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In this article we treat a complex projective space � P

n of constant

holomorphic sectional curvature 4 as a model space. By using submanifold theory
of � P

n we shall investigate geometric properties about curves generated by some

Killing vector fields on this space.

1. Introduction.

As a model space CP n is a nice Riemannian manifold. It admits many ho-
mogeneous submanifolds, that is, submanifolds which are given as orbits under
subgroups of the projective unitary group PU(n + 1) through equivariant iso-
metric immersions. In this article we particularly consider two homogeneous
Riemannian submanifolds of CP n.

In section 3, we consider a Riemannian symmetric space M = S1×Sn−1/ ∼ of
rank 2 imbedded in CPn (through the isometric imbedding, say f) as an isotropic
submanifold with parallel second fundamental form (for details, see (3.1), (3.2)
and [N]). This submanifold M has various geometric properties. For example, for

each geodesic γ of M , the curve f ◦ γ is a circle of the same curvature 1/
√

2 in
CPn. We here remark that there exist many geodesics γ1 and γ2 on M such that
the curves f ◦ γ1 and f ◦ γ2 are not congruent with respect to isometries of CP n.
By virtue of the isometric imbedding f : M = S1×Sn−1/ ∼→ CPn we obtain an

interesting family of open circles and closed circles of the same curvature 1/
√

2
in CPn. This interesting fact leads us to the study on circles in CP n. Note that
every circle in a Riemannian symmetric space M of rank one is an integral curve
of a Killing vector field on M (see [MT]). The purpose of this section is to give
an answer to the problem ”When is a circle closed in CP n?”.
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In section 4, motivated by the study in section 3, we are interested in the
problem ”In a complex projective space CP n, for each positive ` does there exist
a unique closed circle γ whose length is ` up to isometries of CP n?”. In order to
give an answer to this problem we study length spectrum of circles of CP n, that
is, we investigate how lengths of closed circles are distributed on the real line.
In this section we use a notation which is similar to that in geometry of length
spectrum (of closed geodesics).

In section 5, we study a geodesic sphere M = Gm(r) (through the isometric
inclusion mapping, say g), that is, a distance sphere with center m ∈ CP n and
radius r (0 < r < π/2) imbedded as a real hypersurface in CP n. These spheres
are diffeomorphic (but not isometric) to standard spheres. Geodesic spheres in
CPn are nice objects in intrinsic geometry as well as extrinsic geometry, that is,
submanifold theory (cf. [W]). Our study about geodesics on M tells us the fact
that for each geodesic γ on M , the curve g ◦ γ is an integral curve of a Killing
vector field on CP n, and moreover gives us many important information on length
spectrum of Gm(r). For example, on a geodesic sphere Gm(r) (0 < r < π/2) there
exist infinitely many congruency classes of closed geodesics with respect to the
isometry group of Gm(r). In sections 4 and 5, some results on length spectrum
come from classical number theory (see Theorems 4.5 and 5.12).

In section 6, we determine all integral curves of Killing vector fields on a 2-
dimensional holomorphic totally geodesic submanifold CP 2 of CPn. Our study
here is motivated by the fact that for each geodesic γ on S1 × Sn−1/ ∼ (resp.
Gm(r)), the curve f ◦ γ (resp. g ◦ γ) lies on CP 2, and moreover that all of the
curves f ◦ γ and g ◦ γ are generated by some Killing vector fields on CP 2.

In the last section we shall construct a certain class of closed helices with

self-intersections in CP n. Needless to say, these curves are not integral curves of
Killing vector fields on CP n. We note that in any Riemannian manifold M , every
integral curve γ of a Killing vector field is a helix, that is, all Frenet curvatures of
γ are constant along the curve γ. Moreover, this curve γ is a simple curve, namely
it does not have any self-intersection points. To obtain closed helices with self-
intersections, we adopt the same isometric imbedding f : M = S1 × Sn−1/ ∼→
CPn as in section 3. Let γ be a circle of curvature κ(> 0) on M . Then for each
positive κ, the curve f ◦ γ is a closed helix with length 2π/κ in CP n. By virtue
of results in this section we know that the curve f ◦γ has self-intersections if and
only if κ 5 3/(

√
2π).

Through out of this paper we suppose that a complex projective space CP n is
furnished with the standard metric of constant holomorphic sectional curvature
4.

2. Preliminaries.

In the first place we recall the Frenet formula for a smooth curve in a Rie-
mannian manifold M with Riemannian metric 〈 , 〉. A smooth curve γ = γ(s)
parametrized by its arclength s is called a Frenet curve of proper order d if there
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exist orthonormal frame fields {V1 = γ̇, . . . , Vd} along γ and positive functions
κ1(s), . . . , κd−1(s) which satisfy the following system of ordinary equations

(2.1) ∇γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), j = 1, . . . , d,

where V0 ≡ Vd+1 ≡ 0 and ∇γ̇ denotes the covariant differentiation along γ with
respect to the Riemannian connection ∇ of M . Equation (2.1) is called the Frenet
formula for the Frenet curve γ. The functions κj(s) (j = 1, . . . , d − 1) and the
orthonormal frame {V1, . . . , Vd} are called the curvatures and the Frenet frame

of γ, respectively.
A Frenet curve is called a Frenet curve of order d if it is a Frenet curve of proper

order r(5 d). For a Frenet curve of order d which is of proper order r(5 d), we use
the convention in (2.1) that κj ≡ 0 (r 5 j 5 d−1) and Vj ≡ 0 (r+1 5 j 5 d). In
this paper a curve means a smooth Frenet curve. We call a curve a helix when all
its curvatures are constant. A helix of order 1 is nothing but a geodesic. A helix
of order 2, namely a curve which satisfies ∇γ̇V1(s) = κV2(s),∇γ̇V2(s) = −κV1(s)
and V1(s) = γ̇(s), is called a circle of curvature κ.

We now restrict ourselves to Frenet curves on Kähler manifolds. Let M be an
n-dimensional Kähler manifold with complex structure J and Riemannian metric
〈 , 〉. For a Frenet curve γ = γ(s) in M of order d(5 2n) with associated Frenet
frame {V1, . . . , Vd}, we set τij(s) = 〈Vi(s), JVj(s)〉 for 1 5 i < j 5 d and call
them its complex torsions. In the study of Frenet curves on a Kähler manifold
their complex torsions play an important role. We call γ a holomorphic helix if
all the curvatures and all the complex torsions of γ are constant functions along
γ.

We here pay particular attention to Frenet curves in an n-dimensional complete
simply connected non-flat complex space form Mn(c)(= CPn(c) or CHn(c)) of
constant holomorphic sectional curvature c(6= 0). The congruence theorem for
Frenet curves in a non-flat complex space form is stated as follows (cf. Theorem
5.1 in [MOh]):

Theorem A. Let γ = γ(s) and δ = δ(s) be two Frenet curves of orders p and

q in a non-flat complex space form Mn(c), respectively. Let {V1, . . . , Vp} (resp.
{W1, . . . ,Wq}) denote the Frenet frame of γ (resp. δ) and {λ1(s), . . . , λp−1(s)}
(resp. {µ1(s), . . . , µq−1(s)}) be the curvature functions of γ (resp. δ). Then the

curves γ and δ are congruent, that is, there exist an isometry ϕ of Mn(c) and

constant s0 such that γ(s) = (ϕ ◦ δ)(s+ s0) for every s if and only if they have

the following conditions.

(1) p = q.
(2) There exists a constant s0 with the following properties:

i) λi(s) = µi(s+ s0) (i = 1, . . . , p− 1) for every s,
ii) the complex torsions of γ and δ satisfy either

τ ijγ (0) = τ ijδ (s0) (1 5 i < j 5 p) or τ ijγ (0) = −τ ijδ (s0) (1 5 i < j 5 p).
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Here, in the condition (2)ii), the former holds if γ, δ are congruent with respect
to some holomorphic isometry, and the latter holds if they are congruent with
respect to some anti-holomorphic isometry.

It is well-known that in a complete simply connected n-dimensional real space
form Mn(c)(= Sn(c), Rn or Hn(c)) of constant sectional curvature c, a curve γ
is a helix if and only if γ is an integral curve of a Killing vector field on Mn(c).
The following is a complex version of this fact (see [MOh]):

Theorem B. In a complex space form Mn(c)(= CPn(c), Cn or CHn(c)), a

curve γ is a holomorphic helix if and only if γ is an integral curve of a holomorphic

Killing vector field on Mn(c).

Remark. It is known that if M is a complex space form of nonzero constant holo-
morphic sectional curvature, then any Killing vector field on M is a holomorphic
vector field.

In general, in a Kähler manifoldM (with complex structure J) a circle γ = γ(s)
(with ∇γ̇V1(s) = κV2(s),∇γ̇V2(s) = −κV1(s) and V1(s) = γ̇) is a holomorphic
helix. Indeed,

∇γ̇〈V1(s), JV2(s)〉 = 〈∇γ̇V1(s), JV2(s)〉 + 〈V1(s), J∇γ̇V2(s)〉
= κ · 〈V2(s), JV2(s)〉 − κ · 〈V1(s), JV1(s)〉 = 0.

In the following, for a circle γ = γ(s) in M we denote its complex torsion by τ
for simplicity.

We finally note that there are many helices but not holomorphic helices of
proper order d(= 3) in a Kähler manifold M . For example, let γ = γ(s) be a
helix of proper order 3 on M . Then the complex torsions of γ satisfy the following
equations (see [AM2, MA]):





τ ′12 = κ2τ13,

τ ′13 = −κ2τ12 + κ1τ23,

τ ′23 = −κ1τ13,

where κ1, κ2 denote the curvatures of the helix γ. By solving them, we have





τ12(s) = α1 sin
√
κ2

1 + κ2
2s+ α2 cos

√
κ2

1 + κ2
2s+ α3,

τ13(s) =

√
κ2

1 + κ2
2

κ2

(
α1 cos

√
κ2

1 + κ2
2s− α2 sin

√
κ2

1 + κ2
2s

)
,

τ23(s) = −κ1

κ2

(
α1 sin

√
κ2

1 + κ2
2s+ α2 cos

√
κ2

1 + κ2
2s

)
+
κ2

κ1
α3

for some constants α1, α2 and α3. This implies that the curve γ is a holomorphic
helix if and only if α1 = α2 = 0.
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3. When is a circle closed in CP n?
In [AMU, AM1] we concentrated on the study about circles in CP n. We

first consider a Riemannian symmetric space S1 × Sn−1/ ∼ of rank 2. Here
two points (eiθ, (a1, . . . , an)) and (eiψ, (b1, . . . , bn)) on S1 × Sn−1 are identified
if (eiθ, a1, . . . , an) = (−eiψ,−b1, . . . . − bn). The Riemannian metric on S1 ×
Sn−1/ ∼ is given by

〈(v, ξ), (w, η)〉 =
2

9
〈v, w〉S1 +

2

3
〈ξ, η〉Sn−1

for tangent vectors v, w ∈ TS1 and ξ, η ∈ TSn−1, where 〈 , 〉S1 and 〈 , 〉Sn−1

denote the canonical metrics on standard spheres S1 and Sn−1, respectively. We
define a parallel isometric imbedding f : S1 × Sn−1/ ∼→ CPn(4) by

(3.1) f([(eiθ, (a1, . . . , an))]) = π(




1
3 (e−2iθ/3 + 2a1e

iθ/3)√
2

3
(e−2iθ/3 − a1e

iθ/3)
2√
6
ia2e

iθ/3

...
2√
6
iane

iθ/3




)

with the Hopf fibration π : S2n+1(1) → CPn(4). The second fundamental form
σf of f is expressed as

(3.2)

σf ((u, 0), (u, 0)) = − 1√
2
J(u, 0), σf ((0, ξ), (0, ξ)) =

1√
2
J(u, 0),

σf ((u, 0), (0, ξ)) =
1√
2
J(0, ξ)

for each unit tangent vector ξ ∈ TSn−1 and the normalized vector u of ∂/∂θ,
where J denotes the complex structure on CP n(4). Since f is parallel, we find
by (3.2) that it maps every geodesic γ on S1 × Sn−1/ ∼ to a circle of curvature

1/
√

2 in CPn(4):

∇ ˙̃γ∇ ˙̃γ
˙̃γ = ∇ ˙̃γσf (γ̇, γ̇) = −‖σf (γ̇, γ̇)‖ ˙̃γ,

where γ̃ = f ◦ γ and ∇ is the Riemannian connection on CP n(4). This suggests
us a kind of importance in study of circles.

We call a smooth curve γ = γ(s) closed if there exists a positive s1 with
γ(s+ s1) = γ(s) for every s. For a circle γ, the definition of closedness of γ can
be rewritten as follows: A circle γ is said to be closed if there exists a positive s1

with

(3.3) γ(s1) = γ(0), γ̇(s1) = γ̇(0) and (∇γ̇ γ̇)(s1) = (∇γ̇ γ̇)(0).
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The minimum positive number s1 satisfying (3.3) is called the length of a closed
circle γ and is denoted by length(γ).

For each geodesic γ on S1 × Sn−1/ ∼ we can compute the complex torsion
of f ◦ γ by (3.2). Noticing the metric on S1 × Sn−1/ ∼, we find the length of
f ◦ γ and obtain the following theorem which gives us information on all circles
of curvature 1/

√
2 in CPn.

Theorem 3.1. For each unit vector X = (αu, v) ∈ Tx(S
1×Sn−1/ ∼) w Tx1

S1⊕
Tx2

Sn−1 at a point x, we denote by γX the geodesic along X on S1 × Sn−1/ ∼.

Then the circle f ◦ γX on CPn(4) satisfies the following properties:

(1) The curvature of f ◦ γX is 1/
√

2.
(2) The complex torsion of f ◦ γX is 4α3 − 3α for −1 5 α 5 1.

(3) The circle f ◦γX is closed if and only if either α = 0 or
√

(1 − α2)/(3α2)
is rational.

(4) When α = 0, the length of the closed circle f ◦ γX is 2
√

6π/3.

(5) When α 6= 0 and
√

(1 − α2)/(3α2) is rational, we denote by p/q the

irreducible fraction defined by
√

(1 − α2)/(3α2). Then the length ` of the

closed circle f ◦ γX is as follows;
(5i) When pq is even, ` is the least common multiple of 2

√
2π/(3|α|) and

2
√

2π/
√

3(1 − α2). In particular, when α = ±1, ` = 2
√

2π/3.

(5ii) When pq is odd, ` is the least common multiple of
√

2π/(3|α|) and√
2π/

√
3(1 − α2).

Next, we prepare the following in order to consider circles of arbitrary positive
curvature. Let N be the outward unit normal on S2n+1(1) in R

2n+2(= C
n+1).

We here mix the complex structures of Cn+1 and CPn(4). We shall study circles
in CPn(4) by use of the Hopf fibration π : S2n+1(1) → CPn(4). For the sake of
simplicity we identify a vector field X on CP n(4) with its horizontal lift X∗ on
S2n+1(1). Then the relation between the Riemannian connection ∇ of CP n(4)

and the Riemannian connection ∇̃ of S2n+1(1) is as follows:

∇̃XY = ∇XY + 〈X, JY 〉JN

for any vector fields X and Y on CP n(4), where 〈 , 〉 is the canonical metric on
Cn+1. By direct calculation with making use of this relation, we can see that for
each circle γ of positive curvature every horizontal lift γ̃ of γ in S2n+1(1) is a
helix in S2n+1(1).

Proposition 3.2. Let γ denote a circle with curvature κ(> 0) and complex tor-

sion τ in CPn(4) satisfying that ∇γ̇ γ̇ = κYs and ∇γ̇Ys = −κγ̇. Then every

horizontal lift γ̃ of γ in S2n+1(1) is a helix of order 2, 3 or 5 corresponding to

τ = 0, τ = ±1 or τ 6= 0,±1, respectively. Moreover, it satisfies the following



INTEGRAL CURVES OF KILLING VECTOR FIELDS 67

differential equations:

(3.4)





∇̃γ̇ γ̇ = κYs,

∇̃γ̇Ys = −κγ̇ + τJN,

∇̃γ̇(JN) = −τYs +
√

1 − τ2Zs,

∇̃γ̇Zs = −
√

1 − τ2JN + κWs,

∇̃γ̇Ws = −κZs,

where Zs = 1√
1−τ2

(Jγ̇ + τYs),Ws = 1√
1−τ2

(JYs − τ γ̇).

Note that a curve γ = γ(s) in CP n(4) is closed if and only if there exists a
positive constant s∗ such that a horizontal lift γ̃ = γ̃(s) of γ in S2n+1(1) satisfies
γ̃(s+ s∗) = eiθs γ̃(s) with some θs ∈ [0, 2π) for every s. Then by solving ordinary
differential equation (3.4) for a horizontal lift γ̃ of each circle γ in CP n(4) we
establish the following.

Theorem 3.3. Let γ be a circle of curvature κ(> 0) and of complex torsion τ
in a complex projective space CP n(4). Then the following hold:

(1) When τ = 0, a circle γ is a simple closed curve with length 2π/
√
κ2 + 1.

(2) When τ = ±1, a circle γ is a simple closed curve with length 2π/
√
κ2 + 4.

(3) When τ 6= 0,±1, we denote by a, b and d (a < b < d) the nonzero solutions

for

λ3 − (κ2 + 1)λ+ κτ = 0.

Then we find the following:
(i) If one of (hence each of) the three ratios a/b, b/d and d/a is rational,

then γ is a simple closed curve. Its length is the least common multiple

of 2π/(b− a) and 2π/(d− a).
(ii) If each of the three ratios a/b, b/d and d/a is irrational, then γ is a simple

open curve.

Let γ be a circle of curvature κ in a Riemannian manifold (M, 〈 , 〉). When
we change the metric 〈 , 〉 homothetically to m2 · 〈 , 〉 for some positive constant
m, the curve σ(s) = γ(s/m) is a circle of curvature κ/m in (M,m2 · 〈 , 〉). Under
the operation 〈 , 〉 → m2 · 〈 , 〉, the length of a closed curve changes to m-times
of the original length. Needless to say, the sectional curvature of M changes to
1/m2-times of the original sectional curvature under this operation. Hence, by
virtue of Theorem 3.3 we can conclude the following which is the main result in
this section.

Theorem 3.4. Let γ be a circle with curvature κ(> 0) and with complex torsion τ
in a complex projective space CP n(c) of constant holomorphic sectional curvature

c. Then the following hold:

(1) When τ = 0, a circle γ is a simple closed curve with length 4π/
√

4κ2 + c.
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(2) When τ = ±1, a circle γ is a simple closed curve with length 2π/
√
κ2 + c.

(3) When τ 6= 0,±1, we denote by a, b and d (a < b < d) the nonzero solutions

for

cλ3 − (4κ2 + c)λ+ 2
√
cκτ = 0.

Then we find the following:
(i) If one of (hence each of) the three ratios a/b, b/d and d/a is rational,

γ is a simple closed curve. Its length is the least common multiple of

4π/{√c(b− a)} and 4π/{√c(d− a)}.
(ii) If each of the three ratios a/b, b/d and d/a is irrational, γ is a simple

open curve.

Remarks. A circle γ = γ(s) with complex torsion τ is a plane curve in CP n(c)
(that is, γ is locally contained on some real 2-dimensional totally geodesic sub-
manifold of CPn(c)) if and only if τ = 0 or τ = ±1.

(1) When τ = 0, the circle γ lies on RP 2(c/4) which is a totally real totally
geodesic submanifold of CP n(c).

(2) When τ = 1 or − 1, the circle γ lies on CP 1(c) which is a holomorphic
totally geodesic submanifold of CP n(c).

Circles of complex torsion ±1 are called holomorphic circles, and circles of null
complex torsion are called totally real circles.

4. Length spectrum of circles in CP n(c).
In this section, we study the length spectrum of circles in CP n(c). Rewriting

Theorem 3.1, we find the following which is our main tool in this section.

Proposition 4.1. In CP n(c) a circle γ of curvature
√

2c/4 is closed if and only

if its complex torsion is of the form

τ(p, q) =
q(9p2 − q2)

(3p2 + q2)3/2

for some relatively prime positive integers p and q with p > q. In this case its

length is

length(γ) =

{ 4
3
√
c
π
√

2(3p2 + q2), if pq is even,

2
3
√
c
π
√

2(3p2 + q2), if pq is odd.

In order to get rid of the influence of the action of the full isometry group,
we shall consider the moduli space of circles under the action of isometries. The
moduli space Cir(M) of circles is the quotient space of the set of all circles in a
Riemannian manifold M under this congruence relation. The length spectrum of
circles in M is the map CL : Cir(M) → R∪ {∞} defined by CL([γ]) = length(γ).
Here, for an open circle γ, a circle which is not closed, we put length(γ) = ∞.
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Sometimes we also call the image CLSpec(M) = CL(Cir(M))∩R in the real line
the length spectrum of circles on M .

For circles on a complex projective space CP n(c) (n = 2) we have the following
congruence theorem, which is a direct consequence of Theorem A.

Proposition 4.2. Two circles in CP n(c) are congruent if and only if they have

the same curvatures and the same absolute values of complex torsions.

We denote by [γκ,τ ] the congruency class of circles of curvature κ (> 0) and
complex torsion τ(= 0) in CP n(c) and by [γ0] the congruency class of geodesics
in CPn(c) . The moduli space of circles in CP n(c) is hence

Cir(CPn(c)) = {[γκ,τ ] | κ > 0, 0 5 τ 5 1} ∪ {[γ0]}.

The moduli space of circles has a natural stratification by their curvatures.
We denote by Cirκ(M) the moduli space of circles of curvature κ in M and by
CLκ the restriction of CL on this space. For a complex projective space we can
define for each positive κ a canonical transformation

Φκ : Cirκ(CP
n(c))\{[γκ,1]} → Cir√2c/4(CP

n(c))\{[γ√2c/4,1]}

by
Φκ([γκ,τ ]) = [γ√2c/4,3

√
3cκτ(4κ2+c)−3/2 ].

The following lemma guarantees that the structure of the length spectrum CLκ
of circles of curvature κ essentially does not depend on κ.

Lemma 4.3. The canonical transformation Φκ satisfies

CL([γκ,τ ]) =

√
3c

2(4κ2 + c)
· CL(Φκ([γκ,τ ]))

for every τ (0 5 τ < 1).

We denote by CLSpecκ(M) = CL (Cirκ(M))∩R the length spectrum of circles
of curvature κ in M . This lemma yields that

CLSpecκ(CP
n(c)) =

{
2π√
κ2 + c

,
4π√

4κ2 + c

}

⋃


4π

√
3p2 + q2

3(4κ2 + c)

∣∣∣∣∣∣

p and q are relatively prime
integers which satisfy

pq is even and p > ακq > 0





⋃


2π

√
3p2 + q2

3(4κ2 + c)

∣∣∣∣∣∣

p and q are relatively prime
integers which satisfy

pq is odd and p > ακq > 0



 ,
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where ακ (= 1) denotes the number with

3
√

3cκ

(4κ2 + c)3/2
=

9α2
κ − 1

(3α2
κ + 1)3/2

.

Note that the constant ακ satisfies

i) α√
2c/4 = 1,

ii) monotone decreasing when 0 < κ 5
√

2c/4, and monotone increasing

when κ =
√

2c/4,
iii) limκ→0 ακ = limκ→∞ ακ = ∞.

Lemma 4.3 also guarantees that

CLSpec(CPn(c)) =

(
0,

4π√
c

)
∪
⋃{

Ip,q

∣∣∣∣
p > q, p and q are relatively

prime positive integers

}
,

where

Ip,q =






(
4π
3
√
c

√
2q(3p+ q), 4π

3
√
c

√
9p2 − q2

)
, if pq is even,

(
2π
3
√
c

√
2q(3p+ q), 2π

3
√
c

√
9p2 − q2

)
, if pq is odd.

For a spectrum λ ∈ CLSpec(M) the cardinality mc(λ) of the set CL−1(λ) is
called the multiplicity of the length spectrum CL at λ. When mc(λ) = 1, we say
that λ is simple. For example, every length spectrum of circles in a real space
form is simple. When the multiplicity of CL is greater than one at some point
λ, this means that we can find circles which are not congruent each other but
have the same length λ. We denote by Cirτ (M) the moduli space of circles with
complex torsion τ in a Kähler manifold M and by CLτ the restriction of CL onto
this space. From those expressions on length spectrum of circles we establish the
following main result.

Theorem 4.4. For a complex projective space CP n(c) (n = 2) of constant holo-

morphic sectional curvature c, the length spectrum of circles has the following

properties.

(1) Both the sets

CLSpecκ(CP
n(c)) = CL(Cirκ(CP

n(c))) ∩ R

and

CLSpecτ (CPn(c)) = CL(Cirτ (CPn(c))) ∩ R

are unbounded discrete subsets of R for each κ(> 0) and 0 < τ < 1.
(2) The length spectrum CLSpec(CP n(c)) of circles coincides with the real

positive line (0,∞).
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(3) For κ > 0 the bottom of CLSpecκ(CP
n(c)) is 2π/

√
κ2 + c, which is the

length of the holomorphic circle of curvature κ. The second lowest spec-

trum of CLSpecκ(CP
n(c)) is 4π/

√
4κ2 + c, which is the length of the

totally real circle of curvature κ. They are simple for CLκ.
(4) The multiplicity mc of CL is finite at each point λ ∈ R. It satisfies

lim
λ→∞

mc(λ)

λ2 logλ
=

9c

8π4
.

(5) λ(∈ R) is simple for CL if and only if λ is contained in the interval(
2π√
c
, 4

3

√
5
cπ
]
.

(6) The multiplicity of CLκ (κ > 0) is not uniformly bounded;

lim sup
λ→∞

](CL−1
κ (λ)) = ∞.

The growth order of the multiplicity with respect to λ is not so rapid. It

satisfies limλ→∞ λ−δ](CL−1
κ (λ)) = 0 for an arbitrary positive δ.

The statements (2) and (5) in our theorem give the complete answer to the
problem in the introduction.

Remark. We find that the length spectrum CL√
2c/4 is not simple at the following

points for example.

(i) Let γ1 be a circle of curvature
√

2c/4 and complex torsion τ = τ(27, 7) =
5698

559
√

559
and γ2 be a circle of curvature

√
2c/4 and complex torsion τ =

τ(25, 19) = 12502
559

√
559

. Then these two closed circles have the same curva-

ture and the same length 4
√

1118
3
√
c
π. But they are not congruent.

(ii) Let γi be a circle of the same curvature
√

2c/4 and complex torsion τi =
τ(pi, qi), i = 1, 2, 3. Here we set (p1, q1) = (129, 71), (p2, q2) = (131, 59)
and (p3, q3) = (135, 17). Note that 3p2

i + q2i = 54964 for i = 1, 2, 3. Then
these three circles have the same curvature and the same length. But
these three circles are not congruent each other.

Finally we investigate the asymptotic behavior of the number of congruency
classes of closed circles of curvature κ. Let nc(λ;κ) denote the number of con-
gruency classes of closed circles of curvature κ in M with length not greater than
λ.

Theorem 4.5. For a complex projective space CP n(c) (n = 2) of constant holo-

morphic sectional curvature c, we have for κ > 0

lim
λ→∞

nc(λ;κ)

λ2
=

3
√

3(4κ2 + c)

8π4
tan−1

(
1√
3ακ

)
,
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where ακ (= 1) denotes the number with

3
√

3cκ

(4κ2 + c)3/2
=

9α2
κ − 1

(3α2
κ + 1)3/2

.

In particular,

lim
λ→∞

nc(λ;
√

2c/4)

λ2
=

3
√

3c

32π3
.

The constant c(κ) = limλ→∞ λ−2nc(λ;κ) satisfies

lim
κ→0

c(κ) = 0 and lim
κ→∞

c(κ) =
9c

16π4
.

We finally pose some problems on length spectrum CLτ (0 < τ < 1) of circles.

Problems.

(1) Are there non-simple spectrum for CLτ (0 < τ < 1)?
(2) Whether is the multiplicity of CLτ (0 < τ < 1) uniformly bounded or

not?
(3) Give an explicit formula of the first spectrum for CLτ (0 < τ < 1).
(4) Study the asymptotic behavior of the number of congruency classes of

closed circles of complex torsion τ(6= 0, 1) with respect to length.
(5) Study the behavior of c(κ). What is the maximum value of this function

c(κ)?
(6) Study the geometric meaning of the constants limλ→∞mc(λ)/(λ2 log λ)

and limκ→∞ c(κ).

5. Length spectrum of geodesics spheres in CP n.
In this section we study lengths of closed geodesics on geodesic spheres in a

complex projective space. We first note that each geodesic sphere Gm(2r/
√
c)

of radius 2r/
√
c (0 < r < π/2) with center m ∈ CP n(c) which is imbedded as a

real hypersurface in CP n(c) is congruent to a tube of radius (π− 2r)/
√
c around

totally geodesic complex hyperplane CP n−1(c) in CPn(c).
In general, each real hypersurface M admits an almost contact metric structure

(φ, ξ, η, 〈 , 〉) from the Kähler structure J of CP n(c), which satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1 and 〈φX, φY 〉 = 〈X,Y 〉 − η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M . It is known
that

(∇Xφ)Y = η(Y )AX − 〈AX, Y 〉ξ and ∇Xξ = φAX,

where ∇ is the Riemannian connection of M induced from the Fubini-Study
metric of CPn.

We recall the following characterization of geodesic spheres in CP n(c) (see
[MOg]).
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Proposition 5.1. Let M be a real hypersurface of CP n. Then M is locally

congruent to a geodesic sphere Gm(r) if and only if there exist orthonormal vectors

v1, · · · , v2n−2 orthogonal to ξ at each point p of M such that all geodesics of M
through p in the direction vi + vj (1 5 i 5 j 5 2n − 2) are circles in CP n with

positive curvature.

Motivated by this proposition, we shall investigate the extrinsic shape of every

geodesic of a geodesic sphere in CP n. It is enough to study the case of c = 4.
The shape operator A of Gm(r) in CPn(4) is expressed as:

Aξ = (2 cot 2r)ξ and Au = (cot r)u

for every tangent vector u ∈ TGm(r) orthogonal to ξ. Moreover, this real hyper-
surface Gm(r) satisfies the following (cf. [NR]):

1) The structure tensor φ and the shape operator A of Gm(r) in CPn(4) are
commutative: φA = Aφ.

2) The covariant derivative of the shape operator A satisfies

(∇XA)Y = −{〈φX, Y 〉ξ + η(Y )φX}.

We remark that 〈γ̇(s), ξ〉 is constant along γ. Indeed,

∇γ̇〈γ̇(s), ξ〉 = 〈γ̇(s), φAγ̇〉 = 〈γ̇, Aφγ̇〉 = −〈φAγ̇, γ̇〉 = 0.

We shall call this constant the structure torsion of γ and denote by sin θ with
0 5 |θ| 5 π/2.

By direct computation we obtain the following:

Proposition 5.2. Let g be an isometric imbedding of a geodesic sphere Gm(r) (0 <
r < π/2) into CPn(4). Then the extrinsic shape g ◦ γ of a geodesic γ on Gm(r)
is as follows:

(1) Suppose the radius r satisfies π/4 5 r < π/2. If the structure torsion of

γ is ± cot r, then the curve g ◦ γ is a geodesic.

(2) When r 6= π/4, if the structure torsion of γ is ±1 ( i.e. γ̇ = ±ξ ), then

the curve g ◦ γ is a circle of curvature 2| cot 2r| and of complex torsion

∓1 in CPn(4). This circle lies on a totally geodesic CP 1(4).
(3) If γ has null structure torsion ( i.e. γ̇ is orthogonal to ξ ), then the curve

g ◦ γ is a circle of curvature cot r and null complex torsion in CP n(4).
This circle lies on a totally geodesic RP 2(1).

(4) Generally, if the structure torsion of γ is of the form sin θ (0 < |θ| <
π/2, sin θ 6= ± cot r), then the curve g ◦ γ is a holomorphic helix of proper

order 4 whose curvatures are described as

κ1 = | cot r − tan r · sin2 θ|, κ2 = tan r · | sin θ| cos θ, κ3 = cot r.



74 S. MAEDA AND T. ADACHI

Its complex torsions are described as

τ12 =

{ − sin θ, if cot r − tan r · sin2 θ > 0

sin θ, if cot r − tan r · sin2 θ < 0,

τ14 =

{ − sgn(sin θ) cos θ, if cot r − tan r · sin2 θ > 0

sgn(sin θ) cos θ, if cot r − tan r · sin2 θ < 0,

τ23 = sgn(sin θ) cos θ, τ34 = sin θ, τ13 = τ24 = 0,

where sgn(a) denotes the signature of a real number a. This helix g ◦ γ
lies on a totally geodesic CP 2(4).

It follows from Theorem B and Proposition 5.2 that

Proposition 5.3. Every geodesic γ on a geodesic sphere Gm(r) in CPn(c) lies

on CP 2(c) (which is a complex 2-dimensional complex linear subspace of CP n(c))
as a curve generated by a holomorphic Killing vector field on CP 2(c), so that γ
is a simple curve lying on CP 2(c).

In order to study lengths of closed geodesics on Gm(r) in a complex projective
space CPn(4), we use the same idea as in section 3, which lies on considering
a horizontal lift of a holomorphic helix g ◦ γ for every geodesic γ on Gm(r).
Regarding the curve g ◦ γ as a curve in a Euclidean space Cn+1, we obtain an
ordinary differential equation:

(g ◦ γ)(4) + (cot2 r + cos2 θ + tan2 r sin2 θ)(g ◦ γ)′′

+ sin2 θ(tan2 r cos2 θ + 1)g ◦ γ = 0.

Thus we can see that g ◦ γ is of the form

g ◦ γ(s) =A exp(
√
−1s tan r sin θ) +B exp(−

√
−1s tan r sin θ)

+ C exp(
√
−1s

√
cot2 r + cos2 θ) +D exp(−

√
−1s

√
cot2 r + cos2 θ)

with some non-zero vectors A,B,C,D ∈ C
n+1.

Lemma 5.4. Let σ be a smooth simple curve on CP n(4). Suppose a horizontal

lift σ̃ of σ on S2n+1(1) is represented as

σ̃(s) = Ae
√
−1as + Be

√
−1bs + Ce

√
−1cs +De

√
−1ds,

which is a curve on C
n+1 with non-zero vectors A,B,C,D ∈ C

n+1 and mutually

distinct real numbers a, b, c, d which satisfy a + b + c + d = 0 and a 6= 0. Then

σ is closed if and only if all the ratios b/a, c/a, d/a are rational. In this case, its

length is

length(σ) = 2π × L.C.M.

(
1

|b− a| ,
1

|c− a| ,
1

|d− a|

)
.
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Here for positive numbers α1, α2, α3, we denote by L.C.M.{α1, α2, α3} the min-

imum value of the set {jα1 | j = 1, 2, . . .} ∩ {jα2 | j = 1, 2, . . .} ∩ {jα3 | j =
1, 2, . . .}.

Applying this lemma to our case, we obtain the following:

Proposition 5.5. For a geodesic γ on a geodesic sphere Gm(r) of radius r (0 <
r < π/2) in CPn of holomorphic sectional curvature 4 we have the following:

(1) If the structure torsion of γ is ±1, then γ is closed and its length is

π sin 2r.
(2) If γ has null structure torsion, then γ is also closed and its length is

2π sin r.
(3) When the structure torsion of γ is of the form sin θ (0 < |θ| < π/2), it is

closed if and only if

sin θ =
±q

sin r
√
p2 tan2 r + q2

with some relatively prime positive integers p and q with q < p tan2 r. In

this case, its length is

length(γ) =

{
2π
√
p2 sin2 r + q2 cos2 r, if pq is even

π
√
p2 sin2 r + q2 cos2 r, if pq is odd.

Changing the metric homothetically, we obtain the following (Recall the lines
after Theorem 3.3).

Theorem 5.6. For a geodesic γ on a geodesic sphere Gm(2r/
√
c) of radius 2r/

√
c

(0 < r < π/2) in CP n(c) of holomorphic sectional curvature c, we have the

following:

(1) If the structure torsion of γ is ±1, then γ is closed and its length is

(2π/
√
c) sin 2r.

(2) If γ has null structure torsion, then γ is also closed and its length is

(4π/
√
c) sin r.

(3) When the structure torsion of γ is of the form sin θ (0 < |θ| < π/2), it is

closed if and only if

sin θ =
±q

sin r
√
p2 tan2 r + q2

with some relatively prime positive integers p and q with q < p tan2 r. In

this case, its length is

length(γ) =





4π
√

1
c

(
p2 sin2 r + q2 cos2 r

)
, if pq is even

2π
√

1
c

(
p2 sin2 r + q2 cos2 r

)
, if pq is odd.
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We are now in a position to study the length spectrum of geodesic spheres in
a complex projective space. We denote by Geod(N) the quotient space of the
set of all geodesics on a Riemannian manifold N under the congruent relation
with respect to the isometry group Iso(N) of N . We define the length spectrum

L : Geod(N) → R ∪ {∞} of N by L([γ]) = length(γ), where [γ] denotes the
congruency class containing a geodesic γ. We also call the image LSpec(N) =
L(Geod(N)) ∩ R the length spectrum of N . For example, the length spectrum
of a standard unit sphere is LSpec(Sm(1)) = {2π}. In order to study the length
spectrum of a geodesic sphere Gm(r) in a complex projective space, we need to
study its isometry group. For a non-zero tangent vector v ∈ TxGm(r) we denote
by 〈v〉 the 1-dimensional linear subspace of TxGm(r) spanned by v, and by 〈v〉⊥
the orthogonal complement of 〈v〉 in TxGm(r).

Lemma 5.7. For any unit tangent vectors u ∈ 〈ξx〉⊥, v ∈ 〈ξy〉⊥ of Gm(r) or-

thogonal to ξ at arbitrary points x, y, there exist isometries ϕ̃+, ϕ̃− of CPn with

i) ϕ̃+(Gm(r)) = ϕ̃−(Gm(r)) = Gm(r) and ϕ̃+(x) = ϕ̃−(x) = y,
ii) dϕ̃+

x (u) = dϕ̃−
x (u) = v and dϕ̃+

x (ξx) = ξy, dϕ̃
−
x (ξx) = −ξy.

This lemma guarantees that two geodesics on a geodesic sphere in CP n are
congruent if they have the same absolute values of the structure torsion. On
the other hand, Theorem A and Proposition 5.2 show that two geodesics on a
geodesic sphere in CP n are not congruent if they do not have the same absolute
values of the structure torsions. Hence we have

Proposition 5.8. On a geodesic sphere Gm(r) in a complex projective space,

two geodesics are congruent with respect to the isometry group of Gm(r) if and

only if the absolute values of their structure torsions coincide.

As a direct consequence of Theorem 5.6 we find that the length spectrum of
a geodesic sphere Gm(2r/

√
c) in a complex projective space CP n(c) is of the

following form.

LSpec
(
Gm

( 2r√
c

))
=

{
2π√
c

sin 2r

}⋃{
4π√
c

sin r

}

⋃
{

4π

√
1

c

(
p2 sin2 r + q2 cos2 r

)
∣∣∣∣∣∣∣

p and q are relatively
prime positive integers

which satisfy
pq is even and q < p tan2 r





⋃
{

2π

√
1

c

{
p2 sin2 r + q2 cos2 r

}
∣∣∣∣∣∣∣

p and q are relatively
prime positive integers

which satisfy
pq is odd and q < p tan2 r




.

Therefore we obtain the following.
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Theorem 5.9. On a geodesic sphere Gm(r) in CPn, there exist infinitely many

congruency classes of closed geodesics. Moreover the length spectrum LSpec(Gm(r))
of Gm(r) is a discrete unbounded subset in the real line R.

By the expression of LSpec(Gm(r)) we can also see that the multiplicity
mGm(r)(λ) of a spectrum λ, which is the cardinality of the set L−1(λ), is finite at
each λ. We here point out the first, the second and the third length spectrum,
that is the minimum, the second minimum and the third minimum of the length
spectrum.

Proposition 5.10. For a geodesic sphere Gm(2r/
√
c) (0 < r < π/2) in CP n(c)

of holomorphic sectional curvature c, we obtain the following:

(1) The first length spectrum of Gm(2r/
√
c) is (2π/

√
c) sin 2r, which is the

length of geodesics with structure torsion ±1. It is simple.

(2) The second length spectrum of Gm(2r/
√
c) is also simple.

When 0 < r 5 π/4, it is (4π/
√
c) sin r, which is the length of geodesics

with null structure torsion. When π/4 < r < π/2, it is 2π/
√
c, which is

the length of geodesics with structure torsion ± cot r.
(3) The third length spectrum is also simple. When π/4 < r < π/2, it is

(4π/
√
c) sin r, which is the length of geodesics with null structure torsion.

When
√

2m− 1 5 cot r <
√

2m+ 1 (m = 1, 2, . . . ), in particular, 0 < r 5

π/4, it is 2π
√{

4m(m+ 1) sin2 r + 1
}
/c, which is the length of geodesics

with structure torsion ±1/(sin r
√

(2m+ 1)2 tan2 r + 1).

We remark that the sectional curvature K of Gm(r) in CPn(4) lies in the
interval [cot2 r, 4 + cot2 r]. Hence, when tan2 r > 2, we find that there exists
some δ ∈ (0, 1/9) satisfying δ(4 + cot2 r) 5 K 5 (4 + cot2 r) and, moreover that

the first length spectrum of Gm(r) is smaller than 2π/
√

4 + cot2 r . This implies
that when tan2 r > 2, Gm(r) is an example of so called a Bereger sphere, as
was pointed out in [W]. But for other length spectrum, by virtue of the above
argument we find that the following statement of Klingenberg’s type holds:

Corollary. Except geodesics with structure torsion ±1, every geodesic γ on

Gm(r) (0 < r < π/2) in CP n(4) satisfies length(γ) > 2π/
√

4 + cot2 r.

Length spectrum is of course not necessarily simple. For example, in CP n(4)
we have

LSpec
(
Gm

(π
4

))
=
{
π,

√
2π,

√
5π,

√
10π,

√
13π,

√
17π, 5π,

√
26π,

√
29π,

√
34π,

√
37π,

√
41π,

√
50π,

√
53π,

√
58π,

√
61π,

√
65π,

√
73π . . .

}

and find that the multiplicity of
√

65π is two; it is the common length of geodesics
of structure torsions 3/

√
65 and 7/

√
65. Every spectrum which is smaller than√

65π is simple. Our aim here is to establish the following:



78 S. MAEDA AND T. ADACHI

Theorem 5.11. For a geodesic sphere Gm(2r/
√
c) (0 < r < π/2) in CP n(c) of

holomorphic sectional curvature c, we obtain the following:

(1) If tan2 r is irrational, every length spectrum of Gm(2r/
√
c) is simple.

(2) If tan2 r is rational, the multiplicity of each length spectrum of Gm(2r/
√
c)

is finite. But it is not uniformly bounded;
lim supλ→∞mGm(2r/

√
c)(λ) = ∞.

In this case, the growth order of mGm(2r/
√
c) is not so rapid. It satisfies

limλ→∞ λ−δmGm(2r/
√
c)(λ) = 0 for arbitrary positive δ.

This theorem guarantees that on a geodesic sphere Gm(r) with irrational tan2 r
in a complex projective space, two closed geodesics are congruent if and only if
they have the same length. On the other hand, if tan2 r is rational, this theorem
shows that we can not classify congruency classes of geodesics only by their length.

Finally we make mention of the growth of the number of congruency classes
of closed geodesics with respect to their length spectrum for a geodesic sphere in
a complex projective space. For a Riemannian manifold N we denote by nN (λ)
the cardinality of the set {[γ] ∈ Geod(N) | LN ([γ]) 5 λ}.

Theorem 5.12. For a geodesic sphere Gm(2r/
√
c) in CPn(c) of holomorphic

sectional curvature c we have

lim
λ→∞

nGm(2r/
√
c)(λ)

λ2
=

3cr

4π4 sin 2r
.

6. Holomorphic helices in a complex space form.

We shall show that the moduli of all holomorphic helices of order 3 in an n-
dimensional complex space form is parametrized by three real numbers or two
real numbers according as n = 3 or n = 2. Moreover, we investigate the moduli
of all holomorphic helices in a 2-dimensional complex space form.

Let γ be a helix in a Kähler manifold M (with complex structure J) of order
d(5 2n) satisfying (2.1). Note that every helix is a real analytic curve in M . All
the complex torsions τij(s) = 〈Vi(s), JVj(s)〉 (1 5 i < j 5 d) satisfy the following
differential equation

(6.1)
d

ds
τij(s) = −κi−1τi−1,j(s) + κiτi+1,j(s) − κj−1τi,j−1(s) + κjτi,j+1(s),

where τk` = 0 when k = ` or k = 0 or ` is greater than the proper order of γ. We
hence from (6.1) get the following.

Proposition 6.1. The complex torsions of a holomorphic helix of odd proper
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order d on a Kähler manifold satisfy the following relations:

τi,i+2k = 0 for i = 1, 2, . . . , d− 2k,

where k = 1, 2, . . . , (d− 1)/2,

κ1τ2d = κd−1τ1,d−1,

κ1τ2j + κjτ1,j+1 = κj−1τ1,j−1 for j = 3, 5, . . . , d− 2,

κi−1τi−1,d + κd−1τi,d−1 = κiτi+1,d for i = 3, 5, . . . , d− 2,

κi−1τi−1,j + κj−1τi,j−1 = κiτi+1,j + κjτi,j+1

for i = 2, 3, . . . , d− 3, j = i+ 2, i+ 4, . . . , d− 1.

Proposition 6.2. The complex torsions of a holomorphic helix of even proper

order d on a Kähler manifold satisfy the following relations:

τi,i+2k = 0 for i = 1, 2, . . . , d− 2k,

where k = 1, 2, . . . , (d− 2)/2,

κ1τ2d = κd−1τ1,d−1,

κ1τ2j + κjτ1,j+1 = κj−1τ1,j−1 for j = 3, 5, . . . , d− 1,

κi−1τi−1,d + κd−1τi,d−1 = κiτi+1,d for i = 2, 4, . . . , d− 2,

κi−1τi−1,j + κj−1τi,j−1 = κiτi+1,j + κjτi,j+1

for i = 2, 3, . . . , d− 3, j = i+ 2, i+ 4, . . . , d− 1.

Conversely, if the Frenet frame of a helix γ in a Kähler manifold satisfies the
above relations at one point, then all derivatives of its complex torsions vanish
at this point. Since γ is real analytic, we find that it is a holomorphic helix. We
therefore have

Proposition 6.3. For orthonormal vectors v1, . . . , vd at a point p of a Kähler

manifold M with complex structure J , we set τij = 〈vi, Jvj〉 (1 5 i < j 5 d). If

positive constants κ1, . . . , κd−1 and the vectors v1, . . . , vd satisfy the relations

in Proposition 6.1 or 6.2, then there exists a unique holomorphic helix with

curvatures κ1, . . . , κd−1 satisfying that the initial value of its Frenet frame is

(v1, . . . , vd).

The following is easily verified.

Proposition 6.4. The complex torsions τij of a holomorphic helix of proper

order d in a Kähler manifold M satisfy
∑i−1

j=1 τ
2
ji +

∑d
j=i+1 τ

2
ij 5 1 for each i.

We here investigate holomorphic helices of order 3. We need to choose or-
thonormal vectors v1, v2, v3 ∈ TpM which satisfy

κ1〈v2, Jv3〉 = κ2〈v1, Jv2〉, 〈v1, Jv3〉 = 0.
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Identifying TpM with Cn, we set v1, v2 and v3 as





v1 = (1, 0, . . . , 0),

v2 = (−iτ,
√

1 − τ2, 0, . . . , 0),

v3 = (0,−iρ/
√

1 − τ2,
√

1 − τ2 − ρ2/
√

1 − τ2, 0, . . . , 0)

for positive constants τ and ρ with τ 2 + ρ2 5 1. Then they are orthonormal and
satisfy 〈v1, Jv2〉 = τ, 〈v2, Jv3〉 = ρ, 〈v1, Jv3〉 = 0. We therefore have

Theorem 6.5. Let M be a Kähler manifold of dimension greater than 2. Then

the following hold:

(1) Every holomorphic helix of order 3 satisfies

κ1τ23 = κ2τ12, τ13 = 0, |τ12| 5
κ1√
κ2

1 + κ2
2

.

(2) Conversely, if nonnegative constants κ1, κ2 and a constant τ satisfy |τ | 5

κ1/
√
κ2

1 + κ2
2, then there exists a holomorphic helix of order 3 on M with

the first curvature κ1 and the second curvature κ2, and with the first

complex torsion τ12 = τ .
(3) If |τ | > κ1/

√
κ2

1 + κ2
2, then we have no such a holomorphic helix of order

3 on M .

Theorem 6.6. Let M be a 2-dimensional Kähler manifold. Then the following

hold:

(1) The complex torsions of each holomorphic helix of proper order 3 in M
are

(6.2) τ12 =
κ1√
κ2

1 + κ2
2

, τ13 = 0, τ23 =
κ2√
κ2

1 + κ2
2

or

(6.3) τ12 = − κ1√
κ2

1 + κ2
2

, τ13 = 0, τ23 = − κ2√
κ2

1 + κ2
2

,

where its curvatures are κ1 and κ2.

(2) Conversely for given positive constants κ1 and κ2, there exists a holomor-

phic helix of proper order 3 with curvatures κ1 and κ2, and with complex

torsions defined by (6.2) or (6.3).

Such a description as above for holomorphic helices of order 4 is much more
complicated. We restrict ourselves here to holomorphic helices in a 2-dimensional
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Kähler manifold M . For given constants τ and ρ with τ 2 + ρ2 = 1, we choose
vectors

v1 = (1, 0), v2 = (−iτ, ρ), v3 = (0,−i), v4 = ∓(iρ, τ)

in TpM ∼= C2. Then they are orthonormal and satisfy

〈v1, Jv2〉 = τ, 〈v2, Jv3〉 = ρ, 〈v1, Jv4〉 = ±ρ,
〈v1, Jv3〉 = 〈v2, Jv4〉 = 0, 〈v3, Jv4〉 = ±τ.

On the other hand, Proposition 6.2 shows that a helix is a holomorphic helix if
and only if

τ13(0) = τ24(0) = 0, κ1τ23(0) + κ3τ14(0) = κ2τ12(0),

κ1τ14(0) + κ3τ23(0) = κ2τ34(0).

We therefore have

Theorem 6.7. Let M be a 2-dimensional Kähler manifold. Then the following

hold:

(1) The complex torsions of each holomorphic helix of proper order 4 with

curvatures κ1, κ2 and κ3 on M satisfy one of the following:

(6.4) τ12 = τ34 = τ, τ23 = τ14 =
κ2τ

κ1 + κ3
, τ13 = τ24 = 0,

where τ = ±(κ1 + κ3)/
√
κ2

2 + (κ1 + κ3)2,

(6.5) τ12 = −τ34 = τ, τ23 = −τ14 =
κ2τ

κ1 − κ3
, τ13 = τ24 = 0,

when κ1 6= κ3, where τ = ±(κ1 − κ3)/
√
κ2

2 + (κ1 − κ3)2, or

(6.5’) τ12 = τ34 = τ13 = τ24 = 0, τ23 = −τ14 = ±1,

when κ1 = κ3.

(2) Conversely, for given any positive constants κ1, κ2 and κ3, there exist

holomorphic helices of proper order 4 in M with curvatures κ1, κ2 and

κ3, and with complex torsions defined by (6.4), (6.5) or (6.4), (6.5′).

Remark. The complex torsions of the holomorphic helices in (4) of Proposition
5.2 satisfy

i) (6.4) when cot r − tan r · sin2 θ < 0, and
ii) (6.5) when cot r − tan r · sin2 θ > 0.

We here rewrite Theorem 6.7 in the case where the ambient Kähler manifoldM
is a complex space form Mn(c)(= Cn, CPn(c) or CHn(c)) of constant holomor-
phic sectional curvature c. We denote by Hhd(Mn(c)) the set of all equivalence
classes of all holomorphic helices of order d(5 2n) in Mn(c) with respect to holo-
morphic isometries of Mn(c). By virtue of Theorem A the set Hhd(Mn(c)) can
be naturally regarded as a set of [0,∞)d−1 × [−1, 1]d(d−1)/2 ⊂ R(d+2)(d−1)/2.
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Theorem 6.8. For given positive constants κ1, κ2 and κ3, there exist four equiv-

alence classes of holomorphic helices of proper order 4 with curvatures κ1, κ2 and

κ3 with respect to holomorphic isometries of M2(c). In addition, these four equiv-

alence classes are given by (6.4), (6.5) or (6.4), (6.5′).

Finally we shall investigate the moduli spaces Hhd(Mn(c)) (d = 1, 2, 3). The
moduli space Hh1(Mn(c)) clearly consists of one point. As an immediate conse-
quence of the above discussion we can establish the following.

Theorem 6.9. (1) The moduli space Hh2(Mn(c)) is homeomorphic to a cone in

R2 or a half line according as n = 2 or n = 1. More precisely, Hh2(Mn(c)) is

[0,∞) × [−1, 1]/ ∼ or [0,∞) according as n = 2 or n = 1, where the equivalence

relation ∼ means that (0, τ) ∼ (0, ρ) if τ, ρ ∈ [−1, 1].
(2) The moduli space Hh3(Mn(c)) is connected and

Hh3(Mn(c)) =





{
(κ1, κ2, τ) ∈ [0,∞)× [0,∞)× [−1, 1]

∣∣∣

τ2 5
κ2

1

(κ2

1
+κ2

2
)

}/
∼, n = 3,

(
[0,∞)× {0} × [−1, 1]

∪
{(

κ1, κ2,± κ1√
κ2

1
+κ2

2

) ∣∣∣ κ1 > 0, κ2 > 0

})/
∼, n = 2,

where the equivalence relation ∼ means that (0, κ, τ) ∼ (0, `, ρ) if κ, ` ∈ [0,∞)
and τ, ρ ∈ [−1, 1].

7. Closed helices with self-intersections in CP n.

In this section we give a class of closed helices with self-intersections in a
complex projective plane CP 2 with the aid of the isometric imbedding f in the
case of n = 2 in section 3. Namely we consider the isometric imbedding f : M =
(S1 × S1)/ ∼→ CP 2(4) defined by
(7.1)

f(
[
eiθ, (a1, a2)

]
) = π

(
1

3
(e−

2iθ
3 + 2a1e

iθ
3 ),

√
2

3
(e−

2iθ
3 − a1e

iθ
3 ),

2√
6
ia2e

iθ
3

)
,

where π : S5(1) → CP 2(4) is the Hopf fibration and (a1)
2 + (a2)

2 = 1.

We here study images of circles in M under this isometric parallel imbedding.
As we see in section 3, the imbedding f maps each geodesic of M to a circle of
curvature 1/

√
2 in CP 2(4). This circle does not have self-intersections, but it is

not necessarily closed in CP 2(4). For images of circles on M through f we have
the following.



INTEGRAL CURVES OF KILLING VECTOR FIELDS 83

Proposition 7.1. For a circle γ of curvature κ(> 0) on M , the curve f ◦ γ is a

helix of order 4 in CP 2(4). More precisely, we have the following.

(1) When κ = 1/2, it is a helix of proper order 3 with curvatures

κ1 =
√

3
2 , κ2 =

√
3
2 .

(2) When κ 6= 1/2, it is a helix of proper order 4 with curvatures

κ1 =
√
κ2 + 1

2 , κ2 = 3κ√
2κ2+1

, κ3 = |4κ2−1|√
2(2κ2+1)

.

We now compute the complex torsions of f ◦γ for a circle γ which satisfies the
following equations:

∇XX = κY and ∇XY = −κX, with X = V1 = γ̇.

We can represent the orthonormal pair {X,Y } as

(7.2)

{
X = cosψ · (u, 0) + sinψ · (0, w),

Y = − sinψ · (u, 0) + cosψ · (0, w) (0 5 ψ < 2π)

at each point γ(s), where w ∈ TS1(1) is a unit tangent vector of the second
component, and u is the normalized vector of ∂/∂θ. We here make use of the
representation (7.2). Straightforward computation yields the following.

Proposition 7.2. Let γ be a circle of curvature κ (> 0) in M . Then the complex

torsions τij(s) = 〈Vi(s), JVj(s)〉 (1 5 i < j 5 4) of f ◦ γ are described as follows:

(1) When κ > 1/2, we have

τ12 = τ34 =
1√

2κ2 + 1
cos 3(κs+ ψ0), τ13 = −τ24 = − sin 3(κs+ ψ0),

τ14 = τ23 = −
√

2κ√
2κ2 + 1

cos 3(κs+ ψ0).

(2) When κ = 1/2, we have

τ12 =

√
2

3
cos 3(

1

2
s+ψ0), τ13 = − sin 3(

1

2
s+ψ0), τ23 = − 1√

3
cos 3(

1

2
s+ψ0).

(3) When κ < 1/2, we have

τ12 = −τ34 =
1√

2κ2 + 1
cos 3(κs+ ψ0), τ13 = τ24 = − sin 3(κs+ ψ0),

τ14 = −τ23 =

√
2κ√

2κ2 + 1
cos 3(κs+ ψ0).
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Here, ψ0 is the angle between γ̇(0) and the unit vector u tangent to the first

component of M .

This proposition shows that f ◦ γ is not generated by any Killing vector field
on CP 2(4).

We now consider the universal Riemannian covering p : R
2 → M . Regarding

the Riemannian metric of M , we can choose a fundamental region for N in R2

as F = [0, 2
√

2π/3) × [0,
√

6π/3). Two points (x1, x2) and (y1, y2) on R2 satisfy
p((x1, x2)) = p((y1, y2)) if and only if either

i) x1 − y1 = 2
√

2m1π/3, x2 − y2 = 2
√

6m2π/3 for some m1,m2 ∈ Z, or

ii) x1−y1 =
√

2(2m1+1)π/3, x2−y2 =
√

6(2m2+1)π/3 for somem1,m2 ∈ Z.

Let γ̃ denote a covering circle of γ in R2. Then it is a circle of radius 1/κ in the
sense of Euclidean Geometry. This guarantees that γ is a closed curve of length
2π/κ and moreover that γ has self-intersections in the case of κ 5 3/(

√
2π). We

remark that if γ(s0) = γ(0) for some s0 6= 0, then γ̃(s0) and γ̃(0) satisfy either
the condition i) or ii). Therefore we obtain the following.

Theorem 7.3. Let f : M −→ CP 2(4) denote the imbedding defined by (7.1) and

γ be any circle of curvature κ (> 0) in M . Then we have the following:

(1) The helix f ◦γ is closed of length 2π/κ, and is not generated by any Killing

vector field on CP 2(4).

(2) The helix f ◦ γ has self-intersections if and only if κ 5 3/(
√

2π). The

number of intersection points is greater than 2.
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