
A neessary and suf�ient ondition for global asymptotistability of time-varying Lotka-Volterrapredator-prey systemsWei Zhenga, Jitsuro Sugie�,baShool of Mathematis and Statistis, Northeast Normal University, Changhun, 130024 Jilin,People's Republi of ChinabDepartment of Mathematis, Shimane University, Matsue 690-8504, JapanAbstratThe purpose of this paper is to present a neessary and suf�ient ondition whih guar-antees that an interior equilibrium of a ertain predator-prey system is globally asymp-totially stable. This eologial system is a model of Lotka-Volttera type whose preypopulation reeives time-variation of the environment. We assume that the time-varyingoef�ient is weakly integrally positive and has a weaker property than uniformly ontin-uous. Our neessary and suf�ient ondition is expressed by an improper double integralon the time-varying oef�ient. Our work is inspired by the study of the stability theoryfor damped linear osillators.Key words: Global asymptoti stability; Lotka-Volterra predator-prey model; Weaklyintegrally positive; Time-varying system2010 MSC: 34C15; 34D05; 34D23; 37B25; 92D251. IntrodutionPopulation eology is one of major sub�elds of biology. The main subjet is to elui-date population dynamis of speies. Expetation of population (or density) in the eosys-tem is an extremely important issue for human being soiety. Knowing the exat trendsof population dynamis is essential for environmental protetion. For this reason, manymathematiians, statistiians and eologists have ompeted �erely in the study of popu-lation dynamis. The basi idea of these studies is to extrat a logial mathematial modelfrom the eosystem.Let us put aside single speies population models, suh as the Malthusian growthmodel, and the logisti model provided by Pierre Fraņois Verhulst. When disussing the�Corresponding authorEmail addresses: vividloky�yahoo.o.jp (Wei Zheng),jsugie�riko.shimane-u.a.jp (Jitsuro Sugie)Preprint submitted to Nonlinear Analysis June 23, 2015



relationship between the population of two speies, we should quote the famous Lotka-Volterra model N0 = (a � bP)N;P0 = (�  + dN)P; (LV)where 0 = d=dt; N and P represent the prey population (or density) and the predatorpopulation (or density) respetively, and a, b,  and d are positive parameters: (i) a is thegrowth rate of prey; (ii) b is the rate at whih predators destroy prey; (iii)  is the deathrate of predators; (iv) d is the rate at whih predators inrease by onsuming prey. AlfredJ. Lotka has proposed a model desribing the quantitative relationship between host andparasite (or prey and predator) for the �rst time. By taking into aount of the hangeof �sh athes of prey and predator in the Adriati, Vito Volterra derived model (LV)independently of Lotka.This model has a single interior equilibrium x� = (=d; a=b). Let (N(t); P(t)) be anysolution of (LV). Then, the �rst integral of (LV) is given by the expression lnN(t) � dN(t) + a lnP(t) � bP(t) = �;where � is an arbitrary onstant. Hene, the interior equilibrium x� is a neutrally stable�xed point; namely, it is surrounded by a family of periodi orbits whose amplitudesdepend on the initial datum of the prey population and the predator population.Although model (LV) is simple and easy to handle, it has a weakness. Sine theinterior equilibrium x� is neutrally stable, if the prey population or the predator populationhange suddenly for some reason, then the population state annot return to the originalstate. In this sense, model (LV) is said to be struturally unstable. However, nature ismore �exible and keeps harmony. It has been often reported that the population state willreturn to the original state as time passes. It is said that this model is undesirable fromthis meaning. Thus, researhers understood that model (LV) was not able to simulate theoperation of nature appropriately; in other words, some fators that provide the balaneof nature have been ignored in model (LV). Then, researhers have paid various efforts to�nd the negleted fators.Crawford S. Holling paid his attention to the apture rate of prey per predator. Thisrate is alled a funtional response of predator to prey. The orthodox funtional responsesare generally lassi�ed into three types, whih are named Holling's type I, II and III (forexample, see [13, 16, 17℄). There are different kinds of the funtional response suhas Ivlev type (about the result of Ivlev type, refer to [12℄). Afterwards, the idea thatthe funtional response is also in�uened by the predator population has arisen. Re-ently, we an �nd many papers onerning analysis of eologial models with the ratio-dependent type, Beddington-DeAngelis type, Crowley-Martin type, Hassell-Varley type,Leslie-Gower type and so on.The viewpoint that environment hanges over time was disregarded in model (LV).However, it is safe to say that the time-variation of the environment is an important fatorto expet the population of speies. First of all, it is thought that the seasonal variationin�uenes population dynamis. It is dif�ult to assume that the birth rate and the death2



rate are onstant like model (LV). To be preise, both rates reeive the seasonal variationand they hange.By assuming that the birth rate and arrying apaity for the prey are partiularlysensitive to time-variation of the environment, in this paper, we onsider the time-varyingLotka-Volterra predator-prey systemN0 = (a + h(t) � dh(t)N � bP)N;P0 = (�  + dN)P; (E)where 0 = d=dt; N and P represent the prey population (or density) and the predatorpopulation (or density), respetively; the funtion h is nonnegative and loally integrable,and a, b,  and d are positive onstants. Model (E) also has a unique interior equilibriumx� = (=d; a=b). Sine N and P are populations of two speies, we have only to onsidermodel (E) in the region R def= f(N; P) : N > 0 and P > 0g:Needless to say, the region R is a positive invariant set of (E).Let t0 � 0 be the initial time and let x0 = (N0; P0) 2 R be the initial data; namely,(N0; P0) = (N(t0); P(t0)). For the sake of simpliity, we denote the solution (N(t); P(t)) of(E) through x0 at t = t0 by x(t; t0; x0).Let k �k be any suitable norm. The interior equilibrium x� is said to be stable if, for any" > 0 and any t0 � 0, there exists a Æ("; t0) > 0 suh that kx0�x�k < Æ implies kx(t; t0; x0)�x�k < " for all t � t0. The interior equilibrium is said to be globally attrative if, for anyt0 � 0, any � > 0 and any x0 2 R2 , there is a T (t0; �; x0) > 0 suh that kx(t; t0; x0)�x�k < �for all t � t0 + T (t0; �; x0). The interior equilibrium is globally asymptotially stable if itis stable and globally attrative. About the de�nitions of stability and attrativity, refer tothe books [1, 2, 8, 9, 20℄ for example.To desribe a result onerning the global asymptoti stability of (E), we introdue afamily of funtions. We say that the funtion h belongs to F[WIP℄ if1Xn=1 Z �n�n h(t)dt = 1for every pair of sequenes f�ng and f�ng satisfying �n < �n < �n+1,lim infn!1 (�n � �n) > 0 and lim supn!1 (�n+1 � �n) < 1:The onept of the weak integral positivity was �rst published in Hatvani [3℄. It is learthat if the funtion h has a positive lower bound, then h belongs to F[WIP℄. There is apossibility that h belongs to F[WIP℄ even if lim inft!1 h(t) = 0. For example, 1=(1 + t) 2F[WIP℄ and sin2t=(1+ t) 2 F[WIP℄ (for the proof, see [15, Proposition 2.1℄). Sugie et al. [19℄obtained the following result (see also [10, 18℄).3



Theorem A. Suppose that there exists an h suh that 0 � h(t) � h for t � 0. If thefuntion h belongs to F[WIP℄, then the interior equilibrium (=d; a=b) of (E) is globallyasymptotially stable.Model (E) approahes model (LV) as time t passes in the ase that lim inft!1 h(t) = 0;namely, the limiting system of (E) is model (LV) whih is struturally unstable. FromTheorem A, we see that if h 2 F[WIP℄, then the interior equilibrium of (E) an be stabilizedeven in this ase. However, Theorem A gives only suf�ient onditions whih guaranteethat the interior equilibrium of (E) is globally asymptotially stable. Then, what ondi-tion will be neessary? We give an answer to this question and present a neessary andsuf�ient ondition under weak assumptions.Theorem 1. Suppose that there exist an "0 > 0 and a Æ0 > 0 suh that jh(t) � h(s)j < "0for all t � 0 and s � 0 with jt � sj < Æ0 and suppose that the funtion h belongs to F[WIP℄.Then the interior equilibrium (=d; a=b) of (E) is globally asymptotially stable if andonly if Z 10 R t0 eH(s)dseH(t) dt = 1; (1)where H(t) = Z t0 h(s)ds:Remark 1. To show that the interior equilibrium (=d; a=b) of (E) is stable (to be preise,uniformly stable), it is enough only to assume that the funtion h is nonnegative (for theproof, see [19, Proposition 2℄). Hene, we may say that Theorem 1 gives a neessary andsuf�ient ondition for the interior equilibrium to be globally attrative.Remark 2. Suppose that there exists an h > 0 suh that 0 � h(t) � h for t � 0. Then,jh(t) � h(s)j � jh(t)j + jh(s)j � 2h for all t � 0 and s � 0. Hene, in Theorem 1, the�rst assumption of h(t) is satis�ed with respet to "0 = 2h and any Æ0 > 0. Clearly,the onverse is not always true. The �rst assumption may be satis�ed even if h is adisontinuous funtion. For example, if the funtion h is a step funtion suh ash(t) = 8>>><>>>: 1 if 2n � 2 � t < 2n � 1;1=2 if 2n � 1 � t < 2nfor n 2 N , then the �rst assumption holds. Of ourse, h(t) belongs to F[WIP℄.2. Related researhMany attempts have been made to �nd good onditions for judging whether the origin(0; 0) of the damped linear osillatorx00 + h(t)x0 + !2x = 04



is asymptotially stable or not. The researh of this theme originated from the works ofLevin and Nohel [7℄ and Smith [11℄. Progress of the history of this researh is brie�ysummarized in Hatvani [4, Setion 1℄ and Sugie [14, Setion 1℄. The damped linearosillator is equivalent to the systemx0 = !y;y0 = �!x � h(t)y: (2)Sugie [14℄ disussed the problem about the asymptoti stability of nonlinear systemsinluding (2). By applying his result to system (2), we an derive the following neessaryand suf�ient ondition.Theorem B. Suppose that the funtion h is uniformly ontinuous and nonnegative, andit belongs to F[WIP℄. Then the zero solution of (2) is asymptotially stable if and only ifondition (1) holds.Theorem B overs many previous researhes for system (2). It is well known that ifthe zero solution of (2) is asymptotially stable, then it is globally asymptotially stable.Sine h(t) � 0 for t � 0, the integral H(t) is inreasing for t � 0 (needless to say, it is notneessarily stritly inreasing). De�neH�1(r) = minft 2 R : H(t) � rg:Then, the inverse funtion H�1(r) is stritly inreasing for r � 0 (it may be disontinuous).Hatvani et al. [5℄ showed that ondition (1) is equivalent to1Xn=1 �H�1(�n) � H�1(�(n � 1))�2 = 1 (3)for any � > 0, provided that H(t) tends to1 as t ! 1. Note that h 2 F[WIP℄ implieslimt!1H(t) = 1: (4)Using their method, we an prove the following equivalene relation.Lemma 2. Under assumption (4), ondition (1) holds if and only ifZ 10 R t0 e�H(s)dse�H(t) dt = 1 (5)for any � > 0.From the equivalene of onditions (1) and (3), in order to prove Lemma 2 we haveonly to show that ondition (3) is equivalent to ondition (5) (for the proof, see Appendix).5



Let x = � ln(bP=a) and y = � ln(dN=):Then model (E) beomes the systemx0 = (1 � e�y);y0 = � a(1 � e�x) � h(t)(1 � e�y): (6)System (6) has the zero solution (x(t); y(t)) � (0; 0), whih orresponds to the interiorequilibrium (=d; a=b) of (E). This transformation is a one-to-one orrespondene fromthe region R to the whole real plane f(x; y) : x 2 R and y 2 Rg. Hene, the interior equi-librium (=d; a=b) of (E) is globally attrative if and only if every solution (x(t); y(t)) of(6) tends to (0; 0) as t ! 1.By means of the above-mentioned transformation, we an rewrite Theorem 1 as fol-lows.Proposition 3. Suppose that there exist an "0 > 0 and a Æ0 > 0 suh that jh(t)�h(s)j < "0for all t � 0 and s � 0 with jt � sj < Æ0 and suppose that the funtion h belongs to F[WIP℄.Then the zero solution of (6) is globally asymptotially stable if and only if ondition (1)holds.Taking into aount the fat that 1 � e�x � x and 1 � e�y � y for jxj and jyj suf�ientsmall, we notie that systems (2) and (6) are very similar. From this viewpoint, we willprove the main theorem. However, sine Proposition 3 provides us with the global prop-erty of the solutions of (6), we annot give the proof of the main theorem only onsideringsystem (2) as the linear approximation of (6).Obviously, onditions of Theorem B require more of funtion h than those of Propo-sition 3.3. Proof of the main resultBefore proving Proposition 3 whih is equivalent to Theorem 1, it is useful to examinesome properties of the funtion f (z) = e�z + z � 1and its derivative g(z) def= ddz f (z) = 1 � e�zfor z 2 R. It is lear that f (z) is stritly inreasing for z � 0 and stritly dereasing forz � 0, and f (0) = 0. Let w = �f (z) def= f (z)sgnz;and �f �1(w) be the inverse funtion of �f (z). Needless to say, �f �1(w) is stritly inreasingfor w 2 R and �f �1(0) = 0. Sineddz� f (z) � f (�z)� = g(z) + g(�z) = 2 � (ez + e�z) � 06



for z 2 R, with equality if and only if z = 0, we see thatf (z2) � f (z1) < f (�z2) � f (�z1) for z1 < z2 (7)and f (z) < f (�z) for z > 0:From the seond inequality it follows that0 � f (z) � f (��) for jzj � � (8)with � positive and 0 < � �f �1(�w) < �f �1(w) for w > 0: (9)It is lear that g(z) is stritly inreasing for z 2 R with g(0) = 0, limz!1 g(z) = 1,limz!�1 g(z) = �1. Sine g(z) + g(�z) � 0 for z 2 R, with equality if and only if z = 0,we see that g2(z) � g2(�) for jzj � � (10)and jg(z)j � jg(��)j for jzj � � (11)with � positive.We are now ready to prove Proposition 3.Proof of Proposition 3. Let (x(t); y(t)) be any solution of (6) with the initial time t0 � 0and let (x0; y0) = (x(t0); y(t0)). As mentioned in Remark 1, the interior equilibrium(=d; a=b) of (E) is stable. Sine the zero solution of (6) orresponds to the interior equi-librium (=d; a=b) of (E), the zero solution is also stable; that is, for any " > 0, there existsa Æ("; t0) > 0 suh that jx0j+ jy0j < Æ implies jx(t)j+ jy(t)j < " for all t � t0. Hene, to proveProposition 3, we have only to hek whether every solution of (6) tends to the origin ornot.Neessity. We will show that there exists a solution of (6) whih does not approah theorigin provided that Z 10 R t0 eH(s)dseH(t) dt < 1:From Lemma 2 with � = , we see thatZ 10 R t0 eH(s)dseH(t) dt < 1:Hene, we an hoose a T � 0 so large thatZ 1T R t0 eH(s)dseH(t) dt < 12a(e � 1) : (12)7



Let Æ� = Æ(1; T )=2 and onsider the solution ( �x(t); �y(t)) of (6) that passes through (Æ�; 0) att = T . Then j �x(t)j + j�y(t)j < 1 for t � T:Sine �x0(T ) = 0 and �y0(T ) < 0, it turns out that ( �x(t); �y(t)) enters the fourth quadrantQ4 def= f(x; y) : x > 0 and y < 0gin a right-hand neighborhood of t = T . Taking aount of the vetor �eld of (6) on thepositive x-axis, we see that ( �x(t); �y(t)) does not move to the �rst quadrantQ1 def= f(x; y) : x > 0 and y > 0gfrom Q4 diretly as t inreases.Suppose that there exists a T � > T suh that �x(T �) = Æ�=2 and Æ�=2 < �x(t) � Æ�for T � t < T �. Then, from the above-mentioned property of ( �x(t); �y(t)) it follows that�1 < �y(t) � 0 for T � t < T �. Note that1 � e�x � x for x 2 Rand (e � 1)y � 1 � e�y � y for � 1 < y � 0: (13)Sine �y0(t) + h(t)�y(t) � �y0(t) + h(t)�1 � e��y(t)� = � a�1 � e� �x(t)�� � a �x(t) � � aÆ�for T � t < T �, we obtain�eH(t) �y(t)�0 � � aÆ�eH(t) for T � t < T �:Integrate both sides of this inequality from T to t < T � to obtaineH(t) �y(t) � eH(T ) �y(T ) � aÆ�Z tT eH(s)ds = � aÆ�Z tT eH(s)ds:Hene, by (13) we have�x0(t) = �1 � e��y(t)� � (e � 1)�y(t) � � a(e � 1)Æ� R tT eH(s)dseH(t)for T � t < T �. From this estimation and (12) it follows that�x(T �) � �x(T ) � a(e � 1)Æ�Z T �T R tT eH(s)dseH(t) dt� Æ� � a(e � 1)Æ�Z 1T R tT eH(s)dseH(t) dt� Æ� � a(e � 1)Æ�Z 1T R t0 eH(s)dseH(t) dt > Æ�2 :8



This ontradits the assumption that �x(T �) = Æ�=2. We therefore onlude that �x(t) > Æ�=2for t � T . This fat means that the solution ( �x(t); �y(t)) of (6) does not tend to the origin ast ! 1. Thus, the zero solution of (6) is not globally attrative.Suf�ieny. Let v(t) = a f (x(t)) +  f (y(t)) (14)for any solution (x(t); y(t)) of (6). Then, we havev0(t) = ag(x(t))x0(t) + g(y(t))y0(t) = � 2h(t)g2(y(t)) � 0for t � t0. Hene, v(t) is dereasing for t � t0. Sine v(t) � 0 for t � t0, there existsa limiting value v� � 0 of v(t). If v� = 0, then it follows from (14) that the solution(x(t); y(t)) of (6) tends to (0; 0) as t ! 1. This is our desired onlusion. Thus, we haveonly to show that the ase in whih v� > 0 does not our.By way of ontradition, we suppose that v� is positive. Then, there exists a T1 � t0suh that 0 < v� � v(t) � 2v� for t � T1: (15)Hene, it follows from (14) that�f �1(�2v�=a) � x(t) � �f �1(2v�=a) and �f �1(�2v�=) � y(t) � �f �1(2v�=)for t � T1. From (9) it turns out thatjx(t)j � �f �1(2v�=a) and jy(t)j � �f �1(2v�=) (16)for t � T1.Hereafter, we will omplete the proof of suf�ieny in two steps. In the �rst step, weshow that y(t) approahes zero as t ! 1. If limt!1 y(t) = 0, then from (14) we see thatlimt!1 x(t) = �f �1(v�=a) def= �1 > 0 or limt!1 x(t) = �f �1(�v�=a) def= ��2 < 0. In the seondstep, we will show that �1 = �2 = 0. This is a ontradition.Sine jy(t)j is bounded, it has an inferior limit and a superior limit. In the �rst step, weshow that the inferior limit is zero, and then show that the superior limit is also zero. Inthe seond step, we examine the movement of (x(t); y(t)) in the whole x-y plane in details.Step (1): We �rst suppose that lim inft!1 jy(t)j > 0. Then, we an hoose a  > 0 anda T2 � t0 suh that jy(t)j >  for t � T2. From (10), we see thatv0(t) = �2h(t)g2(y(t)) � � 2g2()h(t)for t � T2. Integrating this inequality from t0 to t, we an evaluate as follow:v� � v(t0) � v(t) � v(t0) = Z tt0 v0(s)ds � � 2g2()Z tT2h(s)ds:Reall that h 2 F[WIP℄ implies ondition (4) holds. Then, we see that the evaluation aboveis not right. Thus, we onlude that lim inft!1 jy(t)j = 0.9



Next, we suppose that lim supt!1 jy(t)j def= � > 0. Let " be so small enough as to satisfythe inequalities 0 < " < min��=2;� �f �1(�v�=)=2	,4"aÆ0 + (1 + 2"0)a jg(�2")j < 1 � exp  � f �1 v� �  f (�2")a !! (17)and 4"aÆ0 + (1 + 2"0)a jg(�2")j < exp  � f �1  f (�2") � v�a !! � 1: (18)Note that f (�2") > 0 and g(�2") < 0 for " > 0, and f (�2") and g(�2") approah zero as" ! 0. Hene, we an �nd a positive number " whih satis�es (17) and (18).We an hoose three sequenes fsng, f�ng and f�ng with T1 < �n < sn < �n � �n+1 and�n ! 1 as n ! 1 suh that jy(sn)j = 2", jy(�n)j = jy(�n)j = " andjy(t)j � " for �n < t < �n; (19)jy(t)j � 2" for �n < t < �n+1; (20)" < jy(t)j < 2" for �n < t < sn: (21)In fat, sine the inferior limit of jy(t)j is zero, there exists a t� > T1 suh that jy(t�)j < ".Beause lim supt!1 jy(t)j = � > 2", we an hoose numbers s1, �1 and �1 suh thats1 = inf�t > t� : jy(t)j > 2"	; �1 = sup�t < s1 : jy(t)j < "	and �1 = inf�t > s1 : jy(t)j < "	:It is lear that jy(s1)j = 2", jy(�1)j = jy(�1)j = " and jy(t)j � " for �1 < t < �1. Using�1 instead of t�, we de�ne s2, �2 and �2 similarly to s1, �1 and �1, and so on. Then, weobtain three sequenes fsng, f�ng and f�ng with n 2 N suh thatsn = inf�t > �n�1 : jy(t)j > 2"	; �n = sup�t < sn : jy(t)j < "	and �n = inf�t > sn : jy(t)j < "	:It is also lear that jy(sn)j = 2", jy(�n)j = jy(�n)j = ",jy(t)j � " for �n < t < �n;jy(t)j � 2" for �n < t < �n+1and " < jy(t)j < 2" for �n < t < sn:Hene, the inequalities (19)�(21) are satis�ed.10



Let us evaluate the distane between �n and sn for n 2 N . From (21) and the ontinuityof y(t), we see that there are two ases to be onsidered: (i) y(�n) = " < y(t) < 2" = y(sn)for �n < t < sn and (ii) y(sn) = �2" < y(t) < �" = y(�n) for �n < t < sn. It is lear thatf (jy(sn)j) � f (jy(�n)j) = f (y(sn)) � f (y(�n))in ase (i). It follows from (7) thatf (jy(sn)j) � f (jy(�n)j) = f (�y(sn)) � f (�y(�n))< f (y(sn)) � f (y(�n))in ase (ii). Hene, in either ase, we getf (jy(sn)j) � f (jy(�n)j) � f (y(sn)) � f (y(�n))= Z y(sn)y(�n) g(�)d� = Z sn�n g(y(t))y0(t)dt= � aZ sn�n g(x(t))g(y(t))dt � Z sn�n h(t)g2(y(t))dt� aZ sn�n jg(x(t))jjg(y(t))jdt:From (11), (16) and (21) it turns out thatjg(x(t))j � ����g�� �f �1(2v�=a)����� = � g�� �f �1(2v�=a)�for t � T1 and jg(y(t))j � jg(�2")j = � g(�2")for �n � t � sn. Hene, we obtain0 < f (2") � f (") = f (jy(sn)j) � f (jy(�n)j)� aZ sn�n g�� �f �1(2v�=a)�g(�2")dt = a g�� �f �1(2v�=a)�g(�2")(sn � �n);namely, sn � �n � f (2") � f (")a g�� �f �1(2v�=a)�g(�2") def= m > 0for eah n 2 N . It is lear that the positive number m is independent of n 2 N . Sine[�n; sn℄ ( [�n; �n℄, we see that lim infn!1(�n � �n) � m > 0.From the assumption of h it follows thatjh(t) � h(�n)j < "0 for �n � Æ0 < t < �n + Æ0: (22)Let us examine the value of h at t = �n for eah n 2 N . De�neS = fn 2 N : h(�n) � 1 + "0g:11



We will show that the number of elements in the set S is �nite. Suppose that it is notright. Let ard S denote the ardinal number of the set S . As shown above, �n + m < �nfor eah n 2 N . Let ` = minfÆ0;mg. Then, from (19) and (22) it follows thatjy(t)j � " for �n � ` � t � �n;and that n 2 S implies h(t) � 1 for �n � ` � t � �n:Hene, we obtain Z �n�n�`h(t)g2(y(t))dt � ` g2(") if n 2 S :Using this inequality, we getv� � v(t0) = Z 1t0 v0(t)dt = � 2Z 1t0 h(t)g2(y(t))dt� � 2 Xn2S Z �n�n�`h(t)g2(y(t))dt = � 2`g2(")ard S = �1:This is a ontradition.Sine the number of elements in the set S is �nite, we an �nd an N 2 N suh thath(�n) < 1 + "0 for n � N: (23)We next show that �n+1 � �n � Æ0 for n � N. Suppose that it is not right. Then, thereexists an n0 � N suh that �n0 + Æ0 < �n0+1:From (8), (14), (15) and (20), we obtaina f (x(t)) = v(t) �  f (y(t)) � v� �  f (�2") def= w�for �n0 � t � �n0+1. Note that w� is positive beause 0 < " < � �f �1(�v�=)=2. We proeedthe proof by dividing into two ases: (a) x(t) � �f �1(w�=a) > 0 for �n0 � t � �n0+1; (b)x(t) � �f �1(�w�=a) < 0 for �n0 � t � �n0+1. Note thath(t) < "0 + h(�n0) < 1 + 2 "0 for �n0 � t � �n0+1beause of (22) and (23). In the former ase, using the seond equation in system (6) with(11), (17) and (20), we gety0(t) = � a�1 � e�x(t)� � h(t)�1 � e�y(t)�� � a�1 � exp�� �f �1(w�=a)�� + h(t)jg(y(t))j� � a�1 � exp�� �f �1(w�=a)�� + (1 + 2"0)jg(�2")j< �4"Æ0 12



for �n0 � t � �n0 + Æ0. In the latter ase, by using (18) instead of (17), we gety0(t) = � a�1 � e�x(t)� � h(t)�1 � e�y(t)�� a�exp�� �f �1(�w�=a)� � 1� � h(t)jg(y(t))j� a�exp�� �f �1(�w�=a)� � 1� � (1 + 2"0)jg(�2")j> 4"Æ0for �n0 � t � �n0 + Æ0. Thus, in either ase, we havejy0(t)j > 4"Æ0 for �n0 � t � �n0 + Æ0:Integrate this inequality from �n0 to �n0 + Æ0 to obtainjy(�n0 + Æ0)j + jy(�n0)j � �������Z �n0+Æ0�n0 y0(t)dt������� = Z �n0+Æ0�n0 jy0(t)jdt > 4":However, it follows from (20) thatjy(�n0 + Æ0)j + jy(�n0)j � 4":This is a ontradition. We therefore onlude that lim supn!1(�n+1 � �n) � Æ0 < 1.From how to hoose sequenes f�ng and f�ng, it is lear that�n < �n < �n+1:Reall that lim infn!1(�n � �n) > 0. Then1Xn=1 Z �n�n h(t)dt = 1 (24)beause the funtion h belongs to F[WIP℄.On the other hand, from (10) and (19) it turns out thatg2(y(t)) � g2(") > 0 for �n � t � �n:Hene, we haveZ 1t0 v0(t)dt = � 2Z 1t0 h(t)g2(y(t))dt � � 2g2(") 1Xn=1 Z �n�n h(t)dt:Sine Z 1t0 v0(t)dt = limt!1 v(t) � v(t0) = v� � v(t0) < 0;13



we obtain 1Xn=1 Z �n�n h(t)dt � v(t0) � v�2g2(") < 1:This ontradits (24). Thus, we onlude that lim supt!1 jy(t)j = � = 0. The proof of Step(i) is now omplete.Step (2): As already mentioned, sine y(t) tends zero as t ! 1, we see that x(t) tendsto �1 = �f �1(v�=a) or to ��2 = �f �1(�v�=a). From the assumption that v� > 0, the numbers�1 and �2 have to be positive. Hene, the solution (x(t); y(t)) approahes the point (�1; 0)on the positive x-axis or the point (��2; 0) on the negative x-axis. Note that2y < 1 � e�y < y for � 1 < y < 0 (25)and y2 < 1 � e�y < y for 0 < y < 1: (26)Taking into aount of the vetor �eld of (6), we see that there exists a T3 � t0 suh thatx(t) > �1 and y(t) < 0 for t � T3 (27)or x(t) < ��2 and y(t) > 0 for t � T3: (28)In fat, it follows from (6) that y0(t) < 0 on the positive x-axis and y0(t) > 0 on thenegative x-axis. This means that the solution (x(t); y(t)) does not enter Q1 (resp., theseond quadrant Q3) from Q4 (resp., the third quadrant Q2). Reall that there are twopossible ases: (i) (x(t); y(t)) ! (�1; 0) as t ! 1; (ii) (x(t); y(t)) ! (��2; 0) as t ! 1. Inthe former, the solution (x(t); y(t)) has to approah the point (�1; 0) through either Q1 orQ4. Suppose that it approahes the point through Q1. Then, there exists a eT3 � t0 suhthat �12 � x(t) and y(t) > 0 for t � eT3:Hene, we have y0(t) � � a(1 � e�x(t)) � � a(1 � e��1=2)for t � eT3, and therefore, y(t) � y(eT3) � a(1 � e��1=2)(t � eT3);whih diverges to �1. This ontradits that limt!1 y(t) = 0. Thus, we see that thesolution approahes the point through Q4. We therefore onlude that (27) holds. In thelatter, using a similar way to the above, we see that the solution x(t); y(t) has to approahthe point (��2; 0) through Q2, and hene (28) holds.Sine limt!1 y(t) = 0, there exists a T4 � T3 suh thatjy(t)j < 1 for t � T4: (29)14



We onsider only the ase where (27) holds, beause the ase where (28) holds is arriedout in the same way by using (26) and (28) instead of (25) and (27). In the former, by(25), (27) and (29) we havey0(t) + 2h(t)y(t) � y0(t) + h(t)�1 � e�y(t)�= � a�1 � e�x(t)� < � a�1 � e��1� < 0for t � T4. Hene, by (27) we gety(t) < y(t) � e2(H(T4)�H(t))y(T4) < � a�1 � e��1� R tT4e2H(s)dse2H(t)for t � T4. From this estimation and (25) it follows thatx0(t) = �1 � e�y(t)� � y(t) < � a�1 � e��1� R tT4e2H(s)dse2H(t)for t � T4. Integrating this inequality from T4 to t, we obtainx(t) < � a�1 � e��1�Z tT4 R sT4e2H(�)d�e2H(s) ds + x(T4):Sine h(t) � 0 for t � 0, it is lear thatZ 10 e2H(t)dt = 1:Hene, there exists a T5 � T4 suh thatZ sT4e2H(�)d� > 12 Z s0 e2H(�)d� for s � T5:Using this inequality, we an evaluate that�1 < x(t) < � a�1 � e��1�2 Z tT5 R s0 e2H(�)d�e2H(s) ds� a�1 � e��1�Z T5T4 R sT4e2H(�)d�e2H(s) ds + x(T4)for t � T5. From ondition (1) and Lemma 2 with � = 2, we see thatZ 10 R t0 e2H(s)dse2H(t) dt = 1:This ontradits the evaluation above. The proof of Step (ii) is now omplete.Proposition 3 is thus proved. �15
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Figure 1: The domain �n and the urve Cn = �(t; s) : t � 0; s � 0; H(t) � H(s) = �n	Hene, ondition (5) is satis�ed. Conversely, suppose that ondition (5) holds. Then, by(30) we have 1 = Z 10 R t0 e�H(s)dse�H(t) dt = Z 10 e��H(t)Z t0 e�H(s)ds dt= 1Xn=1 ZZ�ne��(H(t)�H(s))ds dt � 1Xn=1 e���(n�1)ZZ�nds dt� 2 1Xn=1 e���(n�1) 1Xi=1 a2i = 21 � e��� 1Xi=1 a2i= 2e��e�� � 1 1Xn=1 �H�1(�n) � H�1(�(n � 1))�2:Hene, ondition (3) is satis�ed. Thus, onditions (3) and (5) are equivalent.As mentioned in Setion 2, it is already proved by Hatvani [5℄ that onditions (1) and(3) are equivalent. We therefore onlude that ondition (1) holds if and only if ondition(5) is satis�ed with � > 0 arbitrary. �Referenes[1℄ F. Brauer, J.A. Nohel, The Qualitative Theory of Ordinary Differential Equations.Benjamin, New York, 1969; Dover, New York, 1989.[2℄ W.A. Coppel, Stability and Asymptoti Behavior of Differential Equations, Heath,Boston, 1965 17
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