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tThe purpose of this paper is to present a ne
essary and suf�
ient 
ondition whi
h guar-antees that an interior equilibrium of a 
ertain predator-prey system is globally asymp-toti
ally stable. This e
ologi
al system is a model of Lotka-Volttera type whose preypopulation re
eives time-variation of the environment. We assume that the time-varying
oef�
ient is weakly integrally positive and has a weaker property than uniformly 
ontin-uous. Our ne
essary and suf�
ient 
ondition is expressed by an improper double integralon the time-varying 
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tionPopulation e
ology is one of major sub�elds of biology. The main subje
t is to elu
i-date population dynami
s of spe
ies. Expe
tation of population (or density) in the e
osys-tem is an extremely important issue for human being so
iety. Knowing the exa
t trendsof population dynami
s is essential for environmental prote
tion. For this reason, manymathemati
ians, statisti
ians and e
ologists have 
ompeted �er
ely in the study of popu-lation dynami
s. The basi
 idea of these studies is to extra
t a logi
al mathemati
al modelfrom the e
osystem.Let us put aside single spe
ies population models, su
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relationship between the population of two spe
ies, we should quote the famous Lotka-Volterra model N0 = (a � bP)N;P0 = (� 
 + dN)P; (LV)where 0 = d=dt; N and P represent the prey population (or density) and the predatorpopulation (or density) respe
tively, and a, b, 
 and d are positive parameters: (i) a is thegrowth rate of prey; (ii) b is the rate at whi
h predators destroy prey; (iii) 
 is the deathrate of predators; (iv) d is the rate at whi
h predators in
rease by 
onsuming prey. AlfredJ. Lotka has proposed a model des
ribing the quantitative relationship between host andparasite (or prey and predator) for the �rst time. By taking into a

ount of the 
hangeof �sh 
at
hes of prey and predator in the Adriati
, Vito Volterra derived model (LV)independently of Lotka.This model has a single interior equilibrium x� = (
=d; a=b). Let (N(t); P(t)) be anysolution of (LV). Then, the �rst integral of (LV) is given by the expression
 lnN(t) � dN(t) + a lnP(t) � bP(t) = �;where � is an arbitrary 
onstant. Hen
e, the interior equilibrium x� is a neutrally stable�xed point; namely, it is surrounded by a family of periodi
 orbits whose amplitudesdepend on the initial datum of the prey population and the predator population.Although model (LV) is simple and easy to handle, it has a weakness. Sin
e theinterior equilibrium x� is neutrally stable, if the prey population or the predator population
hange suddenly for some reason, then the population state 
annot return to the originalstate. In this sense, model (LV) is said to be stru
turally unstable. However, nature ismore �exible and keeps harmony. It has been often reported that the population state willreturn to the original state as time passes. It is said that this model is undesirable fromthis meaning. Thus, resear
hers understood that model (LV) was not able to simulate theoperation of nature appropriately; in other words, some fa
tors that provide the balan
eof nature have been ignored in model (LV). Then, resear
hers have paid various efforts to�nd the negle
ted fa
tors.Crawford S. Holling paid his attention to the 
apture rate of prey per predator. Thisrate is 
alled a fun
tional response of predator to prey. The orthodox fun
tional responsesare generally 
lassi�ed into three types, whi
h are named Holling's type I, II and III (forexample, see [13, 16, 17℄). There are different kinds of the fun
tional response su
has Ivlev type (about the result of Ivlev type, refer to [12℄). Afterwards, the idea thatthe fun
tional response is also in�uen
ed by the predator population has arisen. Re-
ently, we 
an �nd many papers 
on
erning analysis of e
ologi
al models with the ratio-dependent type, Beddington-DeAngelis type, Crowley-Martin type, Hassell-Varley type,Leslie-Gower type and so on.The viewpoint that environment 
hanges over time was disregarded in model (LV).However, it is safe to say that the time-variation of the environment is an important fa
torto expe
t the population of spe
ies. First of all, it is thought that the seasonal variationin�uen
es population dynami
s. It is dif�
ult to assume that the birth rate and the death2



rate are 
onstant like model (LV). To be pre
ise, both rates re
eive the seasonal variationand they 
hange.By assuming that the birth rate and 
arrying 
apa
ity for the prey are parti
ularlysensitive to time-variation of the environment, in this paper, we 
onsider the time-varyingLotka-Volterra predator-prey systemN0 = (a + 
h(t) � dh(t)N � bP)N;P0 = (� 
 + dN)P; (E)where 0 = d=dt; N and P represent the prey population (or density) and the predatorpopulation (or density), respe
tively; the fun
tion h is nonnegative and lo
ally integrable,and a, b, 
 and d are positive 
onstants. Model (E) also has a unique interior equilibriumx� = (
=d; a=b). Sin
e N and P are populations of two spe
ies, we have only to 
onsidermodel (E) in the region R def= f(N; P) : N > 0 and P > 0g:Needless to say, the region R is a positive invariant set of (E).Let t0 � 0 be the initial time and let x0 = (N0; P0) 2 R be the initial data; namely,(N0; P0) = (N(t0); P(t0)). For the sake of simpli
ity, we denote the solution (N(t); P(t)) of(E) through x0 at t = t0 by x(t; t0; x0).Let k �k be any suitable norm. The interior equilibrium x� is said to be stable if, for any" > 0 and any t0 � 0, there exists a Æ("; t0) > 0 su
h that kx0�x�k < Æ implies kx(t; t0; x0)�x�k < " for all t � t0. The interior equilibrium is said to be globally attra
tive if, for anyt0 � 0, any � > 0 and any x0 2 R2 , there is a T (t0; �; x0) > 0 su
h that kx(t; t0; x0)�x�k < �for all t � t0 + T (t0; �; x0). The interior equilibrium is globally asymptoti
ally stable if itis stable and globally attra
tive. About the de�nitions of stability and attra
tivity, refer tothe books [1, 2, 8, 9, 20℄ for example.To des
ribe a result 
on
erning the global asymptoti
 stability of (E), we introdu
e afamily of fun
tions. We say that the fun
tion h belongs to F[WIP℄ if1Xn=1 Z �n�n h(t)dt = 1for every pair of sequen
es f�ng and f�ng satisfying �n < �n < �n+1,lim infn!1 (�n � �n) > 0 and lim supn!1 (�n+1 � �n) < 1:The 
on
ept of the weak integral positivity was �rst published in Hatvani [3℄. It is 
learthat if the fun
tion h has a positive lower bound, then h belongs to F[WIP℄. There is apossibility that h belongs to F[WIP℄ even if lim inft!1 h(t) = 0. For example, 1=(1 + t) 2F[WIP℄ and sin2t=(1+ t) 2 F[WIP℄ (for the proof, see [15, Proposition 2.1℄). Sugie et al. [19℄obtained the following result (see also [10, 18℄).3



Theorem A. Suppose that there exists an h su
h that 0 � h(t) � h for t � 0. If thefun
tion h belongs to F[WIP℄, then the interior equilibrium (
=d; a=b) of (E) is globallyasymptoti
ally stable.Model (E) approa
hes model (LV) as time t passes in the 
ase that lim inft!1 h(t) = 0;namely, the limiting system of (E) is model (LV) whi
h is stru
turally unstable. FromTheorem A, we see that if h 2 F[WIP℄, then the interior equilibrium of (E) 
an be stabilizedeven in this 
ase. However, Theorem A gives only suf�
ient 
onditions whi
h guaranteethat the interior equilibrium of (E) is globally asymptoti
ally stable. Then, what 
ondi-tion will be ne
essary? We give an answer to this question and present a ne
essary andsuf�
ient 
ondition under weak assumptions.Theorem 1. Suppose that there exist an "0 > 0 and a Æ0 > 0 su
h that jh(t) � h(s)j < "0for all t � 0 and s � 0 with jt � sj < Æ0 and suppose that the fun
tion h belongs to F[WIP℄.Then the interior equilibrium (
=d; a=b) of (E) is globally asymptoti
ally stable if andonly if Z 10 R t0 eH(s)dseH(t) dt = 1; (1)where H(t) = Z t0 h(s)ds:Remark 1. To show that the interior equilibrium (
=d; a=b) of (E) is stable (to be pre
ise,uniformly stable), it is enough only to assume that the fun
tion h is nonnegative (for theproof, see [19, Proposition 2℄). Hen
e, we may say that Theorem 1 gives a ne
essary andsuf�
ient 
ondition for the interior equilibrium to be globally attra
tive.Remark 2. Suppose that there exists an h > 0 su
h that 0 � h(t) � h for t � 0. Then,jh(t) � h(s)j � jh(t)j + jh(s)j � 2h for all t � 0 and s � 0. Hen
e, in Theorem 1, the�rst assumption of h(t) is satis�ed with respe
t to "0 = 2h and any Æ0 > 0. Clearly,the 
onverse is not always true. The �rst assumption may be satis�ed even if h is adis
ontinuous fun
tion. For example, if the fun
tion h is a step fun
tion su
h ash(t) = 8>>><>>>: 1 if 2n � 2 � t < 2n � 1;1=2 if 2n � 1 � t < 2nfor n 2 N , then the �rst assumption holds. Of 
ourse, h(t) belongs to F[WIP℄.2. Related resear
hMany attempts have been made to �nd good 
onditions for judging whether the origin(0; 0) of the damped linear os
illatorx00 + h(t)x0 + !2x = 04



is asymptoti
ally stable or not. The resear
h of this theme originated from the works ofLevin and Nohel [7℄ and Smith [11℄. Progress of the history of this resear
h is brie�ysummarized in Hatvani [4, Se
tion 1℄ and Sugie [14, Se
tion 1℄. The damped linearos
illator is equivalent to the systemx0 = !y;y0 = �!x � h(t)y: (2)Sugie [14℄ dis
ussed the problem about the asymptoti
 stability of nonlinear systemsin
luding (2). By applying his result to system (2), we 
an derive the following ne
essaryand suf�
ient 
ondition.Theorem B. Suppose that the fun
tion h is uniformly 
ontinuous and nonnegative, andit belongs to F[WIP℄. Then the zero solution of (2) is asymptoti
ally stable if and only if
ondition (1) holds.Theorem B 
overs many previous resear
hes for system (2). It is well known that ifthe zero solution of (2) is asymptoti
ally stable, then it is globally asymptoti
ally stable.Sin
e h(t) � 0 for t � 0, the integral H(t) is in
reasing for t � 0 (needless to say, it is notne
essarily stri
tly in
reasing). De�neH�1(r) = minft 2 R : H(t) � rg:Then, the inverse fun
tion H�1(r) is stri
tly in
reasing for r � 0 (it may be dis
ontinuous).Hatvani et al. [5℄ showed that 
ondition (1) is equivalent to1Xn=1 �H�1(�n) � H�1(�(n � 1))�2 = 1 (3)for any � > 0, provided that H(t) tends to1 as t ! 1. Note that h 2 F[WIP℄ implieslimt!1H(t) = 1: (4)Using their method, we 
an prove the following equivalen
e relation.Lemma 2. Under assumption (4), 
ondition (1) holds if and only ifZ 10 R t0 e�H(s)dse�H(t) dt = 1 (5)for any � > 0.From the equivalen
e of 
onditions (1) and (3), in order to prove Lemma 2 we haveonly to show that 
ondition (3) is equivalent to 
ondition (5) (for the proof, see Appendix).5



Let x = � ln(bP=a) and y = � ln(dN=
):Then model (E) be
omes the systemx0 = 
(1 � e�y);y0 = � a(1 � e�x) � 
h(t)(1 � e�y): (6)System (6) has the zero solution (x(t); y(t)) � (0; 0), whi
h 
orresponds to the interiorequilibrium (
=d; a=b) of (E). This transformation is a one-to-one 
orresponden
e fromthe region R to the whole real plane f(x; y) : x 2 R and y 2 Rg. Hen
e, the interior equi-librium (
=d; a=b) of (E) is globally attra
tive if and only if every solution (x(t); y(t)) of(6) tends to (0; 0) as t ! 1.By means of the above-mentioned transformation, we 
an rewrite Theorem 1 as fol-lows.Proposition 3. Suppose that there exist an "0 > 0 and a Æ0 > 0 su
h that jh(t)�h(s)j < "0for all t � 0 and s � 0 with jt � sj < Æ0 and suppose that the fun
tion h belongs to F[WIP℄.Then the zero solution of (6) is globally asymptoti
ally stable if and only if 
ondition (1)holds.Taking into a

ount the fa
t that 1 � e�x � x and 1 � e�y � y for jxj and jyj suf�
ientsmall, we noti
e that systems (2) and (6) are very similar. From this viewpoint, we willprove the main theorem. However, sin
e Proposition 3 provides us with the global prop-erty of the solutions of (6), we 
annot give the proof of the main theorem only 
onsideringsystem (2) as the linear approximation of (6).Obviously, 
onditions of Theorem B require more of fun
tion h than those of Propo-sition 3.3. Proof of the main resultBefore proving Proposition 3 whi
h is equivalent to Theorem 1, it is useful to examinesome properties of the fun
tion f (z) = e�z + z � 1and its derivative g(z) def= ddz f (z) = 1 � e�zfor z 2 R. It is 
lear that f (z) is stri
tly in
reasing for z � 0 and stri
tly de
reasing forz � 0, and f (0) = 0. Let w = �f (z) def= f (z)sgnz;and �f �1(w) be the inverse fun
tion of �f (z). Needless to say, �f �1(w) is stri
tly in
reasingfor w 2 R and �f �1(0) = 0. Sin
eddz� f (z) � f (�z)� = g(z) + g(�z) = 2 � (ez + e�z) � 06



for z 2 R, with equality if and only if z = 0, we see thatf (z2) � f (z1) < f (�z2) � f (�z1) for z1 < z2 (7)and f (z) < f (�z) for z > 0:From the se
ond inequality it follows that0 � f (z) � f (��) for jzj � � (8)with � positive and 0 < � �f �1(�w) < �f �1(w) for w > 0: (9)It is 
lear that g(z) is stri
tly in
reasing for z 2 R with g(0) = 0, limz!1 g(z) = 1,limz!�1 g(z) = �1. Sin
e g(z) + g(�z) � 0 for z 2 R, with equality if and only if z = 0,we see that g2(z) � g2(�) for jzj � � (10)and jg(z)j � jg(��)j for jzj � � (11)with � positive.We are now ready to prove Proposition 3.Proof of Proposition 3. Let (x(t); y(t)) be any solution of (6) with the initial time t0 � 0and let (x0; y0) = (x(t0); y(t0)). As mentioned in Remark 1, the interior equilibrium(
=d; a=b) of (E) is stable. Sin
e the zero solution of (6) 
orresponds to the interior equi-librium (
=d; a=b) of (E), the zero solution is also stable; that is, for any " > 0, there existsa Æ("; t0) > 0 su
h that jx0j+ jy0j < Æ implies jx(t)j+ jy(t)j < " for all t � t0. Hen
e, to proveProposition 3, we have only to 
he
k whether every solution of (6) tends to the origin ornot.Ne
essity. We will show that there exists a solution of (6) whi
h does not approa
h theorigin provided that Z 10 R t0 eH(s)dseH(t) dt < 1:From Lemma 2 with � = 
, we see thatZ 10 R t0 e
H(s)dse
H(t) dt < 1:Hen
e, we 
an 
hoose a T � 0 so large thatZ 1T R t0 e
H(s)dse
H(t) dt < 12a
(e � 1) : (12)7



Let Æ� = Æ(1; T )=2 and 
onsider the solution ( �x(t); �y(t)) of (6) that passes through (Æ�; 0) att = T . Then j �x(t)j + j�y(t)j < 1 for t � T:Sin
e �x0(T ) = 0 and �y0(T ) < 0, it turns out that ( �x(t); �y(t)) enters the fourth quadrantQ4 def= f(x; y) : x > 0 and y < 0gin a right-hand neighborhood of t = T . Taking a

ount of the ve
tor �eld of (6) on thepositive x-axis, we see that ( �x(t); �y(t)) does not move to the �rst quadrantQ1 def= f(x; y) : x > 0 and y > 0gfrom Q4 dire
tly as t in
reases.Suppose that there exists a T � > T su
h that �x(T �) = Æ�=2 and Æ�=2 < �x(t) � Æ�for T � t < T �. Then, from the above-mentioned property of ( �x(t); �y(t)) it follows that�1 < �y(t) � 0 for T � t < T �. Note that1 � e�x � x for x 2 Rand (e � 1)y � 1 � e�y � y for � 1 < y � 0: (13)Sin
e �y0(t) + 
h(t)�y(t) � �y0(t) + 
h(t)�1 � e��y(t)� = � a�1 � e� �x(t)�� � a �x(t) � � aÆ�for T � t < T �, we obtain�e
H(t) �y(t)�0 � � aÆ�e
H(t) for T � t < T �:Integrate both sides of this inequality from T to t < T � to obtaine
H(t) �y(t) � e
H(T ) �y(T ) � aÆ�Z tT e
H(s)ds = � aÆ�Z tT e
H(s)ds:Hen
e, by (13) we have�x0(t) = 
�1 � e��y(t)� � 
(e � 1)�y(t) � � a
(e � 1)Æ� R tT e
H(s)dse
H(t)for T � t < T �. From this estimation and (12) it follows that�x(T �) � �x(T ) � a
(e � 1)Æ�Z T �T R tT e
H(s)dse
H(t) dt� Æ� � a
(e � 1)Æ�Z 1T R tT e
H(s)dse
H(t) dt� Æ� � a
(e � 1)Æ�Z 1T R t0 e
H(s)dse
H(t) dt > Æ�2 :8



This 
ontradi
ts the assumption that �x(T �) = Æ�=2. We therefore 
on
lude that �x(t) > Æ�=2for t � T . This fa
t means that the solution ( �x(t); �y(t)) of (6) does not tend to the origin ast ! 1. Thus, the zero solution of (6) is not globally attra
tive.Suf�
ien
y. Let v(t) = a f (x(t)) + 
 f (y(t)) (14)for any solution (x(t); y(t)) of (6). Then, we havev0(t) = ag(x(t))x0(t) + 
g(y(t))y0(t) = � 
2h(t)g2(y(t)) � 0for t � t0. Hen
e, v(t) is de
reasing for t � t0. Sin
e v(t) � 0 for t � t0, there existsa limiting value v� � 0 of v(t). If v� = 0, then it follows from (14) that the solution(x(t); y(t)) of (6) tends to (0; 0) as t ! 1. This is our desired 
on
lusion. Thus, we haveonly to show that the 
ase in whi
h v� > 0 does not o

ur.By way of 
ontradi
tion, we suppose that v� is positive. Then, there exists a T1 � t0su
h that 0 < v� � v(t) � 2v� for t � T1: (15)Hen
e, it follows from (14) that�f �1(�2v�=a) � x(t) � �f �1(2v�=a) and �f �1(�2v�=
) � y(t) � �f �1(2v�=
)for t � T1. From (9) it turns out thatjx(t)j � �f �1(2v�=a) and jy(t)j � �f �1(2v�=
) (16)for t � T1.Hereafter, we will 
omplete the proof of suf�
ien
y in two steps. In the �rst step, weshow that y(t) approa
hes zero as t ! 1. If limt!1 y(t) = 0, then from (14) we see thatlimt!1 x(t) = �f �1(v�=a) def= �1 > 0 or limt!1 x(t) = �f �1(�v�=a) def= ��2 < 0. In the se
ondstep, we will show that �1 = �2 = 0. This is a 
ontradi
tion.Sin
e jy(t)j is bounded, it has an inferior limit and a superior limit. In the �rst step, weshow that the inferior limit is zero, and then show that the superior limit is also zero. Inthe se
ond step, we examine the movement of (x(t); y(t)) in the whole x-y plane in details.Step (1): We �rst suppose that lim inft!1 jy(t)j > 0. Then, we 
an 
hoose a 
 > 0 anda T2 � t0 su
h that jy(t)j > 
 for t � T2. From (10), we see thatv0(t) = �
2h(t)g2(y(t)) � � 
2g2(
)h(t)for t � T2. Integrating this inequality from t0 to t, we 
an evaluate as follow:v� � v(t0) � v(t) � v(t0) = Z tt0 v0(s)ds � � 
2g2(
)Z tT2h(s)ds:Re
all that h 2 F[WIP℄ implies 
ondition (4) holds. Then, we see that the evaluation aboveis not right. Thus, we 
on
lude that lim inft!1 jy(t)j = 0.9



Next, we suppose that lim supt!1 jy(t)j def= � > 0. Let " be so small enough as to satisfythe inequalities 0 < " < min��=2;� �f �1(�v�=
)=2	,4"aÆ0 + 
(1 + 2"0)a jg(�2")j < 1 � exp  � f �1 v� � 
 f (�2")a !! (17)and 4"aÆ0 + 
(1 + 2"0)a jg(�2")j < exp  � f �1 
 f (�2") � v�a !! � 1: (18)Note that f (�2") > 0 and g(�2") < 0 for " > 0, and f (�2") and g(�2") approa
h zero as" ! 0. Hen
e, we 
an �nd a positive number " whi
h satis�es (17) and (18).We 
an 
hoose three sequen
es fsng, f�ng and f�ng with T1 < �n < sn < �n � �n+1 and�n ! 1 as n ! 1 su
h that jy(sn)j = 2", jy(�n)j = jy(�n)j = " andjy(t)j � " for �n < t < �n; (19)jy(t)j � 2" for �n < t < �n+1; (20)" < jy(t)j < 2" for �n < t < sn: (21)In fa
t, sin
e the inferior limit of jy(t)j is zero, there exists a t� > T1 su
h that jy(t�)j < ".Be
ause lim supt!1 jy(t)j = � > 2", we 
an 
hoose numbers s1, �1 and �1 su
h thats1 = inf�t > t� : jy(t)j > 2"	; �1 = sup�t < s1 : jy(t)j < "	and �1 = inf�t > s1 : jy(t)j < "	:It is 
lear that jy(s1)j = 2", jy(�1)j = jy(�1)j = " and jy(t)j � " for �1 < t < �1. Using�1 instead of t�, we de�ne s2, �2 and �2 similarly to s1, �1 and �1, and so on. Then, weobtain three sequen
es fsng, f�ng and f�ng with n 2 N su
h thatsn = inf�t > �n�1 : jy(t)j > 2"	; �n = sup�t < sn : jy(t)j < "	and �n = inf�t > sn : jy(t)j < "	:It is also 
lear that jy(sn)j = 2", jy(�n)j = jy(�n)j = ",jy(t)j � " for �n < t < �n;jy(t)j � 2" for �n < t < �n+1and " < jy(t)j < 2" for �n < t < sn:Hen
e, the inequalities (19)�(21) are satis�ed.10



Let us evaluate the distan
e between �n and sn for n 2 N . From (21) and the 
ontinuityof y(t), we see that there are two 
ases to be 
onsidered: (i) y(�n) = " < y(t) < 2" = y(sn)for �n < t < sn and (ii) y(sn) = �2" < y(t) < �" = y(�n) for �n < t < sn. It is 
lear thatf (jy(sn)j) � f (jy(�n)j) = f (y(sn)) � f (y(�n))in 
ase (i). It follows from (7) thatf (jy(sn)j) � f (jy(�n)j) = f (�y(sn)) � f (�y(�n))< f (y(sn)) � f (y(�n))in 
ase (ii). Hen
e, in either 
ase, we getf (jy(sn)j) � f (jy(�n)j) � f (y(sn)) � f (y(�n))= Z y(sn)y(�n) g(�)d� = Z sn�n g(y(t))y0(t)dt= � aZ sn�n g(x(t))g(y(t))dt � 
Z sn�n h(t)g2(y(t))dt� aZ sn�n jg(x(t))jjg(y(t))jdt:From (11), (16) and (21) it turns out thatjg(x(t))j � ����g�� �f �1(2v�=a)����� = � g�� �f �1(2v�=a)�for t � T1 and jg(y(t))j � jg(�2")j = � g(�2")for �n � t � sn. Hen
e, we obtain0 < f (2") � f (") = f (jy(sn)j) � f (jy(�n)j)� aZ sn�n g�� �f �1(2v�=a)�g(�2")dt = a g�� �f �1(2v�=a)�g(�2")(sn � �n);namely, sn � �n � f (2") � f (")a g�� �f �1(2v�=a)�g(�2") def= m > 0for ea
h n 2 N . It is 
lear that the positive number m is independent of n 2 N . Sin
e[�n; sn℄ ( [�n; �n℄, we see that lim infn!1(�n � �n) � m > 0.From the assumption of h it follows thatjh(t) � h(�n)j < "0 for �n � Æ0 < t < �n + Æ0: (22)Let us examine the value of h at t = �n for ea
h n 2 N . De�neS = fn 2 N : h(�n) � 1 + "0g:11



We will show that the number of elements in the set S is �nite. Suppose that it is notright. Let 
ard S denote the 
ardinal number of the set S . As shown above, �n + m < �nfor ea
h n 2 N . Let ` = minfÆ0;mg. Then, from (19) and (22) it follows thatjy(t)j � " for �n � ` � t � �n;and that n 2 S implies h(t) � 1 for �n � ` � t � �n:Hen
e, we obtain Z �n�n�`h(t)g2(y(t))dt � ` g2(") if n 2 S :Using this inequality, we getv� � v(t0) = Z 1t0 v0(t)dt = � 
2Z 1t0 h(t)g2(y(t))dt� � 
2 Xn2S Z �n�n�`h(t)g2(y(t))dt = � 
2`g2(")
ard S = �1:This is a 
ontradi
tion.Sin
e the number of elements in the set S is �nite, we 
an �nd an N 2 N su
h thath(�n) < 1 + "0 for n � N: (23)We next show that �n+1 � �n � Æ0 for n � N. Suppose that it is not right. Then, thereexists an n0 � N su
h that �n0 + Æ0 < �n0+1:From (8), (14), (15) and (20), we obtaina f (x(t)) = v(t) � 
 f (y(t)) � v� � 
 f (�2") def= w�for �n0 � t � �n0+1. Note that w� is positive be
ause 0 < " < � �f �1(�v�=
)=2. We pro
eedthe proof by dividing into two 
ases: (a) x(t) � �f �1(w�=a) > 0 for �n0 � t � �n0+1; (b)x(t) � �f �1(�w�=a) < 0 for �n0 � t � �n0+1. Note thath(t) < "0 + h(�n0) < 1 + 2 "0 for �n0 � t � �n0+1be
ause of (22) and (23). In the former 
ase, using the se
ond equation in system (6) with(11), (17) and (20), we gety0(t) = � a�1 � e�x(t)� � 
h(t)�1 � e�y(t)�� � a�1 � exp�� �f �1(w�=a)�� + 
h(t)jg(y(t))j� � a�1 � exp�� �f �1(w�=a)�� + 
(1 + 2"0)jg(�2")j< �4"Æ0 12



for �n0 � t � �n0 + Æ0. In the latter 
ase, by using (18) instead of (17), we gety0(t) = � a�1 � e�x(t)� � 
h(t)�1 � e�y(t)�� a�exp�� �f �1(�w�=a)� � 1� � 
h(t)jg(y(t))j� a�exp�� �f �1(�w�=a)� � 1� � 
(1 + 2"0)jg(�2")j> 4"Æ0for �n0 � t � �n0 + Æ0. Thus, in either 
ase, we havejy0(t)j > 4"Æ0 for �n0 � t � �n0 + Æ0:Integrate this inequality from �n0 to �n0 + Æ0 to obtainjy(�n0 + Æ0)j + jy(�n0)j � �������Z �n0+Æ0�n0 y0(t)dt������� = Z �n0+Æ0�n0 jy0(t)jdt > 4":However, it follows from (20) thatjy(�n0 + Æ0)j + jy(�n0)j � 4":This is a 
ontradi
tion. We therefore 
on
lude that lim supn!1(�n+1 � �n) � Æ0 < 1.From how to 
hoose sequen
es f�ng and f�ng, it is 
lear that�n < �n < �n+1:Re
all that lim infn!1(�n � �n) > 0. Then1Xn=1 Z �n�n h(t)dt = 1 (24)be
ause the fun
tion h belongs to F[WIP℄.On the other hand, from (10) and (19) it turns out thatg2(y(t)) � g2(") > 0 for �n � t � �n:Hen
e, we haveZ 1t0 v0(t)dt = � 
2Z 1t0 h(t)g2(y(t))dt � � 
2g2(") 1Xn=1 Z �n�n h(t)dt:Sin
e Z 1t0 v0(t)dt = limt!1 v(t) � v(t0) = v� � v(t0) < 0;13



we obtain 1Xn=1 Z �n�n h(t)dt � v(t0) � v�
2g2(") < 1:This 
ontradi
ts (24). Thus, we 
on
lude that lim supt!1 jy(t)j = � = 0. The proof of Step(i) is now 
omplete.Step (2): As already mentioned, sin
e y(t) tends zero as t ! 1, we see that x(t) tendsto �1 = �f �1(v�=a) or to ��2 = �f �1(�v�=a). From the assumption that v� > 0, the numbers�1 and �2 have to be positive. Hen
e, the solution (x(t); y(t)) approa
hes the point (�1; 0)on the positive x-axis or the point (��2; 0) on the negative x-axis. Note that2y < 1 � e�y < y for � 1 < y < 0 (25)and y2 < 1 � e�y < y for 0 < y < 1: (26)Taking into a

ount of the ve
tor �eld of (6), we see that there exists a T3 � t0 su
h thatx(t) > �1 and y(t) < 0 for t � T3 (27)or x(t) < ��2 and y(t) > 0 for t � T3: (28)In fa
t, it follows from (6) that y0(t) < 0 on the positive x-axis and y0(t) > 0 on thenegative x-axis. This means that the solution (x(t); y(t)) does not enter Q1 (resp., these
ond quadrant Q3) from Q4 (resp., the third quadrant Q2). Re
all that there are twopossible 
ases: (i) (x(t); y(t)) ! (�1; 0) as t ! 1; (ii) (x(t); y(t)) ! (��2; 0) as t ! 1. Inthe former, the solution (x(t); y(t)) has to approa
h the point (�1; 0) through either Q1 orQ4. Suppose that it approa
hes the point through Q1. Then, there exists a eT3 � t0 su
hthat �12 � x(t) and y(t) > 0 for t � eT3:Hen
e, we have y0(t) � � a(1 � e�x(t)) � � a(1 � e��1=2)for t � eT3, and therefore, y(t) � y(eT3) � a(1 � e��1=2)(t � eT3);whi
h diverges to �1. This 
ontradi
ts that limt!1 y(t) = 0. Thus, we see that thesolution approa
hes the point through Q4. We therefore 
on
lude that (27) holds. In thelatter, using a similar way to the above, we see that the solution x(t); y(t) has to approa
hthe point (��2; 0) through Q2, and hen
e (28) holds.Sin
e limt!1 y(t) = 0, there exists a T4 � T3 su
h thatjy(t)j < 1 for t � T4: (29)14



We 
onsider only the 
ase where (27) holds, be
ause the 
ase where (28) holds is 
arriedout in the same way by using (26) and (28) instead of (25) and (27). In the former, by(25), (27) and (29) we havey0(t) + 2
h(t)y(t) � y0(t) + 
h(t)�1 � e�y(t)�= � a�1 � e�x(t)� < � a�1 � e��1� < 0for t � T4. Hen
e, by (27) we gety(t) < y(t) � e2
(H(T4)�H(t))y(T4) < � a�1 � e��1� R tT4e2
H(s)dse2
H(t)for t � T4. From this estimation and (25) it follows thatx0(t) = 
�1 � e�y(t)� � 
y(t) < � a
�1 � e��1� R tT4e2
H(s)dse2
H(t)for t � T4. Integrating this inequality from T4 to t, we obtainx(t) < � a
�1 � e��1�Z tT4 R sT4e2
H(�)d�e2
H(s) ds + x(T4):Sin
e h(t) � 0 for t � 0, it is 
lear thatZ 10 e2
H(t)dt = 1:Hen
e, there exists a T5 � T4 su
h thatZ sT4e2
H(�)d� > 12 Z s0 e2
H(�)d� for s � T5:Using this inequality, we 
an evaluate that�1 < x(t) < � a
�1 � e��1�2 Z tT5 R s0 e2
H(�)d�e2
H(s) ds� a
�1 � e��1�Z T5T4 R sT4e2
H(�)d�e2
H(s) ds + x(T4)for t � T5. From 
ondition (1) and Lemma 2 with � = 2
, we see thatZ 10 R t0 e2
H(s)dse2
H(t) dt = 1:This 
ontradi
ts the evaluation above. The proof of Step (ii) is now 
omplete.Proposition 3 is thus proved. �15
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omments.AppendixIn the Appendix, we give a short proof for Lemma 2. The proof is essentially the sameas that of Theorem 1.1 in Hatvani [5℄.Proof of Lemma 2. Let t0 = 0 and de�netn = H�1(�n); an = tn � tn�1and �n = �(t; s) : t � 0; s � 0; �(n � 1) � H(t) � H(s) < �n	for n 2 N . Then, as 
an be seen from Figure 1 below, we obtain the following inequalities:ZZ�nds dt � a1(an + an+1) + a2(an+1 + an+2) + � � � � � �� a21 + a2n2 + a21 + a2n+12 + a22 + a2n+12 + a22 + a2n+22 + � � � � � �� 2 1Xi=1 a2i ; (30)ZZ�1ds dt � 12 �a21 + a22 + � � � � � � � = 12 1Xi=1 a2i : (31)Suppose that 
ondition (3) holds. Then, from (31) it follows thatZ 10 R t0 e�H(s)dse�H(t) dt = Z 10 e��H(t)Z t0 e�H(s)ds dt = Z 10 Z t0 e��(H(t)�H(s))ds dt= 1Xn=1 ZZ�ne��(H(t)�H(s))ds dt � 1Xn=1 ZZ�ne���nds dt� e���ZZ�1ds dt � 12e�� 1Xi=1 a2i= 12e�� 1Xn=1 �H�1(�n) � H�1(�(n � 1))�2 = 1:
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Figure 1: The domain �n and the 
urve Cn = �(t; s) : t � 0; s � 0; H(t) � H(s) = �n	Hen
e, 
ondition (5) is satis�ed. Conversely, suppose that 
ondition (5) holds. Then, by(30) we have 1 = Z 10 R t0 e�H(s)dse�H(t) dt = Z 10 e��H(t)Z t0 e�H(s)ds dt= 1Xn=1 ZZ�ne��(H(t)�H(s))ds dt � 1Xn=1 e���(n�1)ZZ�nds dt� 2 1Xn=1 e���(n�1) 1Xi=1 a2i = 21 � e��� 1Xi=1 a2i= 2e��e�� � 1 1Xn=1 �H�1(�n) � H�1(�(n � 1))�2:Hen
e, 
ondition (3) is satis�ed. Thus, 
onditions (3) and (5) are equivalent.As mentioned in Se
tion 2, it is already proved by Hatvani [5℄ that 
onditions (1) and(3) are equivalent. We therefore 
on
lude that 
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