Note on Algebraic K3-Surfaces

Hiromichi Matsunaga

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1977)

In this note the author analyzes candidates for a moduli space of algebraic K3-surfaces which have appeared in literatures. In § 1, Griffith's period matrices and Šapiro-Šafarevič's space are treated. It is revealed in § 2 that the complex analytic family of all non-singular surfaces of degree four in the complex projective three space is a local moduli space for algebraic K3-surfaces.

§1. An universal space

Let V be a Kähler K3-surface and ω be its Kähler form. Concerning to the Hodge decomposition with complex coefficient C,

$$H^{2}(V, C) = H^{2,0}(V, C) + H^{1,1}(V, C) + H^{0,2}(V, C),$$

we have

$$\dim H^2(V, C) = 22$$
, $\dim H^{2,0}(V, C) = \dim H^{0,2}(V, C) = 1$, $\dim H^{1,1}(V, C) = 20$.

Let $L: H^2(V, C) \to H^4(V, C)$ be the homomorphism defined by $\eta \to \omega \eta$. Denote by $H^{p,q}(V, C)_0$ the kernel of the restricted homomorphism $L: H^{p,q}(V, C) \to H^4(V, C)$, then we have

dim
$$H^{1,1}(V, C)_0 = 19$$
, $H^{2,0}(V, C)_0 = H^{2,0}(V, C)$,
 $H^{0,2}(V, C)_0 = H^{0,2}(V, C)$, p. 35, [1].

Let $V = \{V_t\} \rightarrow N$ be an analytic family of Kähler K3-surfaces. The family admits a differentiable local triviality

$$V_{t_0} \times U \xrightarrow{\phi} V | U$$

$$\downarrow \qquad \qquad \downarrow$$

$$U = U,$$

where U is a neighborhood of t_0 and ϕ is a fiber preserving C^{∞} -isomorphism, and it induces an isomorphism $\phi^*: H^2(V_t, C) \to H^2(V_t, C)$. Define a mapping $\Omega: U \to D$

by $\Omega(t) = \phi^*(H^{2,0}(V_t, C))$, where D is the set of all lines which satisfies the relations

$$Q(\xi, \eta) = 0, \ Q(\xi, \bar{\xi}) > 0, \text{ and } Q(\xi, \eta) = \int_{V_{t_0}} \xi \wedge \eta,$$

and we identify the image $\phi^*(H^{2,0}(V_t,C))$ as an element of twenty one dimensional complex projective space CP^{21} . The space D is a twenty dimensional open complex manifold and a submanifold of CP^{21} , and it is called the period matrix space [2]. $H^{2,0}(V_t,C)$ is generated by some (2, 0)-form ψ_t . We let $\Gamma_1,\ldots,\Gamma_{22}$ be an integral basis of $H_2(V_{t_0},Z)$. The period $\left(\int \Gamma_1\psi_t,\ldots,\int \Gamma_{22}\psi_t\right)$ is considered as an element of CP^{21} . Then we have

PROPOSITION 1. The period and the period matrix is the same one with respect to the moduli problem.

PROOF. The period is a holomorphic function of t [7], and the period matrix is also a holomorphic function of t [2]. By Korollar 1, § 2 [4] the proposition is obtained.

Now we let ω be an exterior form associated with a Hodge metric on an algebraic K3-surface V. Then by p. 40 [6], there exists a positive integer h such that $h\omega \in c(F)$, where c(F) is the Chern class of a line bundle F. The divisor corresponding to F is ample. In fact let ω_0 be a fundamental form on the complex projective m-space CP^m and \mathfrak{D}_0 be the Poincaré duality, and $f: V \subset CP^m$ be a complex submanifold and ω be its fundamental form, \mathfrak{D} be the Poincaré duality, since

$$H^2_{(1,1)}(CP^m,Z) \overset{\mathfrak{D}_0}{\approx} H^{(1,1)}_{2m-2}(CP^m,Z) \approx H_{2m-2}(CP^m,Z), \quad \text{and} \quad \mathfrak{D}_0(\omega_0) = \llbracket CP^{m-1} \rrbracket,$$
 then

$$f_*(\mathfrak{D}(\omega)) = f_*(\omega \cap V) = f_*(f^*\omega_0 \cap M) = \omega_0 \cap f_*(V) = (\mathfrak{D}_0\omega_0) \circ (f_*V),$$

where \circ denotes the intersection of homology classes. Hence $\mathfrak{D}(\omega)$ is ample. Thus we have

PROPOSITION 2. The moduli space $\Omega(l)$, p. 548 [8] and the Griffith's space D is the same one.

PROOF. We take the Hodge metric corresponding to $h\omega$ and l to be an element corresponding to $\xi = \{E\}$, where E is the divisor which corresponds to F. By I. 1, I [2] we have the proposition.

§2. A local moduli space

In this section we follow the notational conventions in [5]. The mapping

$$\left(\sum_{\alpha} \theta_{\alpha} \partial / \partial_{z_{\alpha}}\right) \otimes \left(\frac{1}{2} \sum_{\alpha, \beta=1}^{2} \psi_{\alpha\beta} dz_{\alpha} \wedge dz_{\beta}\right) \longrightarrow \sum \theta_{\alpha} \psi_{\alpha\beta} dz_{\beta}$$

induces an isomorphism $\Theta = \Omega^1$ and a pairing $\Theta \times \Omega^2 \rightarrow \Omega$. The pairing gives a product

$$H^1(V, \Theta) \otimes H^{2,0}(V) \longrightarrow H^{1,1}(V)$$

and $\theta \in H^1(V, \Theta)$ defines an element $\hat{\theta} \in \text{Hom}(H^{2,0}, H^{1,1})$.

The differential $d\Omega$ of Ω in § 1 takes the form

$$T_{t_0}(N) \longrightarrow T_{\Omega(t_0)}(CP^{21}) \approx \text{Hom}(H^{2,0}, H^{1,1} + H^{0,2}).$$

By Proposition 1.20 [2] $(d\Omega)(\lambda) = \rho(\lambda)$, where $\lambda \in T_{t_0}(N)$ and $\rho(\lambda) \in H^1(V, \Theta)$ is the Kodaira Spencer class. Now $\Phi \colon \mathfrak{B} \to CP^3$ is a complex analytic family of non singular surfaces of CP^3 , § 12 [5]. Let ω_0 be the fundamental form of CP^3 and $\mathfrak{L} \to \mathfrak{B}$ be the line bundle such that $c(\mathfrak{L}) \ni \omega_0$. Then the family $\Phi \colon \mathfrak{B} \to CP^3$ is a polarized family of algebraic surfaces, (b) [2]. In this case the differential admits the following decomposition

$$\begin{split} T_{t_0}(N) & \longrightarrow \operatorname{Hom}(H^{2,0}, \, H_0^{1,1}) \approx T_{\Omega(t_0)}(D) = \operatorname{Hom}(H^{2,0}, \, H_0^{1,1} + H^{0,2}) \\ \rho \Big| & \qquad \qquad \\ H_{CP^3}^1(V_{t_0}, \, \Theta) \, , \end{split}$$

where κ is a homomorphism which is defined by $\kappa(\theta) = \hat{\theta}$, and $H_{CP^3}^1(V_{t_0}, \Theta)$ denotes the group in Definition 12.2 [5].

Proposition 3. κ is an isomorphism.

At first we give a lemma, from which the proposition is obtained immediately. Let $V_{2,4}$ be the complex analytic family of all non singular hypersurfaces of degree four on $\mathbb{C}P^3$. Its base space is an open submanifold of $\mathbb{C}P^{34}$ [5], which we denote by M.

LEMMA. The family $V_{2,4} \rightarrow M$ is a complex analytic family of K3-surfaces.

PROOF. Let V_t be a non singular surface defined by $t(\xi) = \sum t_v \zeta_0^{h_0} \cdots \zeta_3^{h_3}$, $h_0 + h_1 + h_2 + h_3 = 4$, and $E \to CP^3$ be the line bundle defined by $\{\zeta_v/\zeta_\lambda\}$. Then the divisor V_t in CP^3 determines the line bundle $[V_t] = 4E$. Let T, T_t be holomorphic tangent bundles of CP^3 , V_t respectively. Then we have an exact sequence

$$0 \longrightarrow \lceil V_r \rceil \longrightarrow T \longrightarrow T_r \longrightarrow 0$$

and their determinant bundles satisfy the relation

$$\det |T| = \det |T_i| \cdot \det |[V_i]|$$
.

Denote by K, K_t the canonical bundles of \mathbb{CP}^3 , V_t respectively. Then we have

$$K^{-1} = K_t^{-1} \cdot [V_t]$$
, and $K_t = K \cdot [V_t]$.

Since K = -4E, K_i is a trivial bundle. By 18.2.1, p. 138 [3], if a line bundle F^{-1} is positive then $H^i(V, F) = 0$ for $i \neq \dim V$. Since the Poincaré dual of 4E is $4[CP^2]$, c(4E) contains a Hodge metric and 4E is positive. Thus $H^2(CP^3, \Omega(-4E)) = 0$. By the exact sequence

$$H^1(CP^3, \Omega) \longrightarrow H^1(V_t, \Omega) \longrightarrow H^2(CP^3, \Omega(-4E)),$$

we have $q = \dim H^1(V_t, \Omega) = 0$. Hence V_t is a K3-surface for each $t \in M$ and the lemma is proved.

Now the bundle $[V_t]=4E$ is positive and the dimension of the complex projective linear group PL(4, C) is 15 and of the base M is 34, then by (12.19) [5] dim $H^1_{CP^3}(V_t, \Theta_t)=19$ for each $t \in M$. By Theorem 2 Chapter IX [7] $d\Omega$ is an isomorphism, so κ is an isomorphism.

References

- [1] S. S. Chern, Complex Manifolds, Lectures, Univ. of Chicago, 1955-1956.
- [2] P. A. Griffith, Periods of integrals on algebraic manifolds, I. Amer. J. Math. 90 (1968), 568–626; II. ibid. 805–865.
- [3] F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, 1956, Springer.
- [4] H. Holmann, Quotienten komplexer Räume, Math. Ann. 142 (1961), 407-440.
- [5] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I-II, Ann. of Math. 67 (1958), 328-466.
- [6] K. Kodaira, On Kähler varieties of restricted type, Ann. of Math. 60 (1954), 28-48.
- [7] I. R. Šafarevič et al., Algebraic Surfaces, Proc. Steklov. Inst. Math. 75 (1965).
- [8] I. I. P. Šapiro and I. R. Šafarevič. A Torelli theorem for algebraic surfaces of type K3, Math. U. S. S. R. Izvestija, 5 (1971), 547-588.