
Monatsh Math manuscript No.
(will be inserted by the editor)

Parameter diagram for global asymptotic stability of damped
half-linear oscillators

Wei Zheng · Jitsuro Sugie

Received: 13 September 2014 / Accepted: date

Abstract We consider the half-linear differential equation with an unbounded damped term,

(φp(x
′))′+h(t)φp(x

′)+ω pφp(x) = 0,

whereω > 0 andφp(z) = |z|p−2z with p> 1. The divergence speed of the damping coeffi-
cienth(t) is assumed to be determined by some parameters. By using the relations between
the index numberp and the parameters, we describe some criteria judging whether the equi-
librium of this equation is globally asymptotically stable or not. We also present parameter
diagrams to clarify the relations between them.
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1 Introduction

We consider the half-linear differential equation with a damping term,

(φp(x
′))′+h(t)φp(x

′)+ω pφp(x) = 0. (1.1)

Here, the prime denotesd/dt, the damping coefficienth(t) is continuous and nonnegative
for t ∈ [a,∞), the numberω is positive, and the functionφp(z) is defined by

φp(z) =

 |z|p−2z if z ̸= 0,

0 if z= 0,
z∈ R
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with p> 1. Note thatφ2(z) = z for z∈ R. Equation (1.1) is a special case of the self-adjoint
type

(r(t)φp(x
′))′+c(t)φp(x) = 0. (1.2)

In fact, equation (1.2) coincides with equation (1.1) in the case thatr(t) = eH(t) andc(t) =
ω peH(t). As known well, the solution space of linear differential equations has two charac-
teristics; namely, (i) the sum of two solutions is another solution; (ii) any constant multiple
of a solution is also a solution. On the other hand, the solution space of (1.2) has only the
characteristic (ii). This is the reason that equation (1.2) is called ‘half-linear’.

The global existence and uniqueness of solutions of (1.1) (or (1.2)) are guaranteed for
the initial value problem. For details, see Došlý [5, p. 170] or Dǒslý andŘeh́ak [8, pp. 8–10].
Studies on equation (1.2) concentrate on the oscillation theory. We can find the results that
were published up to 2005 in these books [1, 5, 8] and the references cited therein. Even
after that, the research is continuing actively. For example, see [6, 7, 9, 18, 19, 22, 31].

The purpose of this paper is to clarify the growth rate of the damping coefficienth(t)
deciding whether the equilibrium is globally asymptotically stable or not. Equation (1.1) has
the unique equilibrium(x(t),x′(t)) ≡ (0,0). Let t0 ≥ a be the initial time and letx0 ∈ R2

be the initial value; namely,x0 = (x(t0),x′(t0)). For the sake of simplicity, we denote the
solution of (1.1) through(t0,x0) by x(t; t0,x0).

Using any suitable norm∥ · ∥, we can define as follows. The equilibrium is said to be
stableif, for any ε > 0 and anyt0 ≥ a, there exists aδ (ε, t0)> 0 such that∥x0∥< δ implies
∥x(t; t0,x0)∥< ε for all t ≥ t0. The equilibrium is said to beattractiveif, for any t0 ≥ a, there
exists aδ0(t0)> 0 such that∥x0∥< δ0 implies∥x(t; t0,x0)∥→ 0 ast → ∞. The equilibrium
is said to beglobally attractiveif, for any t0 ≥ a, any η > 0 and anyx0 ∈ R2, there is a
T(t0,η ,x0) > a such that∥x(t; t0,x0)∥ < η for all t ≥ t0+T(t0,η ,x0). The equilibrium is
asymptotically stableif it is stable and attractive. The equilibrium isglobally asymptotically
stableif it is stable and globally attractive. About the definitions of stability and attractivity,
refer to the books [2, 4, 10, 17, 23, 33] for example.

Judging from the importance of pure mathematical theories and of applications to other
sciences, it is no exaggeration to say that the study of the global asymptotic stability is one
of the major themes in the qualitative theory of differential equations. Since equation (1.1)
is a natural generalization of the damped linear oscillator

x′′+h(t)x′+ω2x= 0, (1.3)

we will call equation (1.1) thedamped half-linear oscillator. It is well known that if the
equilibrium of (1.3) is asymptotically stable, then it is globally asymptotically stable. There
are a good many articles about the asymptotic stability for the damped linear oscillator (1.3)
and its generalization equations. Historical advancement of this research has been concisely
summarized in Hatvani [13, Section 1] and Sugie [27, Section 1]. Among them, we should
mention specially about Smith’s result [24, Theorems 1 and 2].

Theorem A Suppose that there exists an h> 0 such that h(t) ≥ h for t ≥ a. Then the
equilibrium of (1.3) is asymptotically stable if and only if∫ ∞

a

∫ t
a eH(s)ds

eH(t)
dt = ∞, (1.4)

where

H(t) =
∫ t

a
h(s)ds.
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The criterion (1.4) is the so-called growth condition onh(t). Thereafter, to remove the
lower boundh of the assumption ofh(t), a lot of efforts were poured. For example, Ma-
trosov [16] introduced a family of functions as follows (see also [11]). The damping coeffi-
cienth(t) is said to beintegrally positiveif

∞

∑
n=1

∫ σn

τn

h(t)dt = ∞

for every pair of sequences{τn} and{σn} satisfyingτn+λ < σn ≤ τn+1 for someλ > 0. It
is known thath(t) is integrally positive if and only if

liminf
t→∞

∫ t+γ

t
h(s)ds> 0

for everyγ > 0. If h(t) has the positive lower boundh, thenh(t) is integrally positive. It
is clear that sin2 t is an integrally positive function. In this case, Theorem A is inapplica-
ble because the lower bound ofh(t) is zero. Using the concept of the integral positivity,
Hatvani [12] studied the asymptotic stability for a two-dimensional linear nonautonomous
differential system including the damped linear oscillator (1.3). Applying his results to equa-
tion (1.3), we obtain the following result (see [12, Corollary 4.3]).

Theorem B Suppose that h(t) is integrally positive and condition(1.4) holds. Then the
equilibrium of (1.3) is asymptotically stable.

As to other efforts, refer to [3, 13, 15, 20, 21, 25, 26, 28, 29, 32]. Now, let us come back to
(1.1) that is the research subject of this paper. Letp∗ be the conjugate number ofp; namely,

1
p
+

1
p∗

= 1. (1.5)

Since the index numberp is greater than 1, the conjugate numberp∗ is also greater than 1.
It is easy to check thatp= 2 if and only if p∗ = 2, andφp∗ is the inverse function ofφp.

Recently, Sugie [27, Theorem 3.5] has presented the following criterion which can judge
whether the equilibrium of (1.1) is globally asymptotically stable (in his original result, the
lower limit of integration is 0 because the left edge of the domain ofh(t) is 0 instead ofa).

Theorem C Suppose that h(t) is integrally positive. Then the equilibrium of(1.1) is glob-
ally asymptotically stable if and only if∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt = ∞. (1.6)

Theorem C is a perfect generalization of Theorems A and B.
It is reported that the overdamping phenomenon happens when the damping coefficient

h(t) increases rapidly. The phenomenon of overdamping is that a solution converging to a
non-zero value exists (for example, see [30, Section 6]). If the overdamping phenomenon
occurs, naturally the equilibrium of (1.1) is not globally asymptotically stable. Condition
(1.6) as well as (1.4) prohibits too fast growth of the damping coefficienth(t). It is easy to
verify that if h(t) is bounded from above, conditions (1.4) and (1.6) are satisfied. Hatvani et
al. [14, Theorem 1.1] obtained another necessary and sufficient condition for the asymptotic
stability of the equilibrium of (1.3). It may be easier to check their condition than the growth
condition (1.4) given by Smith [24]. Their condition shows that ifh(t) = t, then condition
(1.4) holds; ifh(t) = t2, then condition (1.4) fails to hold. Then, the following question
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arises. How much is the upper limit of the growth rate which can guarantee that condition
(1.6) (or (1.4)) is satisfied?

In this paper, we would like to answer this question. In Section 3, we will examine
three cases that the damping coefficienth(t) is unbounded: (i)h(t) = tℓ, whereℓ > 0; (ii)
h(t) = tn+c1tn−1+ · · ·+cn−1t+cn for t sufficiently large, wheren is any integer andci ∈R
for 1≤ i ≤n; (iii) h(t)= tℓ(log(1+t))m, whereℓ> 0 andm∈R. Needless to say, whether the
growth condition (1.6) holds or not is depending on the value ofp. We draw the parameter
diagram which shows the relation between the index numberp and exponentsℓ, m, andn in
each case.

2 Convergence and divergence of improper integrals

In general, it is difficult to calculate the improper integral (1.6) directly. For this reason, we
need some kind of means to judge whether the growth condition (1.6) is satisfied or not. We
use the following results which are well known as ‘limit comparison test’.

Lemma 2.1 Suppose that f(t)≥ 0 for t ≥ a and there exist numbersλ > 0 andν > 0 such
that

ν = lim
t→∞

tλ f (t). (2.1)

Then,

(i) if λ ≤ 1, then
∫ ∞

a
f (t)dt = ∞;

(ii) if λ > 1, then
∫ ∞

a
f (t)dt < ∞.

Lemma 2.2 Suppose that f(t) ≥ 0 for t ≥ a and there exist numbersλ > 0, µ ∈ R and
ν > 0 such that

ν = lim
t→∞

tλ (log(1+ t))µ f (t). (2.2)

Then,

(i) if λ < 1, then
∫ ∞

a
f (t)dt = ∞;

(ii) if µ ≤ λ = 1, then
∫ ∞

a
f (t)dt = ∞;

(iii) if µ > λ = 1, then
∫ ∞

a
f (t)dt < ∞;

(iv) if λ > 1, then
∫ ∞

a
f (t)dt < ∞.

Because we can find results of such type in many books of elementary mathematical
analysis, we omit the proof of Lemmas 2.1 and 2.2.

3 Main results

To give some answers to our question which was raised in Section 1, we consider three cases
that equation (1.1) has an unbounded damping coefficient. In the three cases, the damping
coefficients are a power function, a polynomial and another function, respectively.
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Let

f (t) = φp∗

(∫ t
a eH(s)ds

eH(t)

)
.

Then we have the following result.

Theorem 3.1 Consider equation(1.1) with h(t) = tℓ and ℓ > 0. Then the equilibrium is
globally asymptotically stable if and only ifℓ≤ p−1.

Proof Let λ = ℓ(p∗−1). Then we have

tλ = (tℓ)p∗−1 = φp∗(t
ℓ).

Using l’Hôpital’s rule twice, we obtain

lim
t→∞

tλ f (t) = lim
t→∞

φp∗

(
tℓ
∫ t

0 e
1

ℓ+1 sℓ+1
ds

e
1

ℓ+1 tℓ+1

)
= φp∗

(
lim
t→∞

tℓ
∫ t

0 e
1

ℓ+1 sℓ+1
ds

e
1

ℓ+1 tℓ+1

)

= φp∗

(
lim
t→∞

ℓ tℓ−1∫ t
0 e

1
ℓ+1 sℓ+1

ds+ tℓe
1

ℓ+1 tℓ+1

tℓe
1

ℓ+1 tℓ+1

)

= φp∗

(
lim
t→∞

ℓ
∫ t

0 e
1

ℓ+1sℓ+1
ds

t e
1

ℓ+1 tℓ+1
+1

)

= φp∗

(
lim
t→∞

ℓe
1

ℓ+1 tℓ+1

e
1

ℓ+1 tℓ+1
+ tℓ+1e

1
ℓ+1 tℓ+1

+1

)

= φp∗

(
lim
t→∞

ℓ

1+ tℓ+1 +1

)
= φp∗(1) = 1.

Hence, condition (2.1) is satisfied withλ = ℓ(p∗−1) andν = 1.
The damping coefficienttℓ is integrally positive. Taking into consideration of (1.5), we

see thatℓ(p∗ − 1) ≤ 1 if and only if ℓ ≤ p− 1. Hence, ifℓ ≤ p− 1, then it follows from
Lemma 2.1 (i) that ∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a e

1
ℓ+1 sℓ+1

ds

e
1

ℓ+1 tℓ+1

)
dt = ∞.

We therefore conclude that the equilibrium of

(φp(x
′))′+ tℓφp(x

′)+ω pφp(x) = 0 (3.1)

is globally asymptotically stable, by using Theorem C. Conversely, ifℓ > p− 1, then it
follows from Lemma 2.1 (ii) that∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a e

1
ℓ+1 sℓ+1

ds

e
1

ℓ+1 tℓ+1

)
dt < ∞.

By Theorem C again, we see that the equilibrium of (3.1) is not globally asymptotically
stable. ⊓⊔

In Figure 1, we draw the parameter diagram for equation (3.1). If(ℓ, p) is included in
the domain where a shadow was attached, then the equilibrium of (3.1) is globally asymp-
totically stable. If(ℓ, p) is on the linep = ℓ+ 1, then the equilibrium of (3.1) is globally
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Fig. 1 The parameter diagram of (3.1)

asymptotically stable. If(ℓ, p) is in the other domain wherep> 1, the equilibrium of (3.1)
is not globally asymptotically stable.

Remark 3.1If ℓ≤ 0, thenh(t) = tℓ ≤ 1 for t ≥ 1= a. Hence, we can estimate that

∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt =

∫ ∞

1
φp∗

(∫ t

1
e−(H(t)−H(s))ds

)
dt

≥
∫ ∞

1
φp∗

(∫ t

1
e−(t−s)ds

)
dt =

∫ ∞

1
φp∗

(
et −e

et

)
dt

≥
∫ 1+log2

1
φp∗

(
et −e

et

)
dt+

∫ ∞

1+log2
φp∗

(
1
2

)
dt = ∞.

However, in the case thatℓ < 0, the functiontℓ is not integrally positive. For this reason, we
cannot apply Theorem C to this case.

In order to confirm conditions (1.6), the damping coefficienth(t) does not need to be
a monomial, like a power function. We next deal with the case whereh(t) is a polynomial
which diverges to∞ ast → ∞.

Theorem 3.2 Let g(t) = tn+c1tn−1+ · · ·+cn−1t+cn, with ci (1≤ i ≤ n) real number, and
let b be a number satisfying

g(t)≥ 0 for t ≥ b≥ a.

Then the equilibrium of(1.1)with

h(t) =

 g(t) if t ≥ b,

|g(t)| if a ≤ t < b

is globally asymptotically stable if and only if n≤ p−1.
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Proof Let λ = n(p∗−1). Then we have

tλ = (tn)p∗−1 = φp∗(t
n).

Using l’Hôpital’s rule, we obtain

lim
t→∞

tλ f (t) = lim
t→∞

φp∗

(
tn∫ t

0 eH(s)ds

eH(t)

)
= φp∗

(
lim
t→∞

tn∫ t
0 eH(s)ds

eH(t)

)

= φp∗

(
lim
t→∞

ntn−1∫ t
0 eH(s)ds+ tneH(t)

h(t)eH(t)

)

= φp∗

(
lim
t→∞

ntn−1∫ t
0 eH(s)ds

h(t)eH(t)
+ lim

t→∞

tn

h(t)

)
.

Since

lim
t→∞

ntn−1∫ t
0 eH(s)ds

h(t)eH(t)
= lim

t→∞

n
∫ t

0 eH(s)ds(
t +c1+

c2

t
+ · · ·+ cn

tn−1

)
eH(t)

= lim
t→∞

n

1− c2

t2 − 2c3

t3 −·· ·− (n−1)cn

tn +
(

t +c1+
c2

t
+ · · ·+ cn

tn−1

)
h(t)

= 0

and

lim
t→∞

tn

h(t)
= lim

t→∞

1

1+
c1

t
+

c2

t2 + · · ·+ cn

tn

= 1,

we obtain

lim
t→∞

tλ f (t) = φp∗(1) = 1.

Hence, condition (2.1) is satisfied withλ = n(p∗−1) andν = 1.
The rest of the proof is carried out in the same way as the proof of Theorem 3.1. We

leave the detailed analysis to the reader. ⊓⊔

The following result gives us more detailed information on the divergence speed of the
damping coefficienth(t) that satisfies condition (1.6).

Theorem 3.3 Consider equation(1.1)with h(t) = tℓ(log(1+ t))m, ℓ > 0 and m∈ R. Then
the equilibrium is globally asymptotically stable if and only if either

ℓ < p−1
or

m≤ ℓ= p−1.

Proof Let λ = ℓ(p∗−1) andµ = m(p∗−1). Then we have

tλ (log(1+ t))µ = (tℓ(log(1+ t))m)p∗−1 = φp∗(t
ℓ(log(1+ t))m).
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Using l’Hôpital’s rule, we obtain

lim
t→∞

tλ (log(1+ t))µ f (t) = lim
t→∞

φp∗

(
tℓ(log(1+ t))m∫ t

0 eH(s)ds

eH(t)

)

= φp∗

(
lim
t→∞

tℓ(log(1+ t))m∫ t
0 eH(s)ds

eH(t)

)

= φp∗

(
lim
t→∞

ℓ
∫ t

0 eH(s)ds

t eH(t)
+ lim

t→∞

m
∫ t

0 eH(s)ds

(1+ t)log(1+ t)eH(t)
+1

)
.

Since

lim
t→∞

ℓ
∫ t

0 eH(s)ds

t eH(t)
= lim

t→∞

ℓeH(t)

eH(t)+ tℓ+1(log(1+ t))meH(t)

= lim
t→∞

ℓ

1+ tℓ+1(log(1+ t))m = 0

and

lim
t→∞

m
∫ t

0 eH(s)ds

(1+ t)log(1+ t)eH(t)
= lim

t→∞

m
log(1+ t)+1+ tℓ(1+ t)(log(1+ t))m+1

= 0,

we obtain
lim
t→∞

tλ (log(1+ t))µ f (t) = φp∗(1) = 1.

Hence, condition (2.2) is satisfied withν = 1, λ = ℓ(p∗−1) andµ = m(p∗−1).
The damping coefficienttℓ(log(1+ t))m is integrally positive. Taking into consideration

of (1.5), we see thatℓ(p∗−1)< 1 if and only ifℓ < p−1. Hence, ifℓ < p−1, then it follows
from Lemma 2.2 (i) that∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt = ∞.

Therefore, using Theorem C, we conclude that the equilibrium of

(φp(x
′))′+ tℓ(log(1+ t))mφp(x

′)+ω pφp(x) = 0. (3.2)

is globally asymptotically stable. Also, we see thatm(p∗−1)≤ ℓ(p∗−1) = 1 if and only if
m≤ ℓ= p−1. Hence, ifm≤ ℓ= p−1, then it follows from Lemma 2.2 (ii) that∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt = ∞,

and therefore, the equilibrium of (3.2) is globally asymptotically stable. The negation of
ℓ < p−1 orm≤ ℓ= p−1 is ℓ≥ p−1, andm> ℓ or ℓ ̸= p−1. From these it turns out that
the negation isℓ > p−1 or m> ℓ = p−1. If ℓ > p−1, thenλ = ℓ(p∗−1) > 1. Hence, it
follows from Lemma 2.2 (iv) that∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt < ∞.
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If m> ℓ= p−1, thenµ > 1= λ . Hence, it follows from Lemma 2.2 (iii) that∫ ∞

a
f (t)dt =

∫ ∞

a
φp∗

(∫ t
a eH(s)ds

eH(t)

)
dt < ∞.

Thus, by Theorem C again, we see that ifℓ > p−1 or m> ℓ= p−1, then the equilibrium
of (3.2) is not globally asymptotically stable. ⊓⊔

Figure 2 shows the parameter diagram for equation (3.2). We can find two triangle
prisms that are joining in Figure 2. If(ℓ,m, p) is included in the triangular prism of the
rear side, the equilibrium of (3.2) is globally asymptotically stable. If(ℓ,m, p) is in the
planes which attached the mesh, the equilibrium of (3.2) is globally asymptotically stable.
If (ℓ,m, p) is included in the triangular prism of this side, the equilibrium of (3.2) is not
globally asymptotically stable.

-

0

0
0

PSfrag repla
ements
2 24 4

5 568 1015
`

mp
Fig. 2 The parameter diagram of (3.2)

Remark 3.2Even whenℓ= 0, the damping coefficient of (3.2) is unbounded ifm> 0. In this
case, it is easy to verify that(log(1+t))m is integrally positive and the growth condition (1.6)
is satisfied. Hence, by Theorem C, the damping coefficient of (3.2) is globally asymptotically
stable.
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6. Dǒslý, O., Fǐsnarov́a, S., Mǎrı́k, R.: Power comparison theorems in half-linear oscillation theory. J. Math.
Anal. Appl.401, 611–619 (2013)
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