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We extend two kinds of concepts, (1, g£)-absolutely summing operators and (Z; p)-absolute-
ly summing operators, to (Z; A, g)-absolutely summing operators.

Introduction

Pietsch [11] introduced the concept of absolutely p-summing operators in normed
spaces. This concept was extended in Ramanujan [12] to absolutely A-summing
operators by using the symmetric sequence space A. Also, Mityagin and Pelczynski
[8] introduced the concept of (p, r)-absolutely summing operators in Banach spaces
and this was extended in Miyazaki [9] to (p, q; r)-absolutely summing operators by
using the sequence spaces [,, and I, We extended the above concepts to (4, u)-
absolutely summing operators in normed spaces by the aid of abstract sequence spaces
) and p. On the other hand, the first concept was recently extended in Ceitlin [2]
to (Z, p)-absolutely summing operators by making use of the Banach space Z.

The main object of this paper is to extend these two kinds of concepts, (4, u)-
absolutely summing operators and (Z, p)-absolutely summing operators, to (Z; A, u)-
absolutely summing operators by using the above A, u and the Banach space Z and to
develop a theory of such operators. We also investigate (Z; A, u)-quasi-integrable
operators which extend the concept of (4, p)-absolutely summing operators.

In Section 1, we define the (Z; A, u)-quasi-integrable operators and the (Z; A, p)-
absolutely summing operators. In Section 2, we state some general properties of
(Z; 1, p)-quasi-integrable operators and (Z; 4, p)-absolutely summing operators. We
investigate in Section 3 some inclusion relations between the spaces of the above
operators. Section 4 is devoted to studying the composition theorem of two
(Z; 1, p)-absolutely summing operators. In Section 5, we investigate (Z; 4, p)-
quasi-integrable operators and (Z; A, p)-absolutely summing operators, when their
domain and range are particular normed spaces.

§1. Notations and Definitions

For a.sequence space A the a-dual is denoted by A*. If 1**=A4, then A is said to
be a K6the space. We start with the sequence space ¢, of all scalar sequences converg-
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ing to zero and the sequence space w of all scalar sequences in which an extended
quasi-norm p and an extended norm ¢ are given respectively. We shall then define the
sequence space Acc, (resp. pcw) to be the space consisting of all x e ¢, (resp. x € w)
such that p(x)<oo (resp. g(x)<co). We shall denote the extended quasi-norm p
(resp. the extended norm ¢) by |- ||, (resp. || - [,)-

We assume that A and p satisfy the following conditions:

(@) If for any x=(Xy5..., Xp...)ECo and y=(Y1,eees Vpo---) E® We 3set xi=
(X155 %3, 0,..) and y'=(15..., ¥, 0,...) for i=1, 2,..., then p(x)—p(x) and q(y?)
=q(y).

(b) p and q are both absolutely monotone.

() A and u are both the K-symmetric spaces. That is, if x, is the sequence
which is obtained as a rearrangement of the sequence x corresponding to a permuta-
tion w of the positive integers, then p(x)=p(x,) for each x€ A and each =, and q(y)
=q(y,) for each y e u and each m.

(d) uis a Kothe space.

() The topology given by the norm q on p is the Mackey topology of the dual
pair (u, p*) so that p*=(u, q)'.

(f) A and p have the norm preservation property. That is, if x=(x,) is such that
x;=0 for all i=n, then p(x)=|x,| and q(x)=]x,].

We say the above A and I, to be spaces of type A and say the above u to be a
space of type M.

If pis of type M, then we have I, cpu<l, and either pcc¢, or u=1,,.

We showed in [6] that the Lorentz space I, , (1<p, g< ) is of type 4 and the
space [, (1<p<o0) is of type M.

Next we start with two normed spaces (E, | |) and (F, | ||) and a Banach space
(Z, ]| ). Let ube of type M. Then we denoted in [6] by p(E) the vector sequences
x=(x,), x, € E, which are weakly contained in u in the sense that for each a € E’' the
sequence (<x,, a>) of scalars is in u. Here we denote by S(E, Z) the unit sphere in
the space L(E, Z) of all continuous linear operators of E to Z. Then we shall denote
by pZ(E) (resp. p#(E)) the vector sequences x=(x,), x, € E such that for each AeKc
S(E, Z) with K compact in the simple convergence topology (resp. for each Ae
L(E, Z)), the sequence (]| Ax,]|) of scalars is in .

If x=(x,) belongs to u(E), we showed in [6] that"shlp q(| <x,, a>])<oo. We

denoted by ¢, the functional defined on u(E) by ,(x) —ISlllp q((|<x,, a>|)). We shall

denote by &Z  (resp. &%) the functional defined on uf(E) (resp. p#(E)) by &Z (x)=
sup q((| 4x, ll)) (resp. eZ(x)= sup q((IAx,l))). Here g, eZ, and &Z can easﬂy be
A€ A€S(E,Z)

verified to be semi-norms.

LeMMA 1. Let E be a normed space, let Z be a Banach space and let u be of
type M. ‘Then we have the following properties:
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(1) Let a set KcS(E Z) be compact in the simple convergence topology.
Then if x=(x,) € tR(E), & (x)=sup || (| dx,[)], < 0.

@ If x=(x,) € p*(E), ﬁz(x)—A sup |[[([l4x,Dll, < 0.
eS(E,Z)

Proor. We shall prove (1). The proof of (2) is similar. Let B,, be the unit
sphere in u* as the dual space and let x=(x,) € uZ(E). Then we set

W((xn), Bp)={de \J n[(K) X lou| | dx,| <1 for any (0,) €B,.} -
We can easily prove that W((x,), B,,) is absolutely convex and closed in the simple

convergence topology. Here W((x,), B,.) is absorbing in @ nl'(K). In fact, let 4
n=1

be an arbitrary element in C./ nI'(K). Since B,, is a bounded set in p*, it follows that
n=1
3 lll4x)<p  forany (m)eB,.,

that is, 4 pW((x,), B,.). Consequently W((x,), B,,) is a barrel in v, n[(K) in the
n=1

simple convergence topology. Since K is compact in the simple convergence topology,
it follows that

sup 3 Il |4, <p,  forall (@)eB,,
A€K n=1
Therefore we have sup [|(| Ax,[)ll,<oo. The proof is complete.
A€K

Let A be of type A. Then we define A[F] as the space of all vector sequences
y=(,), y,€F, such that the sequence (||y,l)ed.. We denote by «, the functional
defined on A[F] by «;(3)=p((||y,ll)) which is also denoted by [[(y)r. Thus A[F]
is topologised in a natural way by quasi-norm «,(y). We can easily show that pZ(E)
> uZ(E)> u[E] for any u of type M.

We now recall the definition of (4, p)-absolutely summing operators [6].

DEeriNiTION 1. Let E and F be normed spaces, let A and p be of type A and of
type M respectively and let T be a linear operator of E to F. Then the operator T
is said to be (A, p)-absolutely summing if there exists a number p>0 such that

U(Txi)"},[F]Sp sup [[(1<x;, a>D|l,
ST g TR ST

for all finite sets of elements x,,..., X, in E.
For each (4, u)-absolutely summing operator T: E—~F we put

7,(T)=inf p,



22 Atsuo JoicHI

where the infimum is taken over all p with the properties indicated. We denote by
7;,.(E, F) the collection of all (A, p)-absolutely summing operators of E to F.

An operator Te L(E, F) is called finite if its image space is finite dimensional and
the collection of all finite operators is denoted by A(E, F). Then we give the following
definitions.

DerFINITION 2. Let E and F be normed spaces, let Z be a Banach space, let 2
and u be of type A and of type M respectively and let T be a linear operator of E to
F. Then the operator T is said to be (Z; A, p)-quasi-integrable (resp. finitely
(Z; A, p)-quasi-integrable) if there exists a set K<S(E, Z) (resp. K< S(E, Z)n
A(E, Z)), compact in the simple convergence topology, and p>0 such that

T %)l agrr< psup (1 AXIDI,

for each finite set of elements x1,..., X, in E. Let pg be the infimum of such p for fixed
K and let 6%, be the infimum of the number pyg over all K. We denote by QI% ,(E, F)
(resp. FQI% ) the collection of all (Z; A, p)-quasi-integrable operators (resp.
Sfinitely (Z; A, u)-quasi-integrable operators) of E to F.

DErFinITION 3. Let E and F be normed space, let Z be a Banach space, let A
and 1 be of type A and of type M respectively and let T be a linear operator of E
to F. Then the operator T is said to be (Z; A, p)-absolutely summing if there exists
a number p>0 such that '

Tx)lagry<p sup l(1AxDI,
AES(E,Z)

Jor each finite set of elements x,..., x, in E.
For each (Z; A, w)-absolutely summing operator T: E—F we put

n% (T)=infp,

where the infimum is taken over all p with the properties indicated. We denote by
7% (E, F) the collection of all (Z; A, p)-absolutely summing operators of E to F.

ReEMARK. ||(Tx;)lr; appearing above is to be interpreted as the quasi-norm
of the element (T'xy,..., Tx,, 0,...) in the vector sequence space A[F], and [|(||4x;]DI,
is similarly interpreted.

ProPOsITION 1. Let E and F be normed spaces, let Z be a Banach space and
let A and p be of type A and of type M respectively. Then we have the following
properties:

1) =, (E, F)\cFQI% (E, F)cQI% (E, F)ycn% (E, F).

(2) If Z is finite dimensional, we have .
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m,(E, F)=FQI} (E, F)=QIf (E, F)=n% ,(E, F).

Proor. We shall prove (2) If Z is finite dimensional, the identity operator
I: Z-Z is (u, p-absolutely summing. Therefore if Te 7 ,(E, F), we have the
following inequalities for each finite set of elements x;,..., x, in E:

IATxDIa<p sup [(I14x:DI,
ASS(E, Z)

<pp’ sup sup [(<Ax; E>),
AES(E,2)|1¢lI<1

<pp' sup su <x; A'E>
pp’ sup sup _ I(<xi 4>l

<pp’ sup [[(<x; a>)|,-
llall<1

Therefore we have Tex, ,(E, F). The proof of (2) is complete. We omit the proof of
1.

§2. General properties _ ‘

ProPOSITION 2. Let L(E, F) be the normed space of all bounded linear oper-
ators with the norm | T| = sup ITx|l, let A be of type A and let u be of type M. Then:

(1) Q1% (E, F)cL(E, F) and IT|<0% (T) for every TeQIf (E, F).

(2) =% (E, F)cL(E, F) and | T|| <n% (T) for every Tenf ,(E, F).

Proor. If TeQI% (E,F), for any ¢>0 there exists pg <% ,(T)+e. Therefore
we have

IAT], 0,.. )12 < p(T) sup (1 Ax0, O,...)]
<pe(T)sup | Ax|
A€K

<(@E (D +e) lIx] .

Consequently we have || T|| <o% ,(T). Thus (1) has been proved. (2) can be similarly
proved.

TueoreMm 1. Let E and F be normed spaces, let Z be a Banach space and let A
and p be of type A and of type M respectively. Then:

(@) Let A be of type M. Then if a set K<S(E, F) is compact in the simple
convergence topology, the following properties of T: E—F are equivalent:

M MATxDI<psup I AxDI,
for each finite set {x4,..., x,,} in E.

() If x=(x;) € u&(E), then Tx= (Tx,)e)u[F]
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(b) Let us consider the following properties of T: E—~F.
(i) Tisa(Z; A, w-absolutely summing operator.
(ii) If x=(x;) € u%(E) N co(E), Tx=(Tx,) € A[F].
(i) If x=(x;) € u%(E), then Tx= (Tx,) e A[F].
" Then
(1) (@) and (ii) are equivalent.
(2) If A is of type M, (i), (ii) and (iii) are equivalent.
(3) Let A be of type M. Then even if A and u do not satisfy the condition (f),
(i) and (iii) are equivalent.

Proor. We shall prove (a). The proof of (b) is similar.
(1)=(2): Let (1) be valid and let x= (Y)G[,LK(E) Then for each fixed i, we
consider x’—(xl, .» X3, 0,...) and obtain

ATl 1T 05 )< psup (1A [e.s 4%, Ose )

and since the norm | - |, is absolutely monotone, the above expression is < peZ, (x).
Since A satisfies the condition (a), we have ||(| Tx;|)|,<co. Consequently Txe
A[F]. Thus (1)=>(2) is proved.

(2)=(1): Let (2) be valid and let (1) be not valid. Then for any positive integer
j there exists a finite set {x{},<c,;, in E satisfying sup IAAxIDNL <1 and () TxI DI,

> j2J. By our assumption it follows that the sequence x of vectors
x%/z,..., x,l,(l)/2, x%/22,..., x%(z)/22,..., x{/z‘i,..., xf;(j)/Zj,...

is in pZ(E). Also since the norm defining the topology A is absolutely monotone, it
follows that Txé& A[F]. This is a contradiction. The proof is complete.

TaEOREM 2. Let E and F be normed spaces, let Z be a Banach space and let A
and p be of type M. Then we have the following properties:

(1) The space QI% (E, F) is a normed space with the norm ¢% (T) and if
F is a Banach space, Q1% (E, F) is complete.

(2) The space 7% (E, F) is a normed space with the norm n% (T) and if F
is a Banach space, n% ,(E, F) is complete.

Proor. We shall only prove (1), since the proof of (2) is similar. First we prove
that 6% ,(T) is a norm. If Te QI% ,(E, F), for any >0 there exists pg(T) <07 ,(T)
+e&. Therefore for each finite set of elements x;,..., x, in E we have the following
inequality ‘
AT < p(T)sup (A%, -

Hence we have
I(laTx; D)< lalpx(T)igllg 1K Ax; (D
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Consequently we have
of @D < praT)<lalp(T)<lal (%, (T) +2).

Hence o7 ,(aT)<l|alo%(T). In the same way we have |a|o% (T)< af,"( aT).
Therefore we have : Co : : ] 2

lalo% (T)=0% ,(aT).
Next we show the following inequality:
0%,,(S+T)<06% (8)+05,(T) forany S, TeQIf . (E,F).
For any &£>0 there exist px(S) and pg(T) such that
0% (S)+e>px(T) and 6% (T)+e>pxT).
Therefore for each finite set {x,,..., x,} in E, we have the following inequalities:

ICISxID1 < px(S)sup Il Ax;1DI
and
NN T:ID11 < picAT) sUp ICHAX; D
Consequently we have

QIS + T3 < (ox(S)+pxAT)) sup_ I(IAXDI-

This implies that pg(S)+ pxAT)=pgux(S+T). Therefore we have
0% ,(8)+0% (T)=0% (S+T).

This proves that ¢% , is a norm. .

Secondly, assuming that F is a Banach space, we prove that QI (E, F) is
complete. Let {T,} be a Cauchy sequence in QI% (E, F). Then for given ¢>0 the
inequality ||T,— T, <0% (T,—T,)<e¢ holds for n, m>N. Thus {T,} is a Cauchy
sequence in the Banach space L(E, F) and therefore there exists a T'e L(E, F) such that
lim | T,—T||=0. Since 0%, ,(T,— T,)<s for n, m>N, for n, m>N and for each finite
's:eto0 {x;}1<i<s in E there exists a set K<S(E, Z), compact in the simple convergence
topology, and we get

I T = ToxilDl < esup [ (1A% DI
This implies
0% (T,—T)<p(T,—T)<e  forany n>N.
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The proof is complete.

ProPOSITION 3. Let E and F be normed spaces, let Z be a Banach space and
let A and p be of type A and of type M respectively. Then:

(1) IfpncosA, then n¢ (E, F)={0}.

(2) FQI%, .(E, F)=L(E, F).

Proor. (1) If possible, let T(x0)enf  (E, F) and let (a,)epunco\l. Here
a; may be assumed to be positive for i=1, 2,.... Let x, be an element in E such
that ||xo]|=1 and ||Txell=v (x0). Then we have (||T(a;/v)x,l)=(a;) € unco\A but
(I(a;/v)xol)=(a;/v)epunco. For any Ae L(E, Z) we have

Il ACaifo)xo DN, < (AN (@i v)x0 D], < o0

Therefore for any AeL(E, Z), we have (||A(a;/v)xo]])ep. Consequently ((a;/v)xo)
€ u%(E) N co(E). This contradicts T e n% ,(E, F), which proves (1).
(2) By Proposition 1, we have

7. B, FYcFQIZ (E, F)c L(E, F).

loospt
Also, by [6], we have =, (E, F)=L(E, F). This implies FQI (E, F)=L(E, F). The
proof is complete.

TaeoreM 3. Let E, F and G be normed spaces, let Z be a Banach space and let
A and p be of type A and of type M respectively. Then:

(1) @) If SeL(E, F) and TeQI% (F, G), then TSeQI% (E, G) and o% (TS)
<8l (T).

() If SeQl%(E, F) and TeL(F, G), then TSeQIf (E, G) and o% (TS)
<ITlo%,u(5).

(2) () If SeL(E, F) and Ten%,(F,G), then TSen? (E, G) and =% (TS)
<|SlnZ,(T).

() If Sen%, (E,F) and Tel(F,G), then TSen%, E,G) and %, (TS)
<|IT|nZ,.(9).

ProOF. We shall prove (1). The proof of (2) is similar.
(i) For each finite set of elements x;,..., x, in E, by our assumption the follow-
ing inequalities are valid:

IATSxD1, < px(T)sup (IS,
<px(T) 51 sup ILACS/ISIDx DI,
< oD 151 332 101451,

Therefore TS € QI% ,(E, G). For any ¢>0 there exists pg(T)<0% ,(T)+¢ and by the
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above inequality the following inequality is valid:
0% (TS pxATS) < p(T) S| <1IS| (0%, (T)+2).

Consequently we have 6% (TS)<||S| 0% ,(T), which proves (i).

(i) By our assumption there exists a set K = S(F, Z), compact in the simple con-
vergence topology, and for each finite set of elements x,..., x, in E the following
inequality is valid:

A TSxDL<ITINASx:DIA<IT llpx(S) sup (1A% DIl

Therefore we have TSeQIZ (E, G). For any >0 there exists pg(S) such that
px(8)<o% ,(S)+s. Then by the above inequality we have '

oZ T Tlp(S <N T (67,8 +¢).
Therefore 6%, ,(TS)< || T|6%,,(S). The proof is complete.

COROLLARY. Let E be a normed space, let Z be a Banach space and let A and
u be of type A and of type M respectively. Then QI% (E, E) (resp. n% (E, E))
is a two side ideal in L(E, E) and for SeQI% (E, E) (resp. Sen} (E, E)) and T
e L(E, E), the following inequalities hold: af,ﬂ(ST)Scr,{,,(S) IT| (resp. n% ,(ST)
<12 (S)ITI) and o7 (TS)<0%,(5) | T| (resp. 77 ,(TS)<%,(S)ITI).

We use the following result of [6].

LeMMA 2. Let ) be of type A. Then we have AQ E<A[E].

Now we denote by A®,, F the quasi-normed space A® F with the topology induced
by the quasi-norm o, and also by u®,z E (resp. 1®.z, E) the normed space u®@E
(resp. the semi-normed space p®E) with the topology induced by the norm & (resp.
the semi-norm &Z,).

PROPOSITION 4. Let E and F be normed spaces, let Z be a Banach space and
let 4. and p be of type A and of type M respectively. If T: E—F, we have the follow-
ing properties: ' ' '

(1) Let ) be of type M and let Q1% ,(E, F)={0}. Then T belongsto QI% (E,F)
if and only if there exists a set K<=S(E, Z), compact in the simple convergence
topology, such that IQT: p®.z, E—AQ,, F is continuous.

(2) Let pxl, and let 7§ (E, F)x{0}. Then T belongs to nf (E, F) if and
only if IQT: p®,z E=A®,, F is continuous.

Proor. We shall prove (1). The proof of (2) is similaf;. Assume that there
exists a set K= S(E, Z), compact in the simple convergence topology, such that IQT:
u®8§k E-1®,, F is continuous and T does not belong to QI Z A(E, F). Then for any

positive integer j there exists a finite set {x/};<i<,(;, in E satisfying o;((Tx4))> jeZ, (x})):
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Since ) ¢,®x;= >, (0,..., 0, x;, 0,...)=(x4,..., X,, 0,...), we have
=1 i=1

a,(I®T( gl e;@x])) =o( él e;®Tx))
=o,(Tx)))> je& (1)
= jef (2 e®x).
=

Consequently IQT: 1@z, E—A®,, F is not continuous. This is a contradiction.
Thus the sufficiency is proved. Conversely, assume that Te QI ,(E, F). Then there
exists a set K<S(E, Z), compact in the simple convergence topology, such that.T':
UZ(E)—~A[F] is continuous. Therefore IQT: n®.z, E—A®,,F is continuous, for
u®sng: V4E) and T and I® T have the same values on p®@E. This completes the

proof.

§3. Some inclusion relations

Suppose that o and f are sequence spaces. We define o-f={(x,y)I(x,) €,
(y») e f}. Here we denote by D(B, o) the set of diagonal matrices carrying g into a.
We use the following results of Crofts [4].

Lemma 3. D(B, oc)c:(ﬂ-oc“)" and, if « is a Ko6the space, D(8, c)=(8- o).

PropoSITION 5. Let E and F be normed spaces, let Z be a Banach space, let
Ay and A, be of type A and let u, and p, be of type M. Then:

(1) Let Ay and A, be of type M. Then if p;>p, and 1,2y, then QI% , (E, F)
<QI%, ,.,(E, F).

(2 If pyou, and 2,544, then 7%, , (E, F)cnZ, ,.(E, F).

THEOREM 4. Let E and F be normed spaces, let Z be a Banach space, let ) and
X be of type A and let p and fi be of type M. Then:

(1) Let A and 1 be of type M. If there exists a sequence space vel,, satisfying
the condition v-ficp and (v-A*)* < 1, then we have QI% (E, F)<QI} «(E, F).

(2) If there exists a sequence space vel, satzsfymg the condition v- ucu and
-1, then we have 7% (E, F)cnj, ,,(E F)

ProorF. We shall only prove ), since the proof of (2) is snmlar Let
TeQI% ,(E, F). ' Then there exists a set K< S(E, Z), compact in the simple conver-
gence -topology, such that (x;) € pZ(E) implies (Tx,) e A[F]. ' If -(x;) € iZ4(E), for any
a=(x;)ev and for any A€ K we have (¢;]A%;|)=a(|Ax;])ev:ficu. Therefore we
have Jo (I Tx; )= T (%)) € A. Since 1 is solid, «(]| Tx;||) € . and therefore we have
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(ITx;)eD(v, »). Hence by Lemma 3 (|Tx;|)e(v-A*)*cl. Thus T is (Z; 1, ji)-
quasi-integrable operator. The proof is complete.

COROLLARY. iet H be a Hilbert space, let F be a Banach space and let A and
1t be of type A 'and of type M respectively. Then if Aop and 1 is a Kbthe space, we
have n% (H, F)=L(H, F).

Proor. Set v=(lf-p)*=p*. Then v.-ucl, and (u*-I)*=p**<=A**=1. By
Theorem 4 we have =% ,(H, F)>nf ,(H, F) and by [2] we have =% ,(H,F)
=L(H, F). Therefore we have n% ,(H, F)=L(H, F). The proof is complete.

§4. The composition theorem

DEerFINITION 4. A Banach space F is said to have the extension property if each
operator Ty € L(E,, F), E, being any linear subspace of an arbitrary Banach space
E, can be extended to a Te L(E, F) preserving its norm.

THEOREM 5. Let E, F and G be normed spaces, let 1<p<o and 1<r;<00
(i=1, 2) be real numbers such that 1/p+1/r,<1/r,, let A, and 1, be sequence spaces
of type A satisfying 2,22, - 1,, and let us assume that Z is a Banach space having the
extension property. Then for any TeQIf , (E,F) and S enfh,rl(F, G) the
composition ST belongs to QI%Z,,Q(E, G) and satisfies sz,z,z(SDSC“%,,z,l(S)'
o7 1,(T), where C is a constant.

Proor. It suffices to prove the assertion under assumption 1/r,=1/p+1/r;.
Since Tis a (Z; 1,, I,)-quasi-integrable operator, by [2] there is a probability measure,
that is, a regular positive Borel measure p with total mass 1 on a set K<=S(E, Z),
compact in the simple convergence topology, such that |Tx| <px(T )(S ||Ax|]1’du)l/p
for every xe E. Let {x;}<i<, be an arbitrary finite set of elements inKE. Put x;=

1/ ..
x9¢; where €i=<SK||Axi||'2du) ?. Then by our assumption, it follows that

IQUSTDl, < CIASTXN D, - I,
<O, (S), sup_ NIBTDI, (2, | 1Axilradn) .
€S(F,Z) i=1 JK

where C is a constant. Here there exists a Z-scalarly measurable and Z’-valued deriva-
tive g, such that the terms of form <BTx, n>, neZ’, can be written as

<BTx, n> =$K<g,,, Ax>dp
with g, € L w(K, p) for all n e Z’ satisfying the inequality

(§ daal7du)™” <1BlogD Il 1p+1fp'=1.
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In fact, let EZ(K, p) be the subspace of LE(K, p) which is constituted by the rest class
é, for ¢ (A)=Axe L(K, Z). Then for each B e L(F, Z), there exists a linear operator
P on EE(K, p) into Z defined by <., pp>=BTx. It satisfies

1<$o B> I <IBINTx] <pu(D 1BI({ Idxtrdn)”"

Since Z has the extension property, we obtain the above result by [1]. Hence by
Holder’s inequality, we obtain

|<BTx, n>|s§K||Axll lgylldu

<{_IAxirainiaxie=lg, 2y g, 75 dp

o 1/p o , i/r , 1/7%
<({ paxiran) (] naxt=tg,an) (5 ole au) ™.
K : K ) K

Replacing x by x¢ in the above inequality, we obtain

, , ri/rh
|<BTxt, n> <] 14xilg,07de)(§ tozan)™™,

[ BTx?|It= sup |<BTx{, n>|"
lInli<1

<({ i gsupt, du)({, uptoan)™"

Finally, we get
n n , 1/ry
(£ BTty <(§ (E 1l (sup g, du)
i=1 . K i=1 lInll<1

x({_ sup gyl d)yom

K |lnll<1
3 rayL/rs rdu)’”
<sup (2 [[Ax|"){ sup \ |lg,|”'dp
A€K i=1 InI€1JK
Consequently we have
STl < O 1 (S)sup (3 Azl - p(T).
The proof is complete.

ProrosiTioN 6. Let E, F and G be normed spaces, let 1<p<oo, 1<r<o0,
1/p+1/r<1, let A be of type A satisfying 1, A< 1, and assume that Z is a Banach space
having the extension property. Then for any Te QIf, , (E, F) and any Sen%,, (F, G)

lp,
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the composition ST belongs to STe QIf, ,(E, G).

ProoF. In case of p=1, this is clear by Theorem 3. We shall show this in case
of p>1. Put 1/p+1/p’=1. Then it satisfies A=l, and [,o1,. By Proposition 5,
S enf,(F, Gy cnf, ; (F, G). Hence applying Theorem 5 to S and T, we obtain
STeQI%,,(E, G). Thus the proof is complete.

§5. Special cases

LeMMA 4. Let E be isomorphic to a subspace of L(u) for a measure space -
(K, Z, p), let F be any normed space, let Z be a Banach space and let A be of type M.
Then TeL(E, F) belongs to FQI% ,(E, F) if and only if for any SelL(cy, E) the
composition TS belongs to FQI% , (co, F).

Proor. By virtue of Theorem 3 it is clear that if Te FQI ;,(E, F)and S € L(cy, E),
then TS € FQIZ ,(co, F). Conversely, we assume that Te L(E, F) satisfies the
condition TSeFQI%,(co, F) for any SeL(cy, E) but T&FQI%,(E, F). Then
there exists a sequence {x;} — E such that 3 x; converges unconditionally and [|([| T'x;])[l,
=00. Here we define S € L(co, E) by S((a))= 2 a;x; for each (a;)€co. Then we have
IC(ITS(e) DNl ,=oco. Since by [3] L(co, Z)=1,(Z), we have 3 [ Ae<co for any Ae

1
L(cy, Z) N A(cg, Z). By virtue of Theorem 1, this is a contradiction and the proof is
complete.

THEOREM 6. Let E and F be normed spaces and let Z be a Banach space. Then:

(1) Let A; and A, be of type M (vesp. A). Then if l,-A{ > 25 and 1, is a Kéthe
space, we have QI ,(E, F)=QI%, ,,(E, F) (resp. n%, ,(E, Fycn%, ,,(E, F)).

(2) Let Ay and A, be of type M, let E and F be the same spaces as in Lemma 3
and assume that Z has the extension property. Then if l,-Ai<A} and Ay, A, are
Kdthe spaces, we have FQI%, ,(E, F)>FQI%, ,,(E, F).

Proor. (1) Putting v=(I¥-1,)*=1,, we have (I,-A})*<A5*=4, and 1,.1,<l,.
Therefore by Theorem 4 QI%, ,(E, F)<QI%, ,,(E, F).

(2) Let TeFQI%,,,,(E, F), SeL(cy, E) is always 2-absolutely summing and
therefore (Z; 1,, 1,)-quasi-integrable by Proposition 1. Since (I,-1%)< 23, it follows
that I,-A,<A;. Therefore by Theorem 5 we have TSeFQI% ,(co, F). Hence by
Lemma 4, we have Te FQI%, , (E, F), which completes the proof.

References

[1] K. Bichteler, Integration Theory, Springer-Verlag, 1973.
[21 I.I. Ceitlin, A generalization of the Persson-Pietsch classes of operators, Soviet Math. Dokl.,
14 (1973), 819-823.



32

{31
[4]
[51]

[6]
[71

18]
191

[10]
[11]

[12]

Atsuo JéicHI

J. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann.,
201 (1973), 177-200.

G. Crofts, Concerning perfect Fréchet spaces and diagonal transformations, Math. Ann.,
182 (1969), 67-76. o ) ) )
ED Dubinsky and M. S. Ramanujan, Inclusion theorems for absolutely A-summing maps,
Math. Ann., 192 (1971), 177-190. .

A. J6ichi, (2, p)-absolutely summing operators, Hiroshima Math. J., 5 (1975), 395-406.

J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in Lj-spaces and their ap-
plications, Studia Math., 29 (1968), 275-326.

B. Mitjagin and A. Pelczyfiski, Nuclear operators and approximative dimension, Proc. I. C.
M. Moscow, 1966, 366-372.

K. Miyazaki, (p, q; r)-absolutely. summing operators, J. Math. Soc. Japan, 24 (1972), 341-
354,

A. Pietsch, Verallgémeinerte vollkommene Folgenrdume, Berlin, 1962.

A. Pietsch, Absolut p-summierende Abbildungen in normierten Réumen, Studia Math., 28
(1967), 333-353.

M. S. Ramanujan, Absolutely A-summing operators, A a symmetric sequence space, Math.
Z., 114 (1970), 187-193.



