.2) is one of the most famous models which describe a number of physical
phenomena.

The purpose of this paper is to present sufficient conditions on the damping coefficient
h(t) for the equilibrium of (1.1) to be uniformly globally asymptotically stable (see Sec-
tion 2 about the exact definition). In time varying differential equations such as Eq. (1.1),
it is well-known that the concept of uniform global asymptotic stability greatly differs
from the concept of global asymptotic stability; that is, all solutirft$ satisfy

tlmx(t) = tI|_r>rgox’(t) =0.
It is natural that the arrival time from the initial poifx(tp), X (to)) to a neighborhood
of the origin(0,0) depends on the initial point, because the longer the distance between
the initial point and the origin is, the larger the arrival time will become. In general, it
depends on also the initial tintg. To verify that the equilibrium of (1.1) is uniformly
globally asymptotically stable, we have to confirm that each solution of (1.1) approaches
near the equilibrium within the same time regardless of the initial time of the solution;
namely, the initial time does not affect the asymptotic speed of solutions of (1.1) to the
equilibrium. Detailed analysis is required for this verification. However, since we can
predict the convergence speed to the equilibrium of solutions, the research on the uniform
global asymptotic stability possesses high merit on the application aspects, for example,
perturbation problems and control theory.

Very recently, Sugie and Onitsuka [41] have considered Eq. (1.2) and presented some
sufficient conditions for the uniform asymptotic stability. To state their result, we need
to introduce a family of functions as follows. The damping coefficlgh} is said to be
integrally positivelf

oe] o'n
h(t)dt = oo

n=1"Tn



for every pair of sequencdsy} and{oy} satisfyingtn+A < o, < 141 for someA > 0.

The integral positivity was introduced by Matrosov [21] (see also [13, 14, 15, 25, 35,
39, 40]). For example, the function $inis integrally positive. It is known that(t) is
integrally positive if and only if

t+d
liminf h(s)ds>0

t—oo  Ji

for everyd > 0. Let{l,} be a sequence of disjoint intervals and suppose the width of
is larger than a positive number for alE N. As can be seen from the definition above, if
h(t) is integrally positive, then the sum fromequals 1 too of the integral ofh(t) on |,
diverges to infinity even if intervals, andl,, 1 gradually part as increases. Hence, the
integral positivity is considerably stronger restriction than

lim H(t) = oo,

t—o0

where

t
H(t):/h(s)ds
0
Theorem A. Suppose that(h) is integrally positive If

o sehngr
fim /. (S

then the equilibrium of1.2)is uniformly asymptotically stable

ds= o uniformly with respect tao > 0, (1.3)

Because Eq. (1.2) is linear, the uniform asymptotic stability implies the uniform global
asymptotic stability. The double integral (1.3) is the so-called growth conditidmton
The condition of this type was given for the first time by Smith [34]. He proved that under
the assumption that there existstax 0 such thah(t) > hfort > 0,

@ [ el®ds .
/Owdt_ (1.4)

is a necessary and sufficient condition for the equilibrium of (1.2) to be (merely) asymp-
totically stable. Afterwards, Smith’s result was improved by many authors by mak-
ing an effort to remove the lower bourfdfrom the assumption ofi(t) (for example,
see [3, 15, 17, 18, 27, 28, 35, 36, 37, 38, 42]). However, all of them are researches on the
asymptotic stability and none of them are researches on the uniform asymptotic stability.
Theorem A is a result of developing Smith’s result into the uniform asymptotic stability
from the asymptotic stability.

Clearly, condition (1.3) is a restriction that is stronger than condition (1.4). Itis known
that condition (1.4) is satisfied with(t) =t (refer to [17]). However, the equilibrium of
the damped linear oscillator

X'+txX+x=0 (1.5)

3



is not uniformly asymptotically stable, because Eq. (1.5) is equivalent to the system
X =y
y = —x—ty

and a fundamental matrix of the system is given by

X(t) = (Xll(t) X;|_2(t)>7

X21(t) Xzz(t)
where

t
xqa(t) = e /2, xio(t) = e /2 / e/2ds
0
t
Xor(t) = —te T72 xpp(t) = 1— te_tz/z/ e /2s
0

(for detailed calculations, see [41]). This means that condition (1.3) is unchangeable to
condition (1.4) in Theorem A.

In EqQ. (1.2), the damping force is assumed to be proportional to the velocity of an
object. However, this assumption is not necessarily suitable in many phenomena, for
instance, a simple pendulum underwater, free rolling motion of a small fishing vessel and
damping oscillation by the air resistance. As known well, in those models, the damping
force is approximately proportional to the square of the velocity (for example, see [1, 4,
7,9, 10, 19, 20, 24, 26, 29, 33, 43, 44]). In addition, physical models whose damping
force is neither linear nor quadratic have been reported in many papers (for example, see
[5, 8, 23, 32]). Thus, it would be reasonable to consider the damped superlinear oscillator
(1.1).

Unfortunately, Theorem A cannot be applied to Eq. (1.1) directly wdpen2. Then,
we will look at condition (1.3) from a different point of view. For this purpose, we con-
sider the scalar linear differential equation

U +h(t)u+1=0. (1.6)

By taking into consideration that the solutiaft; o) of (1.6) satisfying the initial condi-
tionu(o; o) =0 is given by

[Lel9ds
Y

it turns out that condition (1.3) coincides with

ut;o) =

t+o

tIim u(s,o)ds= —o uniformly with respect too > 0.
—% Jg

Hence, the uniform asymptotic stability for Eq. (1.2) is decided by whether the integral
from o tot+ o of u(t; o) diverges to negative infinity es— co uniformly with respect
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to 0. Because Eq. (1.6) has a close relation with the damped linear oscillator (1.1) as this
fact shows, we will call Eq. (1.6) eharacteristic equation

We will extend Theorem A from the viewpoint of characteristic equation. What is the
characteristic equation for the damped superlinear oscillator (1.1)? The following result
is an answer to the question.

Theorem 1.1. Suppose that () is integrally positive Then the equilibrium of1.1)is
uniformly globally asymptotically stable provided that

t+o

tIln u(s,;o)ds= —oc uniformly with respect too > 0, a.7)
©Jo

where Ut; o) is the solution of
u+h(t)@(u)+1=0 (1.8)
satisfying @o;0) = 0.

Let us call (1.7) auniform divergence conditionBy the way, if condition (1.3) is
satisfied, does the equilibrium of (1.1) become uniformly globally asymptotically stable?
We would like to answer about this question in Section 4.

This paper is constituted as follows. In Section 2, we give the proof of the main
result, Theorem 1.1. In order to prove uniform global asymptotic stability of the equilib-
rium, considerably detailed analysis is required. We analyze the asymptotic behavior of
solutions of an equivalent nonlinear system to the damped superlinear oscillator (1.1) in
detail. The proof of Theorem 1.1 is composed of four parts. The last part is the core of
the proof. It is advanced in four steps. The first step is classified into three cases. Before
going into the proof, we describe the flow. Since the uniform divergence condition (1.7)
is represented implicitly, we cannot judge whether it holds or not from only the damping
coefficienth(t). In Section 3, we present an easy sufficient condition which guarantees
(1.7). Conversely, we also give necessary conditions for (1.7) to be satisfied, which is easy
to check. The characteristic equation (1.8) plays a vital role in Theorem 1.1. In Section 4,
we provide some corollaries of not using the characteristic equation (1.8). The first corol-
lary gives an affirmative answer to the question mentioned above; namely, condition (1.3)
implies condition (1.7). By virtue of Theorem 1.1 and Proposition 3.1, we see that the
equilibrium of (1.1) is uniformly globally asymptotically stable in the case that the damp-
ing coefficienth(t) is integrally positive and bounded. In Section 5, by using the second
corollary obtained in Section 4, we give an example that the equilibrium of (1.1) is uni-
formly asymptotically stable even if the damping coefficib(tt) is unbounded. Finally,
in order to facilitate an understanding of the example, we attach two graphs concerning
h(t) and a phase portrait of solution curves of (1.1).



2. Proof of Theorem 1.1

Lety =X /w. Then, the damped superlinear oscillator (1.1) becomes the nonlinear
system
X = wy

Y = —wx— T ?h(t) gy(y).

Letto > 0 andxo = (X(to), (o)) € R2. We denote the solution of (2.1) passing through a
pointxg at a timetg by X(t;tp,Xo). The timety and the poinkg are the so-called initial time

and initial point, respectively. Here, let us give some definitions about the zero solution of
(2.1) which is equivalent to the equilibrium of (1.1). The zero solution of (2.1) is said to be
uniformly stabldf, for any € > 0, there exists &(&) > 0 such thatp > 0 and||Xp|| < d(€)

imply ||x(t;to,Xo)|| < € for all t > to. The zero solution is said to heiformly globally
attractiveif, for any p > 0 and anyn > 0O, there is al' (p,n) > 0 such thaty > 0 and

|IXol| < pimply ||X(t;to,Xo0)|| < n forallt >tg+ T. The solutions are said to lbaiformly
boundedf, for any p > 0, there exists &(p) > 0 such thaty > 0 and||Xo|| < p imply
||X(t;to,X0)|| < B for all t > tg. The zero solution isiniformly globally asymptotically
stableif it is uniformly stable and is uniformly globally attractive, and if the solutions are
uniformly bounded. For example, we can refer to the books [2, 6, 11, 12, 22, 30, 31, 45]
for those definitions.

In the definition of uniform global asymptotic stability, the numbé«s), T(p,n)
andB(p) must be independent ¢f. Therefore, fore, p andn given, we have to find
positive constantd, T andB that are independent &f in the proof of Theorem 1.1. This
is an important point.

Before giving the full proof of Theorem 1.1, it is helpful to mention its broad outline.
The proof is divided into three parts. First, we will show that

2.1)

(a) the zero solution of (2.1) is uniformly stable.

To be precise, we verify that i > 0 and||xg|| < d(€) = &, then||x(t;to,Xo)|| < € for all
t > tp. This part is comparatively easy. We next show that the zero solution of (2.1) is
uniformly globally attractive. For this purpose,

(b) we determind (p,n) > 0 for an arbitraryn > 0,
and we prove that

(©) |Ix(t*;to,%0)|| < 6(n) for somet* € [to,to+ T].
Finally, we show that

(d) the solutions of (2.1) are uniformly bounded.

Letx* = X(t*;tp,X0). Then, from the conclusion of parts (a) and (c), we have
IX(t;to, X0) || = ||X(t;t*,x*)|[| <n for t >t*.

Part (c) is the core of the proof of Theorem 1.1. We prove part (c) by way of contradiction.
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Proof of Theorem 1.1. Part(a): For ang > 0 sufficiently small, we choose
o(e) =¢.

Letto > 0 andxp € R? be given. We will show thalixo|| < & implies ||x(t;to,Xo)|| < &
fort > to. For convenience, we writg(t), y(t)) = X(t;to,Xo) and define

2 2
vty =" Y 2 st 0

Then,V/(t) = x()X(t) +y(t)y'(t) = —w92h(t)|y(t)|9 < 0 fort > to. Sincev(t) is de-
creasing fot > tp, we see that

[IX(tt0, X0) | = v/ 2v(t) < v/2v(to) = [[Xol| < 6 =¢

for t > tp; namely, the zero solution of (2.1) is uniformly stable.

Part (b): For every > 0 andn > 0, we decide a numbér(p,n) as follows so that
%ol < p implies ||x(t;to,Xo)|| < n for allt >to+ T. From condition (1.7) it turns out
that there exists a positive numbgrdepending only o andn such that

t+o p
/ u(s,o)ds< —— for t> 1y, (2.2)
o &

. w’n
- 1, 20t
£ mln{ = }

As was mentioned in Section 1, sinleg) is integrally positive, the inequality

where

t+d
liminf h(s)ds> 0

t—oo  Jt

holds for everyd > 0. Hence, we can find ah> 0 and & > 0 such that
t+1

h(s)ds>¢ for t >{.
t

We define

p2 2 a/2
2002 <H> “’

where[c] means the greatest integer that is less than or equal to the real nangiece
w, ¢ andf are fixed positive constants, the numbgrandt, depend only o andn. Let

. (3n2 g .
szln{%,aoz} and T, =f+

wI=2 / p\a/2 t+u/(2p2w)h
(3)")

V= “[Q'Qf 2 (s)ds
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Note thatv is a positive number and it also depends onlypcendn. From the definition
of v, we can choose a positive numhkmgrdepending only o andn such that

t+u/(2p2w)h g pv (2 q/2 f -
> — > T3. .
/t (s)ds> 2 (H) ort>r13 (2.3)

Using numberd, T2, T3 andv, we define

=T(p,n) =13+ ([ﬂ +1><T1+ 2+1).

Part (c): Consider a solutiot(t;to, Xo) of (2.1) withtog > 0 and||xo|| < p. The purpose
of part(c) is to prove that there exist$*ac [to,to+ T| such that

IX(tto,%0)[| < &(n)=n (2.4)

for everyn > 0. By way of contradiction, we suppose tha{(t;to,Xo)|| > n forto <t <
to+ T. Then, we have
2 1 2
1 < 2 Iettsto, x0) | = v(t) < v(to) = 5 x0]> < 2 (2.5)
2 — 2 2
fortg <t <tg+T. Let us pay attention to the behaviong{t), which is the square of the
second component aft;tg, Xp)-
Stepl: For any intervala, 8] C [to,to+T], if y?(t) < u for a <t < B, then the time width
B — a is less tharry + 1, whereu andrty are numbers given in part (b). Singe< 3n2/4,

by (2.5) we have
=) -2 2\ /n2—p =

for a <t < . Hence, there are two possibilitiest) > n/2 fora <t < andx(t) <
—n/2 fora <t < . We consider only the former, because the latter is carried out in
the same way. To show that the beginning sentence of this step is true, we divide our
argument into three cases: (i)Qy(t) < /i for a <t < B; (i) —/H < y(t) < 0 for
a <t < ; (iii) the other case.

Case (i): We have

_ w
V(1) = — ox(t) - ) gyy(D) < - 5
for a <t < . Sincegy < w?n/2 andu < €2/ w?, we see that
w
SO < E<yB) ) = [V - D p-a)
Thus, we can conclude thBt— a < 1 in this case.

Case (ii): By way of contradiction, we show that- a < 11. For this purpose, we
suppose that there exists an inteffeal, 81] C [to,to+ T] with 1 — a1 > 11 such thak(t) >



n/2 and—,/f <y(t) < 0fora; <t < B;. Taking into account thagy = min{1, w?n/2}
andgy(&) < &, we can estimate that

(wy(t))’ _ w?X(t) B wI=Th(t) gy (y(t))

&o & &
@) h() @y(wy(b)
& &
__@n _ ht) g(wy®))
- 2& &
<-1- h(t)qu(wz(ft)>

for a; <t < B;. Defineé (t) = wy(t)/g and letf (t,u) = —1—h(t) @ (u). Then,
§'(t) < f(t, (1))

for a1 <t < 1. We comparé (t) with the solutionu(t; ar1) of (1.8) satisfyingu(as; o)
= 0. Sinceé (a1) = wy(a1)/& < 0, by a basic comparison theorem, we see that

wy(t)
&

=¢&(t) <u(t;ay) <0

for a1 <t < B;. Hence, we have
X (t) < eu(t;ay) for a3 <t < pBi.

Integrate both sides of this inequality fram to a1 + 11 < 31 to obtain
a1+T1
x(o1+11) —X(01) < so/ u(t; aq)dt.

az

From (2.2) witho = a; andt = 14, it follows that

X(o1+11) —X(01) < & (— ££0> =—p.

On the other hand, by (2.5) again, we have

0<%§x(t)§p for ap <t <,

and therefore,
X(a1+ 1) —x(01) > —p.

This is a contradiction. Thus, we can conclude {B@at a1 < 171 in this case.
Case (iii): Sincex(t) > n/2 for a <t < 3, the solution curve ok = x(t;tp, Xo) Stays
in the right-hand half-plang(x,y): x > 0 andy € R}. Taking into consideration of the
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vector field of the orbit on the positiveaxis, we see that the orbit intersects the positive
x-axis only once for <t < f3. Hence, there existsyac [a, 8] such that/(y) =0,

O<yt)<yp fora<t<y

and
—VH<y(t) <0 for y<t<p.
Repeating the same arguments as cases (i) and (ii), we see that

B-—a=B-y+y—a<1+1

In any case, it turns out that the beginning sentence of this step is true.
Step2: For any intervala, B] C [to,to+ T], if y2(t) > u/2 for a <t < B, then the time
width B — a is less tharr,, wherep and 1, are numbers given in part (b). To show this,
we suppose that there exists an intefegl 3] C [to,to+ T] with B2 — a2 > 12 such that
y2(t) > /2 for ap; <t < Bp. SinceV/(t) = — w92h(t)|y(t)|9 < 0 fort > to, by (2.5) we
have

2B B
w2 (E) " [Fhtyat < w2 [ o) (oo
az

2 , 2
— _/aﬁ\/(t)dt =Vv(az) —Vv(Bz) < %i

> /2
)t < p* (3>q. (2.6)

az 20092 U
On the other hand, sinae =t + [p%(2/u)%?/(2¢w%2?)] + 1, we see that

namely,

B ax+T 02+f ax+T2
ht)dt > / h(t)dt = / h(t)dt+ h(t)dt
[of

a2 ar 2 o+t
ax++[p?(2/ )92/ (20w 2)]+1
> / A h(t)dt
oo+t

[0%(2/1) /2/ 202

/az+t+l+l
Oop+t+i

2 2 a/2 2 a/2
> P — +110> P 3 )
200092\ 2092\ U
This contradicts (2.6). Thus, it turns out that the beginning sentence of this step is true.
From Steps 1 and 2, we conclude tlyatt) cannot remain in the range fropy2 to
u for a long time and passes through this range many times. Then, how much is time for

y?(t) to stay in this range? To answer this question, we divide the intégvalrs, to+ T]
into some small intervald whose width ist; + 72 + 1, where

J=to+ T3+ (i —1)(Ta+T2+1), to+ T3+i(T1+T2+1)]
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for anyi € N. Then, we can describe
to+13,t0+T] =hURU U1 y)41-

Step3: Let us examine the behavior wi(t) in the intervald; in detail. For this purpose,
we subdivide); into the intervalsty + 13,tg+ T2+ T3] andto+ T2+ T3,to+ T1 + T2+ T3+

1]. Since the width ofty + 13,tp + T2 + T3] is T2, it turns out from the the conclusion of
Step 2 that there existsta [to+ T3,to + T2+ T3] such thay?(t) < p/2. Since the width
of [to+ T2+ T3,to+ T1 + T2+ T3+ 1] is 11 + 1, it also turns out from the the conclusion
of Step 1 that there existstae [to+ T2+ T3,to + T1 + T2 + T3+ 1] such thaty?(f) > p.
From the continuity ogﬂ(t), we can find numberg andty witht <t; < to < such that

y2(t1) = 1/2,y?(tz) = p and

% <Y(t)<p fortp <t<t. (2.7)

In fact, we have only to define andt; as inf{t € [t,]: y?(t) > u} and sugt € [t,to]:
y2(t) < u/2}, respectively. Hence, we have

b =Yt) Y = [(P) ot
= 2 [ (O + & PO (O ot < 260 [ o)t

It follows from (2.5) that

2
O] < 3 () +y20) < 2

fortg <t <tg+T. Consequently, we obtain

<t —t. 2.8
Using the estimations given in the preceding step, we examine the loss of the total

energyv(t).
Stepd: From (2.7) and (2.8) it turns out that

ito) ~vity) = [ V(t)dt= — a2 | “hit)ly(e) it

1 1

< —wq2(£>Q/2/t2h(t)dt

t1

= N

h(t)dt.

2
< — wQ—z(E>q/2/tl+y/(2p w)

1

Hence, by (2.3) we have

2
V(tz) —v(ty) < — pTv

11



SinceV'(t) = — wi2n(t)|y(t)|9 < 0 fort > to, it is clear that
V(ty) —Vv(to+13) <0 and v(tp+T1+ T2+ T3+ 1) —Vv(tp) <O.
We therefore conclude that
V(t)dt =V(to+ 11+ T+ T3+ 1) — V(t2) + V(t2) — V(t1) + V(t1) — V(tg + T3)
1
p?v
5
Repeating the same process as in the proof of Step 3, we can estimate that

S_

2
V(tydt< — PV
Ji 2

fori=2,3,...,[1/v]+1. This means that the loss of the total ener@y in each interval
J is at Ieastozv/z. Hence, we obtain

[1/v]+1 2 1 2
V(to+T) —V(to+T3) = Z J\/ S—p—z‘/({;]+1)<—p7,

and therefore, by (2.5) we have

2

V(to+T) < V(to+ 13) — % < 0.

This contradicts the fact thatt) > 0 fort > to. Thus, inequality (2.4) was proved.
Part (d): For any > 0, let
B(p) = p.
SinceV/(t) = — wI2h(t)|y(t)|9 < 0 fort > to, if ||xo|| < p, then

IX(t;to, X0) [ = v/2v(t) < v/2v(to) = [[xol| < p =B

for allt > tg. Thus, the solutions of (2.1) are uniformly bounded.
The proof of Theorem 1.1 is now complete. O

3. On the uniform divergence condition (1.7) in Theorem 1.1
Letg* be the conjugate number gf namely,

1 1

— _|_ ”
a q
Sinceq > 2, it follows that 1< g* < 2. Note thatgy: is the inverse function ofy,.

When is condition (1.7) satisfied? Conversely, when is condition (1.7) not satisfied?
In this section, we will answer these questions.
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Proposition 3.1. Suppose that there exists An> 0 such that
O<ht)<h fort>D0. (3.1)
Then conditior(1.7)is satisfied

Proof. Consider the curv€ defined by

)

It follows from (3.1) thatgy (1/h(t)) > @y (1/h) for t > 0. This means that the cur@

is located in the region
1
{(t,u) 't>0 andu< _%*(ﬁ)}'

Let o be any fixed nonnegative number and let us pay attention to the behavior of the
solutionu(t; o) of (1.8). Note thati(o; o) = 0. Taking into account that

u(t;o)=—-1-ht)@(ut;o)) <0 (3.2)

as long as the solution curve= u(t; o) is over the curv€, we see that the solution curve
arrives at the straight line= — @ (1/(2h)). Lett; be the arrival time. Then,

— %*(215) <u(t;0) <0; (3.3)

namely,

1

O< @(—ut;0)) < —

B(-u(t;0)) <
for o <t < t;. Hence, we have

—1<U(t;0)=—1+h(t)@(—u(t; o))
L1

2h 2

for o <t < t1. From this estimation it turns out that

1 1
%(ﬁ) <t1—o<2qh*(zﬁ). (3.4)

It also turns out from (3.2) that the solution curve cannot return to the region

{(t,u):t >t and — %*(Zlﬁ) < ugo}.

13
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In other wordsp(t; 0) < — @y (1/(2h)) for t > t;. Hence, by (3.3) and (3.4) we have

/t+au(s; o)ds< /Hau(s; o)ds

g t1

<—(nq*<21ﬁ>(t+a—t1)<—%*(21ﬁ><t—2%*(2—1ﬁ>> (3.5)

for t sufficiently large.
For anyK > 0, let

i)+L
2h) " @y (1/(2h)
Then, by (3.5) we obtain

t+o
/ u(s,o)ds< —K fort>T.

g

Hence, the integral frono to t + o of u(t; o) diverges to negative infinity als— o
uniformly with respect tao; namely, condition (1.7) holds. a

Proposition 3.2. Let ht) is a positive differentiable function di, «). Suppose that

lim h(t) = o (3.6)

{—o0

and there exist constanks> 0 and T > 0 such that

H(t)
— <K fort>r, (3.7)
(h(t))d
wherek < 1if g =2 andk may be any positive number if>¢2. Then conditior(1.7)is
not satisfied

Remark 3.1. In the proposition mentioned above, it is not necessarily assumed that the
damping coefficienh(t) does not necessarily need to be increasing. Hence, the curve
C:u= —@y(1/h(t)) does not also necessarily increase monotonously. It follows from
(3.6) that the curv€ is asymptotic to thé-axis.

To prove Proposition 3.2, we prepare the following lemma.
Lemma 3.3. Let f(t) be a negative continuous function @ ). If f(t) increases and

approaches zero as-t o, then the integral frono to t+ o of f(t) does not diverge to
negative infinity as t» co uniformly with respect t@.

14



Proof. By way of contradiction, we suppose that
t+o

tIi%rn f(s)ds= —o uniformly with respect toog > 0.
©Jo

Then, for anyK > 0 there exists & (K) > 0 such that
T+o
/ f(s)ds< —K forany g > 0.
o
Sincef(t) is negative and increasing, we see that

—-K> /Tmf(s)dsz f(o)T;

o

namely,f(o) < —K/T for all 0 > 0. This is a contradiction, becau$é) tends to O as
t — oo, O

Proof of Proposition 3.2. By (3.6), we can define

glt)=— maxqaq*<h<1$)) <0

t<s
fort > 0. The functiorg(t) approaches zero &s—+ «. Since

s < mghes

for any 1, andt, satisfying 0< 11 < Tp, we see that

ot = (55) = ()

<)~ () o0

that is,g(t) is increasing. Sincé(t) is differentiable fort > 0, we also see thaj(t) is
right differentiable fort > 0.
We divide the intervalt, «) into

| = {t >1:g(t) =—<Pq*(h(1t))}’
J= {t >T1ig(t) < —%*(Wlt))}’

wherert is the constant given in (3.7). Let J. Then,

(- (g )) =00 < i)

15




Hence, there existsta> t such that

This means that

_%*<Tlf)> < _%*(Tla)> fort<o<ft

~or(5) <o) roro=t

From these inequalities it turns out that

o905 (o)) =~ () =00

for anyse (t,f). Hence, we have

and

' (1) = lim
g+ sot+0 S—

Lett € 1. Then,
minh(s) = h(t).

t<s

This means that< simpliesh(t) < h(s). From the differentiability oh(t) it follows that

() =N, () = lim &=

_ > 0.
s—t+0 s—t

Hence, by (3.7) and the assumption that &j* < 2, we have

M _ )
(h(t)¥ = (h(t))?

0<d,(t)=(a"-1) - <K

fort € 1. Thus, we see that
0<d (t)<k fort>Tt. (3.8)

Letn be any integer. Consider the curve definedibyng(t). Let us name this curve
Ch. Sinceg(t) is increasing, it turns out that for eaahe N, the curveC, does not fall
through the regiod(t,u):t > 0 and u < 0} and approaches theaxis. Hence, the curve
Cn and the straight line = —t meet only once. Let, be the intersecting time. Then, the
time s, satisfies that

1 1
s =nma (15 ) =0 (s )

16



For any integers; andn; satisfyingn; < np, the curveCy, is under the curv€,,, because
g(t) < O0fort > 0. Hence, the sequengs, } is strictly increasing. It also turns out that

Sh— 0 asn-— o,

Since{s,} diverges to infinity as1 — o, we can find a sufficiently largem € N which
satisfies thas,, > t and
@(m) >14+km (3.9

Recall that O< k < 1 if q= 2 andk is any positive number i > 2.

Let o > 0 be fixed arbitrarily and let us pay attention to the behavior of the solution
u(t; o) of (1.8). We will show that the solution curve= u(t; o) does not meet the curve
Cm. By way of contradiction, we suppose that there exigis>a o such thau(ty; o) =
mg(t;) andu(t; o) > mgt) for o <t <ty. Sinceu'(t;0) = —1—h(t)@(ut;o)) > —1
fort > o, the solution curvei(t; o) is located over the curi@y,. Hence, it is obvious that
t1 >Sn>T.

From the definition of; it follows that

U'(t1;0) <md, (t1). (3.10)

On the other hand, it turns out from (3.9) that the differential coefficienttob) att =t;
is larger thark m, because

U(ty;0) = —1—h(t1)gy(mgty)) = — 1—h(ty) g(m) @y (9(ta))

— 1+ h(tl>%<m>%(%*(m>)
h(ty)

mintlésh(s>
>—1+@(m)>—-1+1+Km=km

= —1+q@m

Hence, by (3.8) we have
U'(t1;0) > km>md, (t1).

This contradicts (3.10). Thus, we conclude that
mgt) <u(t;o) <0 (3.11)

fort > 0.
Suppose that condition (1.7) is satisfied. Then, forlény O there exists & (K) >0
such that

t+o
/ u(s,o)ds< —K fort>T.
o
Hence, from (3.11) it follows that

t+o

g(s)ds< K fort>T;
g m

17



namely,
t+o

tIi%rn g(s)ds= —o uniformly with respect too > 0.
®Jo

On the other hand, by means of Lemma 3.3, we conclude that the integradftoint- o
of g(t) does not diverge to negative infinity as» c uniformly with respect tar, because
g(t) is a negative continuous increasing function(0r~) and approaches zeroas> .
This is a contradiction. Thus, condition (1.7) is not satisfied. O

Remark 3.2. Although it seems that the inequality (3.7) in Proposition 3.2 is a technical
condition for the proof, this inequality is quite reasonable. The fundtiét)/(h(t))d
satisfies that

e H(t)
|ItrTl>IoI;lf W =0. (3.12)

Indeed, if there exist constangs> 0 andt > 0 such that

h'(t)
()T >y fort>1,

then we have

(AN O
o () =@ - Dt < —(@ — 1y

fort > 1. Integrate this inequality to obtain

@ (55) < @ () ~ @ - Dyt

fort > 1. The left-hand side is positive and the right-hand side tendscstoast — co.
This is a contradiction. Thus, if the functidii(t)/(h(t))9 is strictly decreasing fot
sufficiently large, then it follows from (3.12) that condition (3.7) is satisfied witk O.
In addition, it turns out that the functidni(t) /(h(t))9" never increases monotonously.

As was mentioned in Section 1, the equilibrium of the damped linear oscillator (1.5)
is not uniformly asymptotically stable. As a matter of fact, the following fact is derived
from Proposition 3.2.

Example 3.3. If h(t) =t andq = 2, then condition (1.7) is not satisfied.

It is clear thatt is positive and differentiable far> 0. Condition (3.6) holds when
h(t) =t. Sincel(t)/(h(t))? = 1/t2, condition (3.7) is satisfied with = 2, k = 1/4 < 1
andt = 2. Thus, from Proposition 3.2. it turns out that condition (1.7) is not satisfied.

Remark 3.4. By Remark 3.2 we also conclude that condition (3.7) is satisfied mitD.
In fact, if h(t) =t andqg=q* = 2, then

h'(t)h(t) —g* (W (t))2=—-2<0 fort>0.

This means that'(t)/(h(t))¥ is strictly decreasing.

18



Although a complicated expression will be used, we can loosen condition (3.7) in
Proposition 3.2 a little. To this end, we define a family of functions. guét) be differ-
entiable and increasing for> 0, and satisfies that

Y(r)—o asr— o (3.13)

and there exists aR > 0 such that
O<y(r)<r forr>R (3.14)

We denote the derivative @i(r) by

Then, we have the following result.

Proposition 3.4. Let ht) is a positive differentiable function @, «). Suppose that con-
dition (3.6) holds and there exist constars> 0 and 7 > 0 such that

W (t)r (h(t))
h(t) @ (W(h(1)))

wherek < 1if g =2andk may be any positive number if>¢2. Then conditior(1.7)is
not satisfied

<k fort>r, (3.15)

Because the proof is performed by the same method as the proof of Proposition 3.2,
we merely explain only the outline of the proof, in order to focus on the difference.

Outline of the proof of Proposition 3.4. Define

9) = ~maxey (m) o qqq*(w<mint1<sh(s>>) <0

fort > 0. Then, from (3.6), (3.13) and the differentiability loft) it turns out thaty(t)
increases and approaches zerd as, and it is right differentiable fot > 0. By (3.6)
again, there existsa> 1 such thah(t) > Rfort > 1.

We divide the intervalt, o) into

J= {t >T1:g(t) < —cm(@)}

Then, as in the proof of Proposition 3.2, we see tigt) = 0 fort € J. Since 1< q* < 2
andh(t) > 0fort €1, by (3.14) and (3.15) we have

H®)gr(ht)) _ Kh(t)

(wh()e — w(h(t))

0<d,(t)= (g ~1)
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fort € 1. To sum up, we obtain

k()
0= = Ym)

Consider the curve defined loy= ng(t) for eachn € N and name this curv€,. Let
S, be the intersecting time of the cur@ and the straight linee = —t. Then, it turns out
that the sequencs,} is strictly increasing and diverges to infinity as+ «. Hence, we
can find a sufficiently largen € N which satisfies thedy > T andgy(m) > 1+km.

Let o > 0 be fixed arbitrarily. By the same way that we used in Proposition 3.2, we
can show that the solution curve= u(t; o) of (1.8) does not meet the cur@,. In fact,
if there exists &; > o such thatu(ty; o) = mg(t;) andu(t; o) > mgt) for o <t <ty,
thent; > s, > 1. Hence, by (3.14) we have

md, (t2) > U'(t;;0) = —1—h(tr) gy(mgty)) = — 1 —h(ts) (M) (9(t2))

= —1+h(t) g(m)ey (‘Fh* (w(min;sh(S))»
h(t1)

(ming=eh() — L @M
h(t1) K h(ty)
() o)’

which contradicts (3.16) at=t;. Thus, we conclude that

mgt) <u(t;o) <0 (3.17)

fort > 1. (3.16)

h(tl)
W(h(ty))

=~ 1+ @y(m

>—1+1+m

> —1+(1+Kkm)

fort > o.
Suppose that condition (1.7) is satisfied; namely, fork&nyO there exists & (K) >0
such that
t+o
/ u(s,o)ds< —K fort>T.

o

Then, it follows from (3.17) that

t+o
lim g(s)ds= —oo uniformly with respect too > 0.

t—oo /g
However, sinceg(t) is a negative continuous increasing function @) and approaches
zero ad — o, Lemma 3.3 insists that the integral framtot + o of g(t) does not diverge
to negative infinity as — co uniformly with respect tas. This is a contradiction. Thus,
condition (1.7) is not satisfied. O

Remark 3.5. When g(r) = r, condition (3.15) coincides with condition (3.7). Condi-
tions (3.7) and (3.15) are inevitably satisfied fam whichh'(t) < 0. On the othe hand, if

Y(r) =4/, then
MOwhe) WY Wy
t

h(t) @ (W(h(t))  2(h(t))a/21 = 2(h(t))T — (h(t)*
20



fortinwhichh’() 0;if Y(r) =logl+r, then
hit) (1)
( )% (w(h(t))) h(t)(1+h(t)))(log(1+h(t)))¥ 1
N (O NN (I (0
~ ht)(1+h())) ~ (h(t))> ~ (h(t))"
for t in whichh (t) > 0. Thus, condition (3.7) implies (3.15).

4. Corollaries

In this section, without using the characteristic equation (1.8), we give some sufficient
conditions which guarantee that the equilibrium of (1.1) is uniformly globally asymptoti-
cally stable. First of all, we answer the question presented in Section 1 as follows.

Corollary 4.1. Suppose that(t) is integrally positive If condition(1.3)is satisfiedthen
the equilibrium of(1.1)is uniformly globally asymptotically stable

Proof. The proof is performed by the similar method to that of Theorem 1.1. Especially,
the proof excluding case (ii) of part (c) is completely the same. We give only the proof of
the portion.

Case (ii): Suppose that there exists an intefaal 31] C [to,to+ T] with 31 — a1 > 11
such thatx(t) > n/2 and—,/u <y(t) <0 for a; <t < B;. Taking into account that
g0 = min{1, w?n /2} andgy(&o) < &, we obtain

(az)(t))' <-1- h(t>‘Pq<w.Zo(t)>

for a; <t < ;. Sinceu < ¢ /oo2 we see that

& &

Hence, we conclude that

(440 10

& &
for a; <t < 31, because > 2. Defineé (t) = wy(t)/& and letf(t,u) = —1—h(t)u.
Then,
§'(t) < f(t,&(1))
for a1 <t < ;. We comparé (t) with the solutionu(t; a1) of (1.6) satisfyingu(a1; o)
= 0. By using (1.3) instead of (1.7), we obtain the estimation (2.2). The rest of the proof

is carried out in the same way as the proof of Theorem 1.1. We leave the detailed analysis
to the reader. O

We give a result of not using the characteristic equation (1.8).
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Corollary 4.2. Suppose that() is integrally positive and that there exists a right differ-
entiable function k) such that

0<h(t) <kt) fort>0.

Suppose also that/k(t) and (1/k(t))’. are bounded from aboy&here(1/k(t))’. is the
right-hand derivative of/k(t). If

t+o
t|i£]20 . @y <%> ds= o uniformly with respect tao > 0,

then the equilibrium of1.1)is uniformly asymptotically stable

Remark 4.1. Although the upper functiok(t) has to be right differentiable, the damping
coefficienth(t) does not necessarily need to be right differentiable.

Proof of Corollary 4.2. By assumption, there exist numbeis> 0 andc, > 0 such that

1 1\
Wgcl and (W>+§Cg

fort > 0. Define

Then, it is clear that
—@y(c1) <g(t)<0 and g’+(t) >—(q"—1) ci*_zcz (4.2)

fort > 0.
Consider the characteristic equation (1.8) andi{eto) be the solution of (1.8) satis-
fying the initial conditionu(o; o) = 0. Then, we see that

uit;o) <0 fort>o. (4.2)

In fact, sinceu(o; o) = 0 andu’(g;0) = — 1, we can find & > o such thau(t;g) <0
for o <t <t;. Suppose that there existd,a> t; such thatu(ty; o) = 0 andu(t;o) < 0
for 0 <t <tp. Then, sincel(tp;0) = —1, it follows thatu(t;o) > 0 in a left-hand
neighborhood of,. This contradicts the definition of.

Let us comparei(t; o) with g(t). Sinceg(o) < 0= u(o;0), there are two cases to
consider: (i)g(t) < u(t; o) fort > o and (ii) there exists & > o such thag(t*) = u(t*; o)
andg(t) < u(t;o) for o <t < t*; namely, the graph af(t) intersects the solution curve
u(t;o) att =t* for the first time. Hereafter, we will show that there existszawith
0 < ¢z < 1 such that

csg(t) >u(t;o) fort>o+1 (4.3)

in both cases.
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Case (i): Since & h(t) <k(t) fort > 0, we see that

u(t;o) > g(t) = — %(%) = _%*(h(lt)>

fort > 0. Hence, we have

u'(t;o) = —1—h(t)@y(u(t; 0)) <0;

that is,u(t; o) is strictly decreasing far> o. Let

C3=min u(o+10) 1
° 9(0+1) " 14(q- -1 %, |

Then, 0<c3 <1/(1+(gq"—1) c‘f’zcz) < 1. For simplicity, let (t) = c3g(t). Then,
kt)gy({(t)) = —ay(cz) > —c3 > —1

fort > 0. Hence, it turns out from (4.1) that

1) =cag (1) = — (a" —1)¢] “eaca> —1+ca> —1-kO)@( (1))
fort > 0. Letf(t,u) = —1—h(t)@(u). Taking{(t) < 0 fort > 0 into account, we obtain
L) = —1-k(t)@({ (1) > —1-h{t)@({ (1) = f(t,{(1))

fort > 0. Sincecs <u(o+1;0)/9(0 +1) andg(o + 1) < 0, we see that

{(0+1)=czg(0+1)>u(oc+1;0).

Consequently, we can get (4.3) by virtue of a standard comparison theorem.

Case (ii): We subdivide this case as follows:tfa) c+1 and (b)o <t* <o+ 1. If
t* > o+1, theng(t) < u(t; o) for o <t < o+ 1. Hence, by the same way as the case (i),
we can get (4.3). I <t* < 0+1, theng(t) < u(t; o) for o <t < t*, and therefore,

ut;o) = g(t) = - %(%to = _%*(%>

for o <t <t*. Hence, we have
u(t;o)=—-1-ht)g(ut;o)) <0 for o <t <t*

Letcs=1/(1+(q*—1) cg*_ZCZ) < land{(t) =c3g(t) < 0. Then, by (4.1) we obtain

ZL(t)

cad (t) > — (g —1)c] e =—1+4c3

= t
> —1-k(t)@(Z(t) > —1—ht)@((t)) = f(t,{(t))
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fort > 0, wheref (t,u) is the function given in the case (i). Sincedtz < 1 andu(t*; o)
< 0, we see thaf (t*) = cgu(t*; o) > u(t*; o). We therefore conclude tha(t) > u(t; o)
fort >t*. Sinceo + 1 > t* we get (4.3).

From (4.1)—(4.3) it turns out that forsufficiently large,

t+o o+1 t+o
/ u(s;a)ds:/ u(s,o)ds+ u(s,o)ds

o o o+1

o+1 t+ a t+o
</ u(s,o ds+/ s)ds< {(s)ds
o+1

_/o+103%( )ds /:+UC3(RT‘($)CIS

. t+o 1
q-1.
<c 'C3 /G 03%( ())ds

_ t+o 1
i (g ) 0s==

uniformly with respect tao > 0, condition (1.7) holds. Thus, by Theorem 1.1, the equi-

librium of (1.1) is uniformly globally asymptotically stable. a

Since

5. Example with unbounded damping

Thanks to Theorem 1.1 and Proposition 3.1, we can conclude that the equilibrium
of (1.1) is uniformly globally asymptotically stable provided that the damping coefficient
h(t) is integrally positive and bounded. On the other hand, from Proposition 3.2 (or Propo-
sition 3.4) it turns out that condition (1.7) does not hold winét) satisfies conditions
(3.6) and (3.7) (or (3.15)), and therefore, Theorem 1.1 cannot be applied. It is obvious
that condition (3.6) implies thdf(t) is unbounded. Then, a natural question arise. Does
the equilibrium of (1.1) become uniformly globally asymptotically stable evésftif is
unbounded?

In this section, we will give an affirmative answer to the question above by using
Corollary 4.2. For this purpose, we define a sequence of functions as follows: For any
neN, let

Ih=[2n—1,2n]

and {fn( )} be a sequence of nonnegative and continous function®,dh satisfying

fnt)=p>0 f
o@%)i n(t)=p> orneN,

where(f,)’ (t) and(fy)" (t) are the right-hand and left-hand derivativestg(t), respec-
tively.
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Consider the damping coefficientt) defined by

n .

p if t&ln.
Then, we can present the desired example.

(5.1)

Example 5.1. If h(t) satisfies (5.1) andf,)’_(t) has the same upper bound formk N,
then the equilibrium of (1.1) is uniformly globally asymptotically stable.

Let us constitute a concretdét). We arbitrarily choose two constandssand 3 so
that 0< a < B < 1. LetR(n) denote ther-th random number betweenandf. Define
f(t) = sir’(rmt) and

| . if 0 <t<R(Nn),
gn()_ w if R(n)<t<1
2(1-R(n)) -

for eachn € N. Let

fa(t) = f(an(t)).
Then the sequence of functiofi§,(t)} satisfies all the above-mentioned properties with
p = 1. Since the damping coefficienft) is defined by

n
1— ——sir?(mgn(t—2n+1)) if tely,
@ (i) _ n+1 (5.2)

1 if tln,

we see thah(t,) = @y(n+ 1), wheret, = 2n— 1+ R(n). Henceh(t) is unbounded.
For example, we choosg= 3 and
R(1) = 0.1945927041728601 R(2)
R(3) = 0.7966404885855496 R(4)
R(5) = 0.2478007450224066 R(6) = 0.2576346233202667 (5.3)
R(7) = 0.3445768583669053 R(8)
R(9) = 0.78572826897887Q7 -+ --vvvvrvrrverrnenenannns

as random numbers betweefB8land 7/8. Then, the graphs of the functionghlt) and
h(t) are presented in Figures 1 and 2, respectively.

Sinceh(t) > 1 fort > 0, it follows thath(t) is integrally positive. We defink(t) by
h(t). Then, it is clear thak(t) is a right differentiable function and/k(t) < 1 fort > 0.
Taking O< o < 3 < 1 into account, we obtain

, 1 1 1 1
0<(gn)3(t) < max{ 2R(n)’ 2(1— R(n))} = max{%’ 2(1-pB) }
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Figure 1: The value of ih(t,) approaches zero a&s— .

fort > 0, where(gn)’, () is the right-hand derivative @f(t). Hence, we have

(kth))jL = nn+n1 |sin(2mgn(t —2n+1))|(gn)’ (t —2n+1)

fort > 0. For anyn € N, we can estimate that

/2(2:_1)%*(%) dt = 2—/|n Fnlsinz(ﬂgn(t —2n+1))dt
-2 1T5'n2(7'[9n( ) ds
[ n+1 i (ahge )
[ (o)

>2- %R(n) . %(1—R(n)) - g

Fort > O sufficiently large, there exists am such that 2n; — 1) <t < 2n;. Of course,
Ny is a large integer. Similarly, for any > 0 there exists an, € N such that 2np — 1) <
O < 2m. Hence, By, < 2n1 +2n, — 4 <t + 0 < 2n; + 2ny and therefore,

t+0 1 2n;+-2n—4 1 3
/G qh*<@)ds> /an %*(@)ds: 3n; —6> Et—6. (5.4)

For any large numbef > 0, let

T=T(K)> §K+4.
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Figure 2: The value difi(t,) diverges to+o asn — co.

10

Then, it turns out from (5.2) that > 0 andt > T imply

t+o 1 T+o 1 3
/0 %*(@>dsz/a qq]*(@>ds> ET_6> K.

This means that

|' t+o 1 d
e Jo %(u$>s‘m
uniformly with respect taoc > 0. Thus, by means of Corollary 4.2, the equilibrium of

(2.1) is uniformly globally asymptotically stable.
Finally, we attach a phase portrait of solution curves of

X' +h(t) XX +x=0,
whereh(t) satisfies (5.2) and (5.3). In Figure 3, we draw four solution curves satisfying

the initial conditions(x(tp),X (to)) = (5,3), (—2,6), (—5,—3) and(2,—6), respectively.
The initial timetg of each solution curve is 0.
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