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Abstract

The purpose of this paper is to present a necessary and sufficient condition which guar-
antees that an interior equilibrium of a certain predator-prey system is globally asymp-
totically stable. This ecological system is a model of Lotka-Volttera type whose prey
population receives time-variation of the environment. We assume that the time-varying
coefficient is weakly integrally positive and has a weaker property than uniformly contin-
uous. Our necessary and sufficient condition is expressed by an improper double integral
on the time-varying coefficient. Our work is inspired by the study of the stability theory
for damped linear oscillators.
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1. Introduction

Population ecology is one of major subfields of biology. The main subject is to eluci-
date population dynamics of species. Expectation of population (or density) in the ecosys-
tem is an extremely important issue for human being society. Knowing the exact trends
of population dynamics is essential for environmental protection. For this reason, many
mathematicians, statisticians and ecologists have competed fiercely in the study of popu-
lation dynamics. The basic idea of these studies is to extract a logical mathematical model
from the ecosystem.

Let us put aside single species population models, such as the Malthusian growth
model, and the logistic model provided by Pierre Frangois Verhulst. When discussing the
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relationship between the population of two species, we should quote the famous Lotka-
Volterra model

N’ = (a - bP)N,

P’ = (—c+dN)P,

where ’ = d/dt; N and P represent the prey population (or density) and the predator
population (or density) respectively, and a, b, ¢ and d are positive parameters: (i) a is the
growth rate of prey; (ii) b is the rate at which predators destroy prey; (iii) c is the death
rate of predators; (iv) d is the rate at which predators increase by consuming prey. Alfred
J. Lotka has proposed a model describing the quantitative relationship between host and
parasite (or prey and predator) for the first time. By taking into account of the change
of fish catches of prey and predator in the Adriatic, Vito Volterra derived model (LV)
independently of Lotka.

This model has a single interior equilibrium x* = (c¢/d,a/b). Let (N(t), P(t)) be any
solution of (LV). Then, the first integral of (LV) is given by the expression

(LV)

’

cInN(t) —dN(t) + aln P(t) — bP(t) = a,

where « is an arbitrary constant. Hence, the interior equilibrium x* is a neutrally stable
fixed point; namely, it is surrounded by a family of periodic orbits whose amplitudes
depend on the initial datum of the prey population and the predator population.

Although model (LV) is simple and easy to handle, it has a weakness. Since the
interior equilibrium x* is neutrally stable, if the prey population or the predator population
change suddenly for some reason, then the population state cannot return to the original
state. In this sense, model (LV) is said to be structurally unstable. However, nature is
more flexible and keeps harmony. It has been often reported that the population state will
return to the original state as time passes. It is said that this model is undesirable from
this meaning. Thus, researchers understood that model (LV)) was not able to simulate the
operation of nature appropriately; in other words, some factors that provide the balance
of nature have been ignored in model (LV). Then, researchers have paid various efforts to
find the neglected factors.

Crawford S. Holling paid his attention to the capture rate of prey per predator. This
rate is called a functional response of predator to prey. The orthodox functional responses
are generally classified into three types, which are named Holling’s type I, IT and III (for
example, see [13, 16, 17]). There are different kinds of the functional response such
as Ivlev type (about the result of Ivlev type, refer to [12]). Afterwards, the idea that
the functional response is also influenced by the predator population has arisen. Re-
cently, we can find many papers concerning analysis of ecological models with the ratio-
dependent type, Beddington-DeAngelis type, Crowley-Martin type, Hassell-Varley type,
Leslie-Gower type and so on.

The viewpoint that environment changes over time was disregarded in model (LV).
However, it is safe to say that the time-variation of the environment is an important factor
to expect the population of species. First of all, it is thought that the seasonal variation
influences population dynamics. It is difficult to assume that the birth rate and the death
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rate are constant like model (LV). To be precise, both rates receive the seasonal variation
and they change.

By assuming that the birth rate and carrying capacity for the prey are particularly
sensitive to time-variation of the environment, in this paper, we consider the time-varying
Lotka-Volterra predator-prey system

N’ = (a + ch(t) - dh(H)N — bP)N,

E
P = (—c+dN)P, )

’

where ' = d/dt; N and P represent the prey population (or density) and the predator
population (or density), respectively; the function £ is nonnegative and locally integrable,
and a, b, c and d are positive constants. Model (E) also has a unique interior equilibrium
X* = (c/d,a/b). Since N and P are populations of two species, we have only to consider
model (E) in the region

RE((N,P): N>0 and P > 0).

Needless to say, the region R is a positive invariant set of (E).

Let o > O be the initial time and let Xy, = (Ny, Py) € R be the initial data; namely,
(No, Py) = (N(ty), P(ty)). For the sake of simplicity, we denote the solution (N(¢), P(t)) of
(E) through x, at t = #, by x(¢; ty, Xo).

Let ||-|| be any suitable norm. The interior equilibrium x* is said to be stable if, for any
€ > 0 and any ¢y > 0, there exists a 6(¢, tp) > 0 such that ||x) —Xx"|| < ¢ implies ||x(¢; 1y, Xo) —
X*|| < & for all t > ty. The interior equilibrium is said to be globally attractive if, for any
to > 0, any 7 > 0 and any x, € R?, there is a T(t, 1, Xo) > O such that ||x(t; £y, Xo) —X*|| < 17
for all t > ty + T(ty,n, Xp). The interior equilibrium is globally asymptotically stable if it
is stable and globally attractive. About the definitions of stability and attractivity, refer to
the books [1, 2, 8, 9, 20] for example.

To describe a result concerning the global asymptotic stability of (E), we introduce a
family of functions. We say that the function % belongs to Fwrp; if

i f s = oo
n=1 ¥n

for every pair of sequences {r,} and {0} satisfying 7, < 07, < T).41,

liminf(o, —7,) >0 and limsup(r,.; —o,) < 0.

n—oo n—co

The concept of the weak integral positivity was first published in Hatvani [3]. It is clear
that if the function A has a positive lower bound, then / belongs to Fwp;. There is a
possibility that & belongs to Fwip even if liminf, ., h(f) = 0. For example, 1/(1 + 1) €
Frwipy and sin’t/ (1 + 1) € Frwp; (for the proof, see [15, Proposition 2.1]). Sugie et al. [19]
obtained the following result (see also [10, 18]).



Theorem A. Suppose that there exists an h such that 0 < h(t) < h for t > 0. If the
function h belongs to Frwip), then the interior equilibrium (c/d,a/b) of (E) is globally
asymptotically stable.

Model (E) approaches model (LV) as time ¢ passes in the case that liminf,_,, h(t) = 0;
namely, the limiting system of (E) is model (LV) which is structurally unstable. From
Theorem A, we see that if & € Fwrp;, then the interior equilibrium of (E) can be stabilized
even in this case. However, Theorem A gives only sufficient conditions which guarantee
that the interior equilibrium of (E) is globally asymptotically stable. Then, what condi-
tion will be necessary? We give an answer to this question and present a necessary and
sufficient condition under weak assumptions.

Theorem 1. Suppose that there exist an gy > 0 and a 6y > 0 such that |h(t) — h(s)| < &
forallt > 0and s > 0 with |t — s| < &, and suppose that the function h belongs to Fwrp-
Then the interior equilibrium (c/d,a/b) of (E) is globally asymptotically stable if and
only if

o0 fo "eH®) g g

eH (1)

dt = oo, (1
0

where

H(t):fh(s)ds.
0

Remark 1. To show that the interior equilibrium (c/d, a/b) of (E) is stable (to be precise,
uniformly stable), it is enough only to assume that the function /4 is nonnegative (for the
proof, see [19, Proposition 2]). Hence, we may say that Theorem 1 gives a necessary and
sufficient condition for the interior equilibrium to be globally attractive.

Remark 2. Suppose that there exists an 4 > 0 such that 0 < A(r) < h for ¢ > 0. Then,
Ih(t) — h(s)| < |h@)| + |h(s)| < 2h for all + > 0 and s > 0. Hence, in Theorem 1, the
first assumption of A(¢) is satisfied with respect to gy = 2h and any 6o > 0. Clearly,
the converse is not always true. The first assumption may be satisfied even if 4 is a
discontinuous function. For example, if the function /4 is a step function such as

1 if 2n-2<t<2n-1,
h(r) =
1/72 if 2n—-1<t<2n

for n € N, then the first assumption holds. Of course, A(¢) belongs to Fiwipy.

2. Related research

Many attempts have been made to find good conditions for judging whether the origin
(0, 0) of the damped linear oscillator

X+ h()x +w*x =0
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is asymptotically stable or not. The research of this theme originated from the works of
Levin and Nohel [7] and Smith [11]. Progress of the history of this research is briefly
summarized in Hatvani [4, Section 1] and Sugie [14, Section 1]. The damped linear
oscillator is equivalent to the system

X = wy,
) (2)
Y = —wx - h(t)y.

Sugie [14] discussed the problem about the asymptotic stability of nonlinear systems
including (2). By applying his result to system (2), we can derive the following necessary
and sufficient condition.

Theorem B. Suppose that the function h is uniformly continuous and nonnegative, and
it belongs to Frwip;- Then the zero solution of (2) is asymptotically stable if and only if
condition (1) holds.

Theorem B covers many previous researches for system (2). It is well known that if
the zero solution of (2) is asymptotically stable, then it is globally asymptotically stable.
Since A(t) > 0 for ¢t > 0, the integral H(t) is increasing for ¢t > 0 (needless to say, it is not
necessarily strictly increasing). Define

H™'(r) = min{t € R: H(t) > r}.

Then, the inverse function H~!(r) is strictly increasing for » > 0 (it may be discontinuous).
Hatvani et al. [5] showed that condition (1) is equivalent to

S (1 en) — = 1) = 3

n=1

for any x > 0, provided that H(f) tends to oo as t — oco. Note that & € Fwip; implies

lim H(z) = co. (4)

[—00

Using their method, we can prove the following equivalence relation.

Lemma 2. Under assumption (4), condition (1) holds if and only if

mf’ ePHS) g g
f L A= (5)
0

0
for any p > 0.

From the equivalence of conditions (1) and (3), in order to prove Lemma 2 we have
only to show that condition (3) is equivalent to condition (5) (for the proof, see Appendix).



Let
x=—-In(bP/a) and y=-In(dN/c).

Then model (E) becomes the system
X =c(l-e7),

' - o (6)
Y =—a(l—e)—ch(t)(l-e7).

System (6) has the zero solution (x(z), y(¢)) = (0,0), which corresponds to the interior
equilibrium (c/d, a/b) of (E). This transformation is a one-to-one correspondence from
the region R to the whole real plane {(x,y): x € R and y € R}. Hence, the interior equi-
librium (c/d, a/b) of (E) is globally attractive if and only if every solution (x(¢), y(¢)) of
(6) tends to (0,0) as t — oo.

By means of the above-mentioned transformation, we can rewrite Theorem 1 as fol-
lows.

Proposition 3. Suppose that there exist an gy > 0 and a 6o > O such that |h(t) — h(s)| < &9
forallt > 0and s > 0 with |t — s| < &, and suppose that the function h belongs to Fwrp-
Then the zero solution of (6) is globally asymptotically stable if and only if condition (1)
holds.

Taking into account the fact that 1 —e™ ~ x and 1 — ™ ~ y for |x| and |y| sufficient
small, we notice that systems (2) and (6) are very similar. From this viewpoint, we will
prove the main theorem. However, since Proposition 3 provides us with the global prop-
erty of the solutions of (6), we cannot give the proof of the main theorem only considering
system (2) as the linear approximation of (6).

Obviously, conditions of Theorem B require more of function 4 than those of Propo-
sition 3.

3. Proof of the main result

Before proving Proposition 3 which is equivalent to Theorem 1, it is useful to examine
some properties of the function

f@=e“+z-1

and its derivative
def d .
g(2) = d—f(z) =l-e
Z

for z € R. Tt is clear that f(z) is strictly increasing for z > 0 and strictly decreasing for
7<0,and f(0) =0. Let

w=f@) < f2)sgnz,

and f‘l(w) be the inverse function of f(z). Needless to say, f‘l(w) is strictly increasing
forw € R and f~'(0) = 0. Since

d
d_z(f @) - f(-2) =8@) +g(-20) =2-(e"+e) <0
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for z € R, with equality if and only if z = 0, we see that

f(z2) = f(z1) < f(=22) = f(=z1) for z; <z, (7

and
f(2) < f(=z) for z>0.

From the second inequality it follows that
0< f(z) £ f(-a) for [z <« (8)

with « positive and
0<—f"'(—w) < f'(w) for w>0. )

It is clear that g(z) is strictly increasing for z € R with g(0) = 0, lim,. g(z) = 1,
lim,_,_,, g(z) = —oo. Since g(z) + g(—z) < 0 for z € R, with equality if and only if z = 0,
we see that

£@ =g for l4=a (10)

and

1g(@)| < |g(—a)| for |zl L @ (1)

with « positive.
We are now ready to prove Proposition 3.

Proof of Proposition 3. Let (x(7), y(¢)) be any solution of (6) with the initial time #, > 0
and let (x9,y0) = (x(#p),y(tp)). As mentioned in Remark 1, the interior equilibrium
(c/d,a/b) of (E) is stable. Since the zero solution of (6) corresponds to the interior equi-
librium (c/d, a/b) of (E), the zero solution is also stable; that is, for any & > 0, there exists
a o(&, ty) > 0 such that |xp| + [yo| < ¢ implies |x(7)| + |y(¢)| < € for all t > . Hence, to prove
Proposition 3, we have only to check whether every solution of (6) tends to the origin or
not.

Necessity. We will show that there exists a solution of (6) which does not approach the

origin provided that
00 foi e¥ds
[ A<
0

eH(I)

From Lemma 2 with p = ¢, we see that

[
00 fo e g

\ i dt < oo,
Hence, we can choose a T > 0 so large that
o0 fo’ e M) (s 1

dt < . 12
T ecH® 2ac(e — 1) (12)



Let 6* = 6(1, T)/2 and consider the solution (X(¢), 7(¢)) of (6) that passes through (6%, 0) at
t =T. Then
X+ 1y <1 for t>T.

Since ¥'(T) = 0 and ¥ (T') < 0, it turns out that (¥(¢), y(¢)) enters the fourth quadrant
0: € {(x,y): x>0 and y < 0}

in a right-hand neighborhood of + = 7. Taking account of the vector field of (6) on the
positive x-axis, we see that (%(¢), #(¢)) does not move to the first quadrant

0 € {(x,y): x>0 and y > 0}

from Q4 directly as ¢ increases.

Suppose that there exists a 7 > T such that X(7*) = 6%/2 and 672 < X(t) < 6"
for T <t < T*. Then, from the above-mentioned property of (X(t), y(¢)) it follows that
-1 <y({) <0for T <t < T". Note that

l—-e*<x for xeR

and
(e—-1l)y<l—-e?<y for —1<y<0. (13)

Since

¥ () + ch)5(t) = 5 (1) + ch(t)(1 - e7) = a1 - )
> —ax(t) > —ad"

for T <t < T*, we obtain
(eHO5(0)) > —as e for T <t<T".

Integrate both sides of this inequality from 7 to t < T* to obtain

! !
eHO5(r) > eHDH(T) - ad*f e Mg = —ad*f el s,
T T

Hence, by (13) we have

_ . _ f eHdg
¥ = (1= e) 2 cle = D5(0) 2 ~acle = N5 —m—
for T <t < T*. From this estimation and (12) it follows that
f e g
X(T) > X(T)—ac(e — 1)(5*f e dt
> 0" —ac(e — 1)6*fmw dt
- - cH(1)
e [
>0 —ac(e— l)6j; Wdt> 5



This contradicts the assumption that X(7) = ¢*/2. We therefore conclude that %(z) > /2
for t > T. This fact means that the solution (%(¢), y(¢)) of (6) does not tend to the origin as
t — oo. Thus, the zero solution of (6) is not globally attractive.

Sufficiency. Let
v(t) = af (x(1)) + cf(y(®) (14)
for any solution (x(t), y(¢)) of (6). Then, we have

V(1) = ag(x()x' (1) + cgy(0)y' (1) = = h(Dg (1) <0

for t > ty. Hence, v(¢) is decreasing for t > #,. Since v(t) > O for ¢t > t,, there exists
a limiting value v* > 0 of v(¢). If v* = 0, then it follows from (14) that the solution
(x(2), y(t)) of (6) tends to (0,0) as t — oo. This is our desired conclusion. Thus, we have
only to show that the case in which v* > 0 does not occur.
By way of contradiction, we suppose that v* is positive. Then, there exists a T > t,
such that
O<v <v(@)<2v' for t>T,. (15)

Hence, it follows from (14) that
flew /ey s xo < f7'@v/a) and 7270 < 30 < f @ o)

for t > T,. From (9) it turns out that

()] < f'@2v/a) and |y0)] < f(2v/e) (16)

fort>T;.

Hereafter, we will complete the proof of sufficiency in two steps. In the first step, we
show that y(¢) approaches zero as t — co. If lim,_,,, y(¢) = 0, then from (14) we see that
lime x(t) = £'(v*/a) € B1 > 0 or lime x(t) = f~1(=v*/a) € —B, < 0. In the second
step, we will show that 8; = 8, = 0. This is a contradiction.

Since [y(¢)| is bounded, it has an inferior limit and a superior limit. In the first step, we
show that the inferior limit is zero, and then show that the superior limit is also zero. In
the second step, we examine the movement of (x(¢), y(¢)) in the whole x-y plane in details.

Step (1): We first suppose that lim inf,_,, [y(¢)| > 0. Then, we can choose ay > 0 and
a T, >ty such that |y(#)| > v for t > T,. From (10), we see that

V(1) = —c*h(Hg* (D) < — g (Y)h(1)

for t > T,. Integrating this inequality from ¢, to ¢, we can evaluate as follow:

Vv =v(ty) < v(t) —v(ty) = fv’(s)ds < - czgz(y)f h(s)ds.
T

[

Recall that & € Fwpy implies condition (4) holds. Then, we see that the evaluation above
is not right. Thus, we conclude that lim inf,_,, [y(¢)| = 0.
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Next, we suppose that lim sup,_, ., [y(?)| © 1> 0. Let & be so small enough as to satisfy
the inequalities 0 < & < min{1/2, —f~'(=v*/c)/2},

E + M|g(_28)| <]1- exp (—f_l(m)) (17)
ady a a

and "
2o, C0H 28010 2e)) < exp (— f—l(—cf (2e)-v )) - 1. (18)
ady a a

Note that f(-2&) > 0 and g(—2¢) < 0 for £ > 0, and f(—2¢) and g(—2¢) approach zero as
g — 0. Hence, we can find a positive number & which satisfies (17) and (18).

We can choose three sequences {s,}, {r,} and {o",} with T, < 7, < s, < 0, < 7,41 and
T, — o0 as n — oo such that |y(s,)| = 2¢, |y(1,,)| = |y(0,)| = € and

v >¢e for 7,<t<oy,, (19)
y(t) <2e for o, <t < Ty, (20)
e<|y) <2 for 1,<t<s, 201

In fact, since the inferior limit of |y(¢)| is zero, there exists a #. > T such that [y(z,)| < &.
Because limsup,_,, [y(f)] = 4 > 2¢&, we can choose numbers s, 7; and o7} such that

s = inf{t > 1. |y(0)] > 2}, 11 = sup{t < s1: [y(@)] < &}
and
o = inf{r > s1: [y(?)| < €}

It is clear that [y(s;)| = 2¢&, |y(11)| = |y(o1)| = € and |y(t)| > € for 7 < t < 0. Using
o instead of ¢., we define s, 7, and o, similarly to sy, 7; and o, and so on. Then, we
obtain three sequences {s,}, {7,} and {o,} with n € N such that

sy = inf{t > oy ()| > 2}, 1, =sup{t < s, |y(@®)| < &}

and
o, = inf{t > s, [y()| < &}.

It is also clear that |y(s,)| = 2&, [y(t,)| = |y(c,)| = &,
()| > e for 7,<t< oy,

()| <2& for o,<t<T,

and
e<|y) <2 for 1,<t<s,

Hence, the inequalities (19)—(21) are satisfied.
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Let us evaluate the distance between 7, and s, for n € N. From (21) and the continuity
of y(#), we see that there are two cases to be considered: (i) y(1,,) = € < y(t) < 2& = y(s,)
for 1, <t < s, and (i) y(s,) = —2e < y(t) < —&¢ = y(1,) for 7, < t < s,. It is clear that

JUy(s)) = fy(@al) = fO(sn)) = f(0(Ta))

in case (i). It follows from (7) that

FUy(sD = fy@@l) = f(=y(s,)) = f(=y(T0))
< f(y(sn)) - f(y(Tn))

in case (i1). Hence, in either case, we get
f(ly(sn)D - f(|y(Tn)|) < f(y(sn)) - f(y(Tn))
Y (Sn) Sn
= f g(mdn = f gy(@®)y ()t

y(tn)

n

- —a f (g ()t — ¢ f OO0t

n

<a f G ghOde.
From (11), (16) and (21) it turns out that

SO < g7~ @v' fa)| = - 8- @v" /)
forr > T, and
SO0 < 1g(=26)] = - g(~2e)

for 7, <t < s,. Hence, we obtain

0 < f(2) - f(&) = fy(s)D) = Fy (@)
< af "g(_f_l(Zv*/a))g(—zs)dt =a g(_f—l(zv*/a))g(_zg)(sn 3 Tn);

n

namely,

fQ2e) - f(e) def

— =m>
ag(-f-(2v/a))g(-2e)
for each n € N. Tt is clear that the positive number m is independent of n € N. Since

[Tn, 4] € [T, 0], we see that liminf, (o, — 7,) > m > 0.
From the assumption of 4 it follows that

Sp— Ty =

|h(t) — h(o)| < & for o, —0dy <t <o, + 0. (22)
Let us examine the value of & at t = o, for each n € N. Define

S ={neN: h(o,) > 1+ &}.
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We will show that the number of elements in the set S is finite. Suppose that it is not
right. Let card S denote the cardinal number of the set S. As shown above, 7, + m < o,
for each n € N. Let £ = min{d,, m}. Then, from (19) and (22) it follows that

|y(t)| > ¢ for On— t<t< Ons
and that n € § implies
h(t) >1 for o,-€<t<0,.

Hence, we obtain

f " 2G> LX) if nes.

n_{2
Using this inequality, we get

V= w(ty) = f mv'(t)dt =—c f mh(t)gz(y(t))dt

lo lo

<-¢ Z f " h(g*(y(t))dt = — > €g*(e)card S = — oo.
op—t

nes L

This is a contradiction.
Since the number of elements in the set S is finite, we can find an N € N such that

ho,) <1+¢g for n>N. (23)

We next show that 7,,; — 0, < d, for n > N. Suppose that it is not right. Then, there
exists an ny > N such that
O + 60 < Thp+1-

From (8), (14), (15) and (20), we obtain

def

af(x(®) =v(t) —cf(y®) 2 v —cf(-2¢) = w"

for o, <t < 7,,,1. Note that w* is positive because 0 < & < — f‘l(—v* /c)/2. We proceed
the proof by dividing into two cases: (a) x(¢) > f'(w*/a) > 0for o, <t < T,41; (b)
x(t) < fY(-w*/a) < 0 for Oy <t < Tpy41. Note that

ht) <e+h(oy,,) <1+2g for o, <t <T,41

because of (22) and (23). In the former case, using the second equation in system (6) with
(11), (17) and (20), we get

y(t) = - a(l - e_x(’)) - ch(t)(] _ e—y(t))
< —a(1 = exp(~f~ W' [@)) + ch(t)lg(y(0)

< —a(1 - exp(=/"" " /@))) + (1 + 280)|g(~22)
4e

< —_
0o
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for o, <t < 0y, + dp. In the latter case, by using (18) instead of (17), we get

V(@) =- a(] - e_x(’)) - ch(t)(] _ e—y(t))
> aexp(~f(—w /@) = 1) = ch()g 1)

> a(exp(— F-w'fa)) - 1) — (1 + 2&p)lg(=22)|
4e

> —_—
do

for oy, <t < 0y, + 69. Thus, in either case, we have
4e
|y,(t)| > 6_ for Ong <t< O ny + 60-
0

Integrate this inequality from o, to o, + d, to obtain

710+50 no+60
f” Yy (H)dt| = f” [V (t)ldt > 4e.
Tngy Tngy

|_Y(O'no + 60)| + |_Y(O'no)| < 4e.

|y(0-n0 + 60)| + |}7(0-n0)| Z

However, it follows from (20) that

This is a contradiction. We therefore conclude that lim sup,_, . (7,+1 — 07,) < §p < 0.
From how to choose sequences {r,} and {0}, it is clear that

Ty < 0y < Tpil-

Recall that lim inf,_,.. (o, — 7,) > 0. Then

Z f "t = oo (24)
n=1 Y7

1

because the function & belongs to Fwip-
On the other hand, from (10) and (19) it turns out that

g 0(®) > g'(e) >0 for 7, <t <0,

Hence, we have

f mv’(t)dt = ¢ f mh(t)gz(y(t))dt < —c2g¥(e) Z f U"h(t)dt.

n=1 %Y

Since

00

f V(t)dt = ,lim v(t) — v(ty) = v = v(ty) < 0,

Io
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we obtain
Z f h(t)dt < (20)2(8)

This contradicts (24). Thus, we conclude that lim sup,_, ,, [y(#)] = A = 0. The proof of Step
(i) is now complete.

Step (2): As already mentioned, since y(¢) tends zero as t — co, we see that x() tends
to B = f~'(v*/a) or to —B> = f~}(=v*/a). From the assumption that v* > 0, the numbers
B1 and B, have to be positive. Hence, the solution (x(¢), y()) approaches the point (5;, 0)
on the positive x-axis or the point (-3, 0) on the negative x-axis. Note that

2y<l-e? <y for —1<y<0 (25)
and
%<l—e_y<y for 0<y< 1. (26)

Taking into account of the vector field of (6), we see that there exists a 73 > £, such that

x(t)>p; and y() <0 for t>T; 27

or
x(t) < =B, and y(t) >0 for t>Ts. (28)

In fact, it follows from (6) that y’(f) < O on the positive x-axis and y'(f) > 0 on the
negative x-axis. This means that the solution (x(¢),y(¢)) does not enter Q; (resp., the
second quadrant Q3) from Q, (resp., the third quadrant Q,). Recall that there are two
possible cases: (i) (x(2), y(t)) — (B1,0) as t — oo; (ii) (x(?), ¥(t)) — (=B»,0) ast — oco. In
the former, the solution (x(¢), y(¢)) has to approach the point (8;,0) through either Q; or
Q4. Suppose that it approaches the point through Q;. Then, there exists a Ty > 1, such
that
,31

— <x(t) and y(r)>0 for ¢t> 7’3.

Hence, we have
V()< —a(l —e™ )< —a(l —e??)

fort > fg, and therefore,
¥(0) < Y(T3) = a(l — e PVt - T5),

which diverges to —co. This contradicts that lim,_,,, y(#f) = 0. Thus, we see that the
solution approaches the point through Q4. We therefore conclude that (27) holds. In the
latter, using a similar way to the above, we see that the solution x(¢), y(¢) has to approach
the point (—f3,, 0) through @, and hence (28) holds.

Since lim,_,., y(t) = 0, there exists a T4 > T3 such that

()l <1 for t>T,. (29)
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We consider only the case where (27) holds, because the case where (28) holds is carried
out in the same way by using (26) and (28) instead of (25) and (27). In the former, by
(25), (27) and (29) we have

Y () + 2ch(®)y(0) <Y (1) + ch(t)(1 - e?)
= —a(] - e—x(t)) < _a(] _ e—/ﬂ) <0
for t > T,4. Hence, by (27) we get

f 2cH(s) ds
1) < 3(0) = EHTIHONT,) < a1 - o)

o2cH(0)
for t > T,. From this estimation and (25) it follows that

f 2eH(s) g

X () = c( —e }(’)) <cy) < —ac(l - e‘ﬁ') e

for t > T,. Integrating this inequality from 7 to ¢, we obtain

eZCH(T)dT
x(1) < —ac - e‘"g1 f f ds + x(Ty).

2cH(s)

Since A(t) > 0 for t > 0, it is clear that

f S2HO g1 — oo
0

Hence, there exists a 75 > T, such that

s 1 S
f e HOdr > — f e*HOdr  for s> Ts.
T4 2 Jo

Using this inequality, we can evaluate that

ac(l - e‘ﬁl) ’fOSeZCH(T)dT

<x(t) < - ds
Bi < x(0) T
2cH(1)
‘e dr
- ) T4—
ac(l e ) ) ) ds + x(Ty)
4

for t > Ts. From condition (1) and Lemma 2 with p = 2¢, we see that

f eZCH(s)ds
f dt =

eZcH(I)

This contradicts the evaluation above. The proof of Step (ii) is now complete.
Proposition 3 is thus proved. 0l
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Appendix

In the Appendix, we give a short proof for Lemma 2. The proof is essentially the same
as that of Theorem 1.1 in Hatvani [5].

Proof of Lemma 2. Let 7y = 0 and define
L, = H_I(Kn), a, =t, —

and
A, ={t,5):t>20,5>0, k(n—1) < H(t) — H(s) < kn}

for n € N. Then, as can be seen from Figure 1 below, we obtain the following inequalities:

ff dsdt < ai(a, + a,,1) + arx(aper + apn) + -0

A"
< a% + a% al + an+1 a2 + an+1 a2 + an+2
= + 22
<2 Z az, (30)
i=1
ffdsdt> ] (a +a 4oeeeen ):liaz (31)
Al 2 1 2 5 L i

Suppose that condition (3) holds. Then, from (31) it follows that

f ePHO g
S dt = f e PH0 f e"Vds dr = f f e PHOHO g s dy
e
- fo ~P(HO=-H) g ¢ dt > fo e s dt
n=1 Ay n=1 An

1
> dsdt > E -
= f:fAl ' 2et i=1 al

= (H ) - H st = 1) =
n=1
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Figure 1: The domain A, and the curve C,, = {(t,5): ¢ > 0, s > 0, H(¢) — H(s) = kn}

Hence, condition (5) is satisfied. Conversely, suppose that condition (5) holds. Then, by

(30) we have
f ePHS) g g
00 = dt = —PH“) epH“)ds dt
ePH(I)

= Z f f e IO g g dr < Ze—KP<"—1> f f dsdt
n=1 An = An

n=1

Hence, condition (3) is satisfied. Thus, conditions (3) and (5) are equivalent.

As mentioned in Section 2, it is already proved by Hatvani [5] that conditions (1) and
(3) are equivalent. We therefore conclude that condition (1) holds if and only if condition
(5) is satisfied with p > O arbitrary. O
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