Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 11, pp. 19–32 Dec. 20, 1977

$(Z; \lambda, \mu)$ -Absolutely Summing Operators

Atsuo Jôichi

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1977)

We extend two kinds of concepts, (λ, μ) -absolutely summing operators and $(\mathbb{Z}; p)$ -absolutely summing operators, to $(\mathbb{Z}; \lambda, \mu)$ -absolutely summing operators.

Introduction

Pietsch [11] introduced the concept of absolutely *p*-summing operators in normed spaces. This concept was extended in Ramanujan [12] to absolutely λ -summing operators by using the symmetric sequence space λ . Also, Mityagin and Pelczyński [8] introduced the concept of (p, r)-absolutely summing operators in Banach spaces and this was extended in Miyazaki [9] to (p, q; r)-absolutely summing operators by using the sequence spaces $l_{p,q}$ and l_r . We extended the above concepts to (λ, μ) -absolutely summing operators in normed spaces by the aid of abstract sequence spaces λ and μ . On the other hand, the first concept was recently extended in Ceitlin [2] to (Z, p)-absolutely summing operators by making use of the Banach space Z.

The main object of this paper is to extend these two kinds of concepts, (λ, μ) absolutely summing operators and (Z, p)-absolutely summing operators, to $(Z; \lambda, \mu)$ absolutely summing operators by using the above λ , μ and the Banach space Z and to develop a theory of such operators. We also investigate $(Z; \lambda, \mu)$ -quasi-integrable operators which extend the concept of (λ, μ) -absolutely summing operators.

In Section 1, we define the $(Z; \lambda, \mu)$ -quasi-integrable operators and the $(Z; \lambda, \mu)$ absolutely summing operators. In Section 2, we state some general properties of $(Z; \lambda, \mu)$ -quasi-integrable operators and $(Z; \lambda, \mu)$ -absolutely summing operators. We investigate in Section 3 some inclusion relations between the spaces of the above operators. Section 4 is devoted to studying the composition theorem of two $(Z; \lambda, \mu)$ -absolutely summing operators. In Section 5, we investigate $(Z; \lambda, \mu)$ quasi-integrable operators and $(Z; \lambda, \mu)$ -absolutely summing operators, when their domain and range are particular normed spaces.

§1. Notations and Definitions

For a sequence space λ the α -dual is denoted by λ^{\times} . If $\lambda^{\times \times} = \lambda$, then λ is said to be a Köthe space. We start with the sequence space c_0 of all scalar sequences converg-

ing to zero and the sequence space ω of all scalar sequences in which an extended quasi-norm p and an extended norm q are given respectively. We shall then define the sequence space $\lambda \subset c_0$ (resp. $\mu \subset \omega$) to be the space consisting of all $x \in c_0$ (resp. $x \in \omega$) such that $p(x) < \infty$ (resp. $q(x) < \infty$). We shall denote the extended quasi-norm p (resp. the extended norm q) by $\|\cdot\|_{\lambda}$ (resp. $\|\cdot\|_{\mu}$).

We assume that λ and μ satisfy the following conditions:

(a) If for any $x = (x_1, ..., x_n, ...) \in c_0$ and $y = (y_1, ..., y_n, ...) \in \omega$ we set $x^i = (x_1, ..., x_i, 0, ...)$ and $y^i = (y_1, ..., y_i, 0, ...)$ for i = 1, 2, ..., then $p(x^i) \to p(x)$ and $q(y^i) \to q(y)$.

(b) *p* and *q* are both absolutely monotone.

(c) λ and μ are both the K-symmetric spaces. That is, if x_{π} is the sequence which is obtained as a rearrangement of the sequence x corresponding to a permutation π of the positive integers, then $p(x) = p(x_{\pi})$ for each $x \in \lambda$ and each π , and $q(y) = q(y_{\pi})$ for each $y \in \mu$ and each π .

(d) μ is a Köthe space.

(e) The topology given by the norm q on μ is the Mackey topology of the dual pair (μ, μ^{\times}) so that $\mu^{\times} = (\mu, q)'$.

(f) λ and μ have the norm preservation property. That is, if $x = (x_i)$ is such that $x_i = 0$ for all $i \neq n$, then $p(x) = |x_n|$ and $q(x) = |x_n|$.

We say the above λ and l_{∞} to be spaces of type Λ and say the above μ to be a space of type M.

If μ is of type *M*, then we have $l_1 \subset \mu \subset l_{\infty}$ and either $\mu \subset c_0$ or $\mu = l_{\infty}$.

We showed in [6] that the Lorentz space $l_{p,q}$ $(1 \le p, q \le \infty)$ is of type Λ and the space l_p $(1 \le p \le \infty)$ is of type M.

Next we start with two normed spaces $(E, \| \|)$ and $(F, \| \|)$ and a Banach space $(Z, \| \|)$. Let μ be of type M. Then we denoted in [6] by $\mu(E)$ the vector sequences $x = (x_n), x_n \in E$, which are weakly contained in μ in the sense that for each $a \in E'$ the sequence $(\langle x_n, a \rangle)$ of scalars is in μ . Here we denote by S(E, Z) the unit sphere in the space L(E, Z) of all continuous linear operators of E to Z. Then we shall denote by $\mu_K^Z(E)$ (resp. $\mu^Z(E)$) the vector sequences $x = (x_n), x_n \in E$ such that for each $A \in K \subset S(E, Z)$ with K compact in the simple convergence topology (resp. for each $A \in L(E, Z)$), the sequence $(||Ax_n||)$ of scalars is in μ .

If $x = (x_n)$ belongs to $\mu(E)$, we showed in [6] that $\sup_{\|a\| \le 1} q((|<x_n, a>|)) < \infty$. We denoted by ε_{μ} the functional defined on $\mu(E)$ by $\varepsilon_{\mu}(x) = \sup_{\|a\| \le 1} q((|<x_n, a>|))$. We shall denote by $\varepsilon_{\mu_{K}}^{Z}$ (resp. ε_{μ}^{Z}) the functional defined on $\mu_{K}^{Z}(E)$ (resp. $\mu^{Z}(E)$) by $\varepsilon_{\mu_{K}}^{Z}(x) = \sup_{A \in S(E, Z)} q((||Ax_n||))$. Here ε_{μ} , $\varepsilon_{\mu_{K}}^{Z}$ and ε_{μ}^{Z} can easily be verified to be semi-norms.

LEMMA 1. Let E be a normed space, let Z be a Banach space and let μ be of type M. Then we have the following properties:

(1) Let a set $K \subset S(E, Z)$ be compact in the simple convergence topology. Then if $x = (x_n) \in \mu_K^Z(E), \ \varepsilon_{\mu_K}^Z(x) = \sup_{x \in Y} \|(\|Ax_n\|)\|_{\mu} < \infty$.

Then if $x = (x_n) \in \mu_K^Z(E)$, $\varepsilon_{\mu_K}^Z(x) = \sup_{A \in K} \|(\|Ax_n\|)\|_{\mu} < \infty$. (2) If $x = (x_n) \in \mu^Z(E)$, $\varepsilon_{\mu}^Z(x) = \sup_{A \in S(E,Z)} \|(\|Ax_n\|)\|_{\mu} < \infty$.

PROOF. We shall prove (1). The proof of (2) is similar. Let $B_{\mu \times}$ be the unit sphere in μ^{\times} as the dual space and let $x = (x_n) \in \mu_K^Z(E)$. Then we set

$$W((x_n), B_{\mu\times}) = \{ A \in \bigcup_{n=1}^{\infty} n\Gamma(K) | \sum_{n=1}^{\infty} |\alpha_n| \, ||Ax_n|| \le 1 \quad \text{for any} \quad (\alpha_n) \in B_{\mu\times} \}.$$

We can easily prove that $W((x_n), B_{\mu\times})$ is absolutely convex and closed in the simple convergence topology. Here $W((x_n), B_{\mu\times})$ is absorbing in $\bigcup_{n=1}^{\infty} n\Gamma(K)$. In fact, let A be an arbitrary element in $\bigcup_{n=1}^{\infty} n\Gamma(K)$. Since $B_{\mu\times}$ is a bounded set in μ^{\times} , it follows that

$$\sum_{n=1}^{\infty} |\alpha_n| \, \|Ax_n\| \le \rho \qquad \text{for any} \quad (\alpha_n) \in B_{\mu \times},$$

that is, $A \in \rho W((x_n), B_{\mu \times})$. Consequently $W((x_n), B_{\mu \times})$ is a barrel in $\bigcup_{n=1}^{\infty} n\Gamma(K)$ in the simple convergence topology. Since K is compact in the simple convergence topology, it follows that

$$\sup_{A \in K} \sum_{n=1}^{\infty} |\alpha_n| \, \|Ax_n\| \le \rho_1 \qquad \text{for all} \quad (\alpha_n) \in B_{\mu \times}.$$

Therefore we have $\sup_{A \in K} \|(\|Ax_n\|)\|_{\mu} < \infty$. The proof is complete.

Let λ be of type Λ . Then we define $\lambda[F]$ as the space of all vector sequences $y = (y_n), y_n \in F$, such that the sequence $(||y_n||) \in \lambda$. We denote by α_{λ} the functional defined on $\lambda[F]$ by $\alpha_{\lambda}(y) = p((||y_n||))$ which is also denoted by $||(y_n)||_{\lambda[F]}$. Thus $\lambda[F]$ is topologised in a natural way by quasi-norm $\alpha_{\lambda}(y)$. We can easily show that $\mu_K^Z(E) \supset \mu^Z(E) \supset \mu[E]$ for any μ of type M.

We now recall the definition of (λ, μ) -absolutely summing operators [6].

DEFINITION 1. Let E and F be normed spaces, let λ and μ be of type A and of type M respectively and let T be a linear operator of E to F. Then the operator T is said to be (λ, μ) -absolutely summing if there exists a number $\rho > 0$ such that

$$\|(Tx_i)\|_{\lambda[F]} \le \rho \sup_{\|a\| \le 1} \|(|< x_i, a>|)\|_{\mu}$$

for all finite sets of elements $x_1, ..., x_n$ in E.

For each (λ, μ) -absolutely summing operator $T: E \rightarrow F$ we put

 $\pi_{\lambda,\mu}(T) = \inf \rho,$

where the infimum is taken over all ρ with the properties indicated. We denote by $\pi_{\lambda,\mu}(E, F)$ the collection of all (λ, μ) -absolutely summing operators of E to F.

An operator $T \in L(E, F)$ is called finite if its image space is finite dimensional and the collection of all finite operators is denoted by A(E, F). Then we give the following definitions.

DEFINITION 2. Let E and F be normed spaces, let Z be a Banach space, let λ and μ be of type Λ and of type M respectively and let T be a linear operator of E to F. Then the operator T is said to be $(Z; \lambda, \mu)$ -quasi-integrable (resp. finitely $(Z; \lambda, \mu)$ -quasi-integrable) if there exists a set $K \subset S(E, Z)$ (resp. $K \subset S(E, Z) \cap$ A(E, Z)), compact in the simple convergence topology, and $\rho > 0$ such that

$$||(Tx_i)||_{\lambda[F]} \le \rho \sup_{A \in K} ||(||Ax_i||)||_{\mu}$$

for each finite set of elements $x_1, ..., x_n$ in E. Let ρ_K be the infimum of such ρ for fixed K and let $\sigma_{\lambda,\mu}^Z$ be the infimum of the number ρ_K over all K. We denote by $QI_{\lambda,\mu}^Z(E,F)$ (resp. $FQI_{\lambda,\mu}^Z$) the collection of all $(Z; \lambda, \mu)$ -quasi-integrable operators (resp. finitely $(Z; \lambda, \mu)$ -quasi-integrable operators) of E to F.

DEFINITION 3. Let E and F be normed space, let Z be a Banach space, let λ and μ be of type Λ and of type M respectively and let T be a linear operator of E to F. Then the operator T is said to be $(Z; \lambda, \mu)$ -absolutely summing if there exists a number $\rho > 0$ such that

$$||(Tx_i)||_{\lambda[F]} \leq \rho \sup_{A \in S(E,Z)} ||(||Ax_i||)||_{\mu}$$

for each finite set of elements $x_1, ..., x_n$ in E.

For each $(Z; \lambda, \mu)$ -absolutely summing operator $T: E \rightarrow F$ we put

 $\pi^{Z}_{\lambda,\mu}(T) = \inf \rho$,

where the infimum is taken over all ρ with the properties indicated. We denote by $\pi_{\lambda,\mu}^{Z}(E, F)$ the collection of all $(Z; \lambda, \mu)$ -absolutely summing operators of E to F.

REMARK. $||(Tx_i)||_{\lambda[F]}$ appearing above is to be interpreted as the quasi-norm of the element $(Tx_1, ..., Tx_n, 0, ...)$ in the vector sequence space $\lambda[F]$, and $||(||Ax_i||)||_{\mu}$ is similarly interpreted.

PROPOSITION 1. Let E and F be normed spaces, let Z be a Banach space and let λ and μ be of type Λ and of type M respectively. Then we have the following properties:

- (1) $\pi_{\lambda,\mu}(E, F) \subset FQI_{\lambda,\mu}^{Z}(E, F) \subset QI_{\lambda,\mu}^{Z}(E, F) \subset \pi_{\lambda,\mu}^{Z}(E, F).$
- (2) If Z is finite dimensional, we have

$$\pi_{\lambda,\mu}(E, F) = FQI_{\lambda,\mu}^{Z}(E, F) = QI_{\lambda,\mu}^{Z}(E, F) = \pi_{\lambda,\mu}^{Z}(E, F).$$

PROOF. We shall prove (2). If Z is finite dimensional, the identity operator I: $Z \to Z$ is (μ, μ) -absolutely summing. Therefore if $T \in \pi^{Z}_{\lambda,\mu}(E, F)$, we have the following inequalities for each finite set of elements $x_1, ..., x_n$ in E:

$$\begin{aligned} \|(\|Tx_{i}\|)\|_{\lambda} &\leq \rho \sup_{A \in S(\bar{E}, Z)} \|(\|Ax_{i}\|)\|_{\mu} \\ &\leq \rho \rho' \sup_{A \in S(\bar{E}, Z)} \sup_{\|\xi\| \leq 1} \|(\langle Ax_{i}, \xi \rangle)\|_{\mu} \\ &\leq \rho \rho' \sup_{A \in S(\bar{E}, Z)} \sup_{\|\xi\| \leq 1} \|(\langle x_{i}, A'\xi \rangle)\|_{\mu} \\ &\leq \rho \rho' \sup_{\|a\| \leq 1} \|(\langle x_{i}, a \rangle)\|_{\mu}. \end{aligned}$$

Therefore we have $T \in \pi_{\lambda,\mu}(E, F)$. The proof of (2) is complete. We omit the proof of (1).

§2. General properties

PROPOSITION 2. Let L(E, F) be the normed space of all bounded linear operators with the norm $||T|| = \sup_{\|x\| \le 1} ||Tx||$, let λ be of type Λ and let μ be of type M. Then: (1) $QI_{\lambda,\mu}^{Z}(E, F) \subset L(E, F)$ and $||T|| \le \sigma_{\lambda,\mu}^{Z}(T)$ for every $T \in QI_{\lambda,\mu}^{Z}(E, F)$.

- (2) $\pi_{\lambda,\mu}^{Z}(E, F) \subset L(E, F)$ and $||T|| \leq \pi_{\lambda,\mu}^{Z}(T)$ for every $T \in \pi_{\lambda,\mu}^{Z}(E, F)$.

PROOF. If $T \in QI_{\lambda,\mu}^{\mathbb{Z}}(E, F)$, for any $\varepsilon > 0$ there exists $\rho_K < \sigma_{\lambda,\mu}^{\mathbb{Z}}(T) + \varepsilon$. Therefore we have

$$\|(\|Tx\|, 0, ...)\|_{\lambda} \le \rho_{K}(T) \sup_{A \in K} \|(\|Ax\|, 0, ...)\|_{\mu}$$

 $\leq \rho_{K}(T) \sup_{A \in K} \|Ax\|$

 $\leq (\sigma_{\lambda,\mu}^Z(T) + \varepsilon) \|x\|.$

Consequently we have $||T|| \le \sigma_{\lambda,\mu}^{Z}(T)$. Thus (1) has been proved. (2) can be similarly proved.

THEOREM 1. Let E and F be normed spaces, let Z be a Banach space and let λ and μ be of type A and of type M respectively. Then:

(a) Let λ be of type M. Then if a set $K \subset S(E, F)$ is compact in the simple convergence topology, the following properties of $T: E \rightarrow F$ are equivalent:

(1) $\|(\|Tx_i\|)\|_{\lambda} \leq \rho \sup_{A \in K} \|(\|Ax_i\|)\|_{\mu}$

for each finite set $\{x_1, \dots, x_n\}$ in E.

(2) If $x = (x_i) \in \mu_K^Z(E)$, then $\widehat{T}x = (Tx_i) \in \lambda[F]$.

(b) Let us consider the following properties of $T: E \rightarrow F$.

(i) T is a $(Z; \lambda, \mu)$ -absolutely summing operator.

(ii) If $x = (x_i) \in \mu^Z(E) \cap c_0(E)$, $\widehat{T}x = (Tx_i) \in \lambda[F]$.

(iii) If $x = (x_i) \in \mu^Z(E)$, then $\widehat{T}x = (Tx_i) \in \lambda[F]$.

Then

(1) (i) and (ii) are equivalent.

(2) If λ is of type M, (i), (ii) and (iii) are equivalent.

(3) Let λ be of type M. Then even if λ and μ do not satisfy the condition (f), (i) and (iii) are equivalent.

PROOF. We shall prove (a). The proof of (b) is similar.

(1)=>(2): Let (1) be valid and let $x = (x_i) \in \mu_K^Z(E)$. Then for each fixed *i*, we consider $x^i = (x_1, ..., x_i, 0, ...)$ and obtain

$$\|(\|Tx_1\|,...,\|Tx_i\|,0,...)\|_{\lambda} \le \rho \sup_{A \in K} \|(\|Ax_1\|,...,\|Ax_i\|,0,...)\|_{\mu}$$

and since the norm $\|\cdot\|_{\mu}$ is absolutely monotone, the above expression is $\leq \rho \varepsilon_{\mu_{\kappa}}^{Z}(x)$. Since λ satisfies the condition (a), we have $\|(\|Tx_{i}\|)\|_{\lambda} < \infty$. Consequently $\widehat{T}x \in \lambda[F]$. Thus (1)=(2) is proved.

(2) \Rightarrow (1): Let (2) be valid and let (1) be not valid. Then for any positive integer *j* there exists a finite set $\{x_i^j\}_{1 \le i \le n(j)}$ in *E* satisfying $\sup_{A \in K} \|(\|Ax_i^j\|)\|_{\mu} \le 1$ and $\|(\|Tx_i^j\|)\|_{\lambda} > j2^j$. By our assumption it follows that the sequence *x* of vectors

$$x_1^1/2, \ldots, x_{n(1)}^1/2, x_1^2/2^2, \ldots, x_{n(2)}^2/2^2, \ldots, x_1^j/2^j, \ldots, x_{n(j)}^j/2^j, \ldots$$

is in $\mu_K^Z(E)$. Also since the norm defining the topology λ is absolutely monotone, it follows that $\widehat{T}x \in \lambda[F]$. This is a contradiction. The proof is complete.

THEOREM 2. Let E and F be normed spaces, let Z be a Banach space and let λ and μ be of type M. Then we have the following properties:

(1) The space $QI_{\lambda,\mu}^{Z}(E, F)$ is a normed space with the norm $\sigma_{\lambda,\mu}^{Z}(T)$ and if F is a Banach space, $QI_{\lambda,\mu}^{Z}(E, F)$ is complete.

(2) The space $\pi_{\lambda,\mu}^{Z}(E, F)$ is a normed space with the norm $\pi_{\lambda,\mu}^{Z}(T)$ and if F is a Banach space, $\pi_{\lambda,\mu}^{Z}(E, F)$ is complete.

PROOF. We shall only prove (1), since the proof of (2) is similar. First we prove that $\sigma_{\lambda,\mu}^{Z}(T)$ is a norm. If $T \in QI_{\lambda,\mu}^{Z}(E, F)$, for any $\varepsilon > 0$ there exists $\rho_{K}(T) < \sigma_{\lambda,\mu}^{Z}(T) + \varepsilon$. Therefore for each finite set of elements x_{1}, \ldots, x_{n} in E we have the following inequality

$$\|(\|Tx_i\|)\|_{\lambda} \leq \rho_{K}(T) \sup_{i \in T} \|(\|Ax_i\|)\|_{\mu}$$

Hence we have

$$\|(\|aTx_i\|)\|_{\lambda} \leq |a|\rho_{K}(T) \sup_{A \in K} \|(\|Ax_i\|)\|_{\mu}.$$

24

Consequently we have

$$\sigma_{\lambda,\mu}^{Z}(aT) \leq \rho_{K}(aT) \leq |a| \rho_{K}(T) \leq |a| (\sigma_{\lambda,\mu}^{Z}(T) + \varepsilon).$$

Hence $\sigma_{\lambda,\mu}^{Z}(aT) \le |a| \sigma_{\lambda,\mu}^{Z}(T)$. In the same way we have $|a| \sigma_{\lambda,\mu}^{Z}(T) \le \sigma_{\lambda,\mu}^{Z}(aT)$. Therefore we have

$$|a|\sigma_{\lambda,\mu}^{Z}(T) = \sigma_{\lambda,\mu}^{Z}(aT).$$

Next we show the following inequality:

$$\sigma^{Z}_{\lambda,\mu}(S+T) \leq \sigma^{Z}_{\lambda,\mu}(S) + \sigma^{Z}_{\lambda,\mu}(T) \quad \text{for any} \quad S, \ T \in QI^{Z}_{\lambda,\mu}(E, F).$$

For any $\varepsilon > 0$ there exist $\rho_K(S)$ and $\rho_{K'}(T)$ such that

$$\sigma_{\lambda,\mu}^{Z}(S) + \varepsilon > \rho_{K}(T)$$
 and $\sigma_{\lambda,\mu}^{Z}(T) + \varepsilon > \rho_{K'}(T)$.

Therefore for each finite set $\{x_1, ..., x_n\}$ in E, we have the following inequalities:

 $\|(\|Sx_i\|)\|_{\lambda} \leq \rho_K(S) \sup_{A \in K} \|(\|Ax_i\|)\|_{\mu}$

and

$$\|(\|Tx_i\|)\|_{\lambda} \leq \rho_{K'}(T) \sup_{A \in K'} \|(\|Ax_i\|)\|_{\mu}.$$

Consequently we have

$$\|(\|(S+T)x_i\|)\|_{\lambda} \leq (\rho_{K}(S) + \rho_{K'}(T)) \sup_{A \in \mathcal{F}_{0}(K')} \|(\|Ax_i\|)\|_{\mu}.$$

This implies that $\rho_K(S) + \rho_{K'}(T) \ge \rho_{K \cup K'}(S+T)$. Therefore we have

 $\sigma^{Z}_{\lambda,\mu}(S) + \sigma^{Z}_{\lambda,\mu}(T) \ge \sigma^{Z}_{\lambda,\mu}(S+T).$

This proves that $\sigma_{\lambda,\mu}^Z$ is a norm.

Secondly, assuming that F is a Banach space, we prove that $QI_{\lambda,\mu}^{Z}(E, F)$ is complete. Let $\{T_n\}$ be a Cauchy sequence in $QI_{\lambda,\mu}^{Z}(E, F)$. Then for given $\varepsilon > 0$ the inequality $||T_n - T_m|| \le \sigma_{\lambda,\mu}^{Z}(T_n - T_m) < \varepsilon$ holds for n, m > N. Thus $\{T_n\}$ is a Cauchy sequence in the Banach space L(E, F) and therefore there exists a $T \in L(E, F)$ such that $\lim_{n \to \infty} ||T_n - T|| = 0$. Since $\sigma_{\lambda,\mu}^{Z}(T_n - T_m) < \varepsilon$ for n, m > N, for n, m > N and for each finite set $\{x_i\}_{1 \le i \le n}$ in E there exists a set $K \subset S(E, Z)$, compact in the simple convergence topology, and we get

$$\|(\|T_nx_i-T_mx_i\|)\|_{\lambda} \leq \varepsilon \sup_{\lambda\in\mathcal{V}} \|(\|Ax_i\|)\|_{\mu}.$$

This implies

$$\sigma_{\lambda,u}^{\mathbb{Z}}(T_n - T) \leq \rho_{\mathbb{K}}(T_n - T) \leq \varepsilon \quad \text{for any} \quad n > N.$$

The proof is complete.

PROPOSITION 3. Let E and F be normed spaces, let Z be a Banach space and let λ and μ be of type A and of type M respectively. Then:

(1) If $\mu \cap c_0 \subset \lambda$, then $\pi^Z_{\lambda,\mu}(E, F) = \{0\}$.

(2) $FQI_{l_{\infty},\mu}^{Z}(E, F) = L(E, F).$

PROOF. (1) If possible, let $T(\neq 0) \in \pi_{\lambda,\mu}^{Z}(E, F)$ and let $(a_n) \in \mu \cap c_0 \setminus \lambda$. Here a_i may be assumed to be positive for $i=1, 2, \ldots$. Let x_0 be an element in E such that $||x_0|| = 1$ and $||Tx_0|| = v \ (\neq 0)$. Then we have $(||T(a_i/v)x_0||) = (a_i) \in \mu \cap c_0 \setminus \lambda$ but $(||(a_i/v)x_0||) = (a_i/v) \in \mu \cap c_0$. For any $A \in L(E, Z)$ we have

$$\|(\|A(a_i/v)x_0\|)\|_{\mu} \le \|(\|A\| \|(a_i/v)x_0\|)\|_{\mu} < \infty.$$

Therefore for any $A \in L(E, Z)$, we have $(||A(a_i/v)x_0||) \in \mu$. Consequently $((a_i/v)x_0) \in \mu^Z(E) \cap c_0(E)$. This contradicts $T \in \pi^Z_{\lambda,\mu}(E, F)$, which proves (1).

(2) By Proposition 1, we have

$$\pi_{l_{m,\mu}}(E, F) \subset FQI_{l_{m,\mu}}^Z(E, F) \subset L(E, F).$$

Also, by [6], we have $\pi_{l_{\infty,\mu}}(E, F) = L(E, F)$. This implies $FQI_{\lambda,\mu}^{Z}(E, F) = L(E, F)$. The proof is complete.

THEOREM 3. Let E, F and G be normed spaces, let Z be a Banach space and let λ and μ be of type Λ and of type M respectively. Then:

(1) (i) If $S \in L(E, F)$ and $T \in QI_{\lambda,\mu}^{Z}(F, G)$, then $TS \in QI_{\lambda,\mu}^{Z}(E, G)$ and $\sigma_{\lambda,\mu}^{Z}(TS) \leq ||S||\sigma_{\lambda,\mu}^{Z}(T)$.

(ii) If $S \in QI_{\lambda,\mu}^{Z}(E, F)$ and $T \in L(F, G)$, then $TS \in QI_{\lambda,\mu}^{Z}(E, G)$ and $\sigma_{\lambda,\mu}^{Z}(TS) \leq ||T|| \sigma_{\lambda,\mu}^{Z}(S)$.

(2) (i) If $S \in L(E, F)$ and $T \in \pi^{Z}_{\lambda,\mu}(F, G)$, then $TS \in \pi^{Z}_{\lambda,\mu}(E, G)$ and $\pi^{Z}_{\lambda,\mu}(TS) \leq ||S|| \pi^{Z}_{\lambda,\mu}(T)$.

(ii) If $S \in \pi^{Z}_{\lambda,\mu}(E, F)$ and $T \in L(F, G)$, then $TS \in \pi^{Z}_{\lambda,\mu}(E, G)$ and $\pi^{Z}_{\lambda,\mu}(TS) \leq ||T|| \pi^{Z}_{\lambda,\mu}(S)$.

PROOF. We shall prove (1). The proof of (2) is similar.

(i) For each finite set of elements $x_1, ..., x_n$ in *E*, by our assumption the following inequalities are valid:

$$\|(\|TSx_{i}\|)\|_{\lambda} \leq \rho_{K}(T) \sup_{A \in K} \|(\|ASx_{i}\|)\|_{\mu}$$

$$\leq \rho_{K}(T) \|S\| \sup_{A \in K} \|(\|A(S/\|S\|)x_{i}\|)\|_{\mu}$$

$$\leq \rho_{K}(T) \|S\| \sup_{T \in K} \|(\|Ax_{i}\|)\|_{\mu}.$$

Therefore $TS \in QI_{\lambda,\mu}^{\mathbb{Z}}(E, G)$. For any $\varepsilon > 0$ there exists $\rho_{K}(T) < \sigma_{\lambda,\mu}^{\mathbb{Z}}(T) + \varepsilon$ and by the

26

above inequality the following inequality is valid:

$$\sigma_{\lambda,\mu}^{Z}(TS) \leq \rho_{K'}(TS) \leq \rho_{K}(T) \|S\| \leq \|S\| (\sigma_{\lambda,\mu}^{Z}(T) + \varepsilon).$$

Consequently we have $\sigma_{\lambda,\mu}^{Z}(TS) \leq ||S|| \sigma_{\lambda,\mu}^{Z}(T)$, which proves (i).

(ii) By our assumption there exists a set $K \subset S(F, Z)$, compact in the simple convergence topology, and for each finite set of elements x_1, \ldots, x_n in E the following inequality is valid:

$$\|(\|TSx_i\|)\|_{\lambda} \leq \|T\| \|(\|Sx_i\|)\|_{\lambda} \leq \|T\|\rho_{K}(S) \sup_{A \in K} \|(\|Ax_i\|)\|_{\mu}.$$

Therefore we have $TS \in QI_{\lambda,\mu}^{Z}(E, G)$. For any $\varepsilon > 0$ there exists $\rho_{K}(S)$ such that $\rho_{K}(S) < \sigma_{\lambda,\mu}^{Z}(S) + \varepsilon$. Then by the above inequality we have

$$\sigma_{\lambda,\mu}^{Z}(TS) \leq ||T|| \rho_{K}(S) \leq ||T|| \left(\sigma_{\lambda,\mu}^{Z}(S) + \varepsilon\right).$$

Therefore $\sigma_{\lambda,\mu}^{Z}(TS) \leq ||T|| \sigma_{\lambda,\mu}^{Z}(S)$. The proof is complete.

COROLLARY. Let E be a normed space, let Z be a Banach space and let λ and μ be of type A and of type M respectively. Then $QI_{\lambda,\mu}^{Z}(E, E)$ (resp. $\pi_{\lambda,\mu}^{Z}(E, E)$) is a two side ideal in L(E, E) and for $S \in QI_{\lambda,\mu}^{Z}(E, E)$ (resp. $S \in \pi_{\lambda,\mu}^{Z}(E, E)$) and $T \in L(E, E)$, the following inequalities hold: $\sigma_{\lambda,\mu}^{Z}(ST) \le \sigma_{\lambda,\mu}^{Z}(S) ||T||$ (resp. $\pi_{\lambda,\mu}^{Z}(ST) \le \pi_{\lambda,\mu}^{Z}(S) ||T||$) and $\sigma_{\lambda,\mu}^{Z}(TS) \le \sigma_{\lambda,\mu}^{Z}(S) ||T||$ (resp. $\pi_{\lambda,\mu}^{Z}(S) ||T||$).

We use the following result of [6].

LEMMA 2. Let λ be of type Λ . Then we have $\lambda \otimes E \subset \lambda[E]$.

Now we denote by $\lambda \otimes_{\alpha_{\lambda}} F$ the quasi-normed space $\lambda \otimes F$ with the topology induced by the quasi-norm α_{λ} and also by $\mu \otimes_{\varepsilon_{\mu}^{Z}} E$ (resp. $\mu \otimes_{\varepsilon_{\mu}^{Z}} E$) the normed space $\mu \otimes E$ (resp. the semi-normed space $\mu \otimes E$) with the topology induced by the norm ε_{μ}^{Z} (resp. the semi-norm $\varepsilon_{\mu\nu}^{Z}$).

PROPOSITION 4. Let E and F be normed spaces, let Z be a Banach space and let λ and μ be of type Λ and of type M respectively. If $T: E \rightarrow F$, we have the following properties:

(1) Let λ be of type M and let $QI_{\lambda,\mu}^{Z}(E,F) \neq \{0\}$. Then T belongs to $QI_{\lambda,\mu}^{Z}(E,F)$ if and only if there exists a set $K \subset S(E, Z)$, compact in the simple convergence topology, such that $I \otimes T: \mu \otimes_{\varepsilon_{\mu,\nu}^{Z}} E \to \lambda \otimes_{\alpha_{\lambda}} F$ is continuous.

(2) Let $\mu \neq l_{\infty}$ and let $\pi_{\lambda,\mu}^{Z}(E, F) \neq \{0\}$. Then T belongs to $\pi_{\lambda,\mu}^{Z}(E, F)$ if and only if $I \otimes T: \mu \otimes_{\varepsilon_{\mu}}^{z} E \to \lambda \otimes_{\alpha_{\lambda}} F$ is continuous.

PROOF. We shall prove (1). The proof of (2) is similar. Assume that there exists a set $K \subset S(E, \mathbb{Z})$, compact in the simple convergence topology, such that $I \otimes T$: $\mu \otimes_{\epsilon_{\mu_k}^{\mathbb{Z}}} E \to \lambda \otimes_{\alpha_\lambda} F$ is continuous and T does not belong to $QI_{\lambda,\mu}^{\mathbb{Z}}(E, F)$. Then for any positive integer *j* there exists a finite set $\{x_i^j\}_{1 \le i \le n(j)}$ in E satisfying $\alpha_\lambda((Tx_i^j)) > j\epsilon_{\mu_k}^{\mathbb{Z}}((x_i^j))$.

Since
$$\sum_{i=1}^{n} e_i \otimes x_i = \sum_{i=1}^{n} (0, \dots, 0, x_i, 0, \dots) = (x_1, \dots, x_n, 0, \dots)$$
, we have
 $\alpha_{\lambda}(I \otimes T(\sum_{i=1}^{n} e_i \otimes x_i^j)) = \alpha_{\lambda}(\sum_{i=1}^{n} e_i \otimes Tx_i^j)$
 $= \alpha_{\lambda}((Tx_i^j)) > j\varepsilon_{\mu_K}^Z((x_i^j))$
 $= j\varepsilon_{\mu_K}^Z(\sum_{i=1}^{n} e_i \otimes x_i^j).$

Consequently $I \otimes T: \mu \otimes_{\varepsilon_{\mu_k}^Z} E \to \lambda \otimes_{\alpha_\lambda} F$ is not continuous. This is a contradiction. Thus the sufficiency is proved. Conversely, assume that $T \in QI_{\lambda,\mu}^Z(E, F)$. Then there exists a set $K \subset S(E, Z)$, compact in the simple convergence topology, such that $T: \mu_{\overline{K}}^Z(E) \to \lambda[F]$ is continuous. Therefore $I \otimes T: \mu \otimes_{\varepsilon_{\mu_k}^Z} E \to \lambda \otimes_{\alpha_\lambda} F$ is continuous, for $\mu \otimes_{\varepsilon_{\mu_k}^Z} E \subset \mu_{\overline{K}}^Z(E)$ and \widehat{T} and $I \otimes T$ have the same values on $\mu \otimes E$. This completes the proof.

§3. Some inclusion relations

Suppose that α and β are sequence spaces. We define $\alpha \cdot \beta = \{(x_n y_n) | (x_n) \in \alpha, (y_n) \in \beta\}$. Here we denote by $D(\beta, \alpha)$ the set of diagonal matrices carrying β into α . We use the following results of Crofts [4].

LEMMA 3. $D(\beta, \alpha) \subset (\beta \cdot \alpha^{\times})^{\times}$ and, if α is a Köthe space, $D(\beta, \alpha) = (\beta \cdot \alpha^{\times})^{\times}$.

PROPOSITION 5. Let E and F be normed spaces, let Z be a Banach space, let λ_1 and λ_2 be of type Λ and let μ_1 and μ_2 be of type M. Then:

(1) Let λ_1 and λ_2 be of type M. Then if $\mu_1 \supset \mu_2$ and $\lambda_2 \supset \lambda_1$, then $QI_{\lambda_1,\mu_1}^Z(E, F) \subset QI_{\lambda_2,\mu_2}^Z(E, F)$.

(2) If $\mu_1 \supset \mu_2$ and $\lambda_2 \supset \lambda_1$, then $\pi^Z_{\lambda_1,\mu_1}(E, F) \subset \pi^Z_{\lambda_2,\mu_2}(E, F)$.

THEOREM 4. Let E and F be normed spaces, let Z be a Banach space, let λ and $\tilde{\lambda}$ be of type Λ and let μ and $\tilde{\mu}$ be of type M. Then:

(1) Let λ and $\tilde{\lambda}$ be of type M. If there exists a sequence space $v \subset l_{\infty}$ satisfying the condition $v \cdot \tilde{\mu} \subset \mu$ and $(v \cdot \lambda^{\times})^{\times} \subset \tilde{\lambda}$, then we have $QI_{\lambda,\mu}^{Z}(E, F) \subset QI_{\lambda,\tilde{\mu}}^{Z}(E, F)$.

(2) If there exists a sequence space $v \subset l_{\infty}$ satisfying the condition $v \cdot \tilde{\mu} \subset \mu$ and $(v \cdot \lambda^{\times})^{\times} \subset \tilde{\lambda}$, then we have $\pi_{\lambda,\mu}^{Z}(E, F) \subset \pi_{\tilde{\lambda},\tilde{\mu}}^{Z}(E, F)$.

PROOF. We shall only prove (1), since the proof of (2) is similar. Let $T \in QI_{\lambda,\mu}^{\mathbb{Z}}(E, F)$. Then there exists a set $K \subset S(E, \mathbb{Z})$, compact in the simple convergence topology, such that $(x_i) \in \mu_{\mathbb{K}}^{\mathbb{Z}}(E)$ implies $(Tx_i) \in \lambda[F]$. If $(x_i) \in \mu_{\mathbb{K}}^{\mathbb{Z}}(E)$, for any $\alpha = (\alpha_i) \in v$ and for any $A \in K$ we have $(\alpha_i ||Ax_i||) = \alpha(||Ax_i||) \in v \cdot \tilde{\mu} \subset \mu$. Therefore we have $|\alpha|(||Tx_i||) = (||T(\alpha_i x_i)||) \in \lambda$. Since λ is solid, $\alpha(||Tx_i||) \in \lambda$ and therefore we have

 $(||Tx_i||) \in D(\nu, \lambda)$. Hence by Lemma 3 $(||Tx_i||) \in (\nu \cdot \lambda^{\times})^{\times} \subset \tilde{\lambda}$. Thus T is $(Z; \tilde{\lambda}, \tilde{\mu})$ -quasi-integrable operator. The proof is complete.

COROLLARY. Let H be a Hilbert space, let F be a Banach space and let λ and μ be of type Λ and of type M respectively. Then if $\lambda \supset \mu$ and λ is a Köthe space, we have $\pi_{\lambda,\mu}^{Z}(H, F) = L(H, F)$.

PROOF. Set $v = (l_1^{\times} \cdot \mu)^{\times} = \mu^{\times}$. Then $v \cdot \mu \subset l_1$ and $(\mu^{\times} \cdot l_1^{\times})^{\times} = \mu^{\times \times} \subset \lambda^{\times \times} = \lambda$. By Theorem 4 we have $\pi_{\lambda,\mu}^Z(H, F) \supset \pi_{l_1,l_1}^Z(H, F)$ and by [2] we have $\pi_{l_1,l_1}^Z(H, F) = L(H, F)$. Therefore we have $\pi_{\lambda,\mu}^Z(H, F) = L(H, F)$. The proof is complete.

§4. The composition theorem

DEFINITION 4. A Banach space F is said to have the extension property if each operator $T_0 \in L(E_0, F)$, E_0 being any linear subspace of an arbitrary Banach space E, can be extended to a $T \in L(E, F)$ preserving its norm.

THEOREM 5. Let E, F and G be normed spaces, let $1 \le p < \infty$ and $1 \le r_i \le \infty$ (i=1, 2) be real numbers such that $1/p + 1/r_1 \le 1/r_2$, let λ_1 and λ_2 be sequence spaces of type A satisfying $\lambda_2 \supset \lambda_1 \cdot l_p$, and let us assume that Z is a Banach space having the extension property. Then for any $T \in QI_{l_p,l_p}^Z(E, F)$ and $S \in \pi_{\lambda_1,l_r_1}^Z(F, G)$ the composition ST belongs to $QI_{\lambda_2,l_r_2}^Z(E, G)$ and satisfies $\sigma_{\lambda_2,l_r_2}^Z(ST) \le C\pi_{\lambda_1,l_r_1}^Z(S) \cdot \sigma_{l_p,l_p}^Z(T)$, where C is a constant.

PROOF. It suffices to prove the assertion under assumption $1/r_2 = 1/p + 1/r_1$. Since T is a $(Z; l_p, l_p)$ -quasi-integrable operator, by [2] there is a probability measure, that is, a regular positive Borel measure μ with total mass 1 on a set $K \subset S(E, Z)$, compact in the simple convergence topology, such that $||Tx|| \le \rho_K(T) \left(\int_K ||Ax||^p d\mu \right)^{1/p}$ for every $x \in E$. Let $\{x_i\}_{1 \le i \le n}$ be an arbitrary finite set of elements in E. Put $x_i = x_i^0 \xi_i$ where $\xi_i = \left(\int_K ||Ax_i||^{r_2} d\mu \right)^{1/p}$. Then by our assumption, it follows that

 $\|(\|STx_i\|)\|_{\lambda_2} \le C \|(\|STx_i^0\|)\|_{\lambda_1} \cdot \|(\|\xi_i\|)\|_{l_p}$

$$\leq C\pi_{\lambda, {}_{1}l_{r_{1}}}^{Z}(S) \sup_{B \in S(F, Z)} \|(\|BTx_{i}^{0}\|)\|_{l_{r_{1}}} \cdot \left(\sum_{i=1}^{n} \int_{K} \|Ax_{i}\|^{r_{2}} d\mu\right)^{1/p},$$

where C is a constant. Here there exists a Z-scalarly measurable and Z'-valued derivative g_n such that the terms of form $\langle BTx, \eta \rangle$, $\eta \in Z'$, can be written as

$$< BTx, \eta > = \int_{K} < g_{\eta}, Ax > d\mu$$

with $g_{\eta} \in L_{Z'W}(K, \mu)$ for all $\eta \in Z'$ satisfying the inequality

$$\left(\int_{\mathbb{K}} \|g_{\eta}\|^{p'} d\mu \right)^{1/p'} \leq \|B\| \rho_{\mathbb{K}}(T) \|\eta\|, \quad 1/p + 1/p' = 1.$$

In fact, let $E_z^p(K, \mu)$ be the subspace of $L_z^p(K, \mu)$ which is constituted by the rest class $\hat{\phi}_x$ for $\phi_x(A) = Ax \in L(K, Z)$. Then for each $B \in L(F, Z)$, there exists a linear operator β_B on $E_z^p(K, \mu)$ into Z defined by $\langle \hat{\phi}_x, \beta_B \rangle = BTx$. It satisfies

$$\| < \hat{\phi}_x, \ \beta_B > \| \le \|B\| \ \|Tx\| \le \rho_K(T) \ \|B\| \Big(\int_K \|Ax\|^p d\mu \Big)^{1/p}.$$

Since Z has the extension property, we obtain the above result by [1]. Hence by Hölder's inequality, we obtain

$$\begin{aligned} | < BTx, \eta > | \leq \int_{K} ||Ax|| \, ||g_{\eta}|| d\mu \\ \leq \int_{K} ||Ax||^{r_{2}/p} (||Ax||^{r_{2}} ||g_{\eta}||^{p'})^{1/r_{1}} ||g_{\eta}||^{p'/r_{2}'} d\mu \\ \leq \left(\int_{K} ||Ax||^{r_{2}} d\mu \right)^{1/p} \left(\int_{K} ||Ax||^{r_{2}} ||g_{\eta}||^{p'} d\mu \right)^{1/r_{1}} \left(\int_{K} ||g_{\eta}||^{p'} d\mu \right)^{1/r_{2}'}. \end{aligned}$$

Replacing x by x_i^0 in the above inequality, we obtain

$$\begin{split} | < BT x_i^0, \eta > |^{r_1} \leq & \left(\int_{K} \|Ax_i\|^{r_2} \|g_{\eta}\|^{p'} d\mu \right) \left(\int_{K} \|g_{\eta}\|^{p'} d\mu \right)^{r_1/r_2'}, \\ \|BT x_i^0\|^{r_1} = \sup_{\|\eta\| \leq 1} | < BT x_i^0, \eta > |^{r_1} \\ \leq & \left(\int_{K} \|Ax_i\|^{r_2} (\sup_{\|\eta\| \leq 1} \|g_{\eta}\|)^{p'} d\mu \right) \left(\int_{K} (\sup_{\|\eta\| \leq 1} \|g_{\eta}\|)^{p'} d\mu \right)^{r_1/r_2'}. \end{split}$$

Finally, we get

$$\begin{split} (\sum_{i=1}^{n} \|BTx_{i}^{0}\|^{r_{1}})^{1/r_{1}} &\leq \left(\int_{K} (\sum_{i=1}^{n} \|Ax_{i}\|^{r_{2}}) (\sup_{\|\eta\| \leq 1} \|g_{\eta}\|)^{p'} d\mu \right)^{1/r_{1}} \\ &\times \left(\int_{K} \sup_{\|\eta\| \leq 1} \|g_{\eta}\|^{p'} d\mu \right)^{1/r_{2}'} \\ &\leq \sup_{A \in K} (\sum_{i=1}^{n} \|Ax_{i}\|^{r_{2}})^{1/r_{1}} (\sup_{\|\eta\| \leq 1} \int_{K} \|g_{\eta}\|^{p'} d\mu)^{1/p'} \end{split}$$

Consequently we have

$$\|(\|STx_i\|)\|_{\lambda_2} \le C\pi_{\lambda_1, 1r_1}^Z(S) \sup_{A \in K} (\sum_{i=1}^n \|Ax_i\|^{r_2})^{1/r_2} \cdot \rho_K(T).$$

The proof is complete.

PROPOSITION 6. Let E, F and G be normed spaces, let $1 \le p < \infty$, $1 \le r \le \infty$, $1/p+1/r \le 1$, let λ be of type A satisfying $l_p \cdot \lambda \subset l_1$ and assume that Z is a Banach space having the extension property. Then for any $T \in QI_{l_p,l_p}^Z(E, F)$ and any $S \in \pi_{\lambda,l_r}^Z(F, G)$

the composition ST belongs to $ST \in QI_{l_1, l_1}^Z(E, G)$.

PROOF. In case of p=1, this is clear by Theorem 3. We shall show this in case of p>1. Put 1/p+1/p'=1. Then it satisfies $\lambda \subset l_{p'}$ and $l_r \supset l_{p'}$. By Proposition 5, $S \in \pi^{Z}_{\lambda,l_r}(F, G) \subset \pi^{Z}_{l_{p'},l_{p'}}(F, G)$. Hence applying Theorem 5 to S and T, we obtain $ST \in QI^{Z}_{l_{1},l_{1}}(E, G)$. Thus the proof is complete.

§5. Special cases

LEMMA 4. Let E be isomorphic to a subspace of $L_1(\mu)$ for a measure space (K, Σ, μ) , let F be any normed space, let Z be a Banach space and let λ be of type M. Then $T \in L(E, F)$ belongs to $FQI_{\lambda,l_1}^Z(E, F)$ if and only if for any $S \in L(c_0, E)$ the composition TS belongs to $FQI_{\lambda,l_1}^Z(c_0, F)$.

PROOF. By virtue of Theorem 3 it is clear that if $T \in FQI_{\lambda,l_1}^Z(E, F)$ and $S \in L(c_0, E)$, then $TS \in FQI_{\lambda,l_1}^Z(c_0, F)$. Conversely, we assume that $T \in L(E, F)$ satisfies the condition $TS \in FQI_{\lambda,l_1}^Z(c_0, F)$ for any $S \in L(c_0, E)$ but $T \in FQI_{\lambda,l_1}^Z(E, F)$. Then there exists a sequence $\{x_i\} \subset E$ such that $\sum_i x_i$ converges unconditionally and $\|(\|Tx_i\|)\|_{\lambda}$ $= \infty$. Here we define $S \in L(c_0, E)$ by $S((a_i)) = \sum_i a_i x_i$ for each $(a_i) \in c_0$. Then we have $\|(\|TS(e_i)\|)\|_{\lambda} = \infty$. Since by [3] $L(c_0, Z) = l_1(Z)$, we have $\sum_i \|Ae_i\| < \infty$ for any $A \in L(c_0, Z) \cap A(c_0, Z)$. By virtue of Theorem 1, this is a contradiction and the proof is complete.

THEOREM 6. Let E and F be normed spaces and let Z be a Banach space. Then: (1) Let λ_1 and λ_2 be of type M (resp. A). Then if $l_2 \cdot \lambda_1^{\times} \supset \lambda_2^{\times}$ and λ_2 is a Köthe space, we have $QI_{\lambda_1,l_1}^Z(E, F) \subset QI_{\lambda_2,l_2}^Z(E, F)$ (resp. $\pi_{\lambda_1,l_1}^Z(E, F) \subset \pi_{\lambda_2,l_2}^Z(E, F)$).

(2) Let λ_1 and λ_2 be of type M, let E and F be the same spaces as in Lemma 3 and assume that Z has the extension property. Then if $l_2 \cdot \lambda_1^{\times} \subset \lambda_2^{\times}$ and λ_1 , λ_2 are Köthe spaces, we have $FQI_{\lambda_1,l_1}^Z(E, F) \supset FQI_{\lambda_2,l_2}^Z(E, F)$.

PROOF. (1) Putting $\nu = (l_1^{\times} \cdot l_2)^{\times} = l_2$, we have $(l_2 \cdot \lambda_1^{\times})^{\times} \subset \lambda_2^{\times \times} = \lambda_2$ and $l_2 \cdot l_2 \subset l_1$. Therefore by Theorem 4 $QI_{\lambda_1, l_1}^Z(E, F) \subset QI_{\lambda_2, l_2}^Z(E, F)$.

(2) Let $T \in FQI_{\lambda_2, l_2}^z(E, F)$, $S \in L(c_0, E)$ is always 2-absolutely summing and therefore $(Z; l_2, l_2)$ -quasi-integrable by Proposition 1. Since $(l_2 \cdot \lambda_1^{\times}) \subset \lambda_2^{\times}$, it follows that $l_2 \cdot \lambda_2 \subset \lambda_1$. Therefore by Theorem 5 we have $TS \in FQI_{\lambda_1, l_1}^z(c_0, F)$. Hence by Lemma 4, we have $T \in FQI_{\lambda_1, l_1}^z(E, F)$, which completes the proof.

References

- [1] K. Bichteler, Integration Theory, Springer-Verlag, 1973.
- [2] I. I. Ceitlin, A generalization of the Persson-Pietsch classes of operators, Soviet Math. Dokl., 14 (1973), 819–823.

- [3] J. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann., 201 (1973), 177-200.
- [4] G. Crofts, Concerning perfect Fréchet spaces and diagonal transformations, Math. Ann., 182 (1969), 67-76.
- [5] ED Dubinsky and M. S. Ramanujan, Inclusion theorems for absolutely λ-summing maps, Math. Ann., 192 (1971), 177–190.
- [6] A. Jôichi, (λ, μ) -absolutely summing operators, Hiroshima Math. J., 5 (1975), 395-406.
- [7] J. Lindenstrauss and A. Pelczyński, Absolutely summing operators in L_p-spaces and their applications, Studia Math., 29 (1968), 275–326.
- [8] B. Mitjagin and A. Pelczyński, Nuclear operators and approximative dimension, Proc. I. C. M. Moscow, 1966, 366-372.
- [9] K. Miyazaki, (p, q; r)-absolutely summing operators, J. Math. Soc. Japan, 24 (1972), 341-354.
- [10] A. Pietsch, Verallgemeinerte vollkommene Folgenräume, Berlin, 1962.
- [11] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math., 28 (1967), 333-353.
- [12] M. S. Ramanujan, Absolutely λ -summing operators, λ a symmetric sequence space, Math. Z., 114 (1970), 187–193.

32