
Mem. Fac. Sci. Eng. Shimane Univ.
Series B: Mathematical Science
34 (2001), pp. 21–44

PARTIAL TOPOLOGICAL PRODUCTS IN MAP

David Buhagiar

Communicated by T. Miwa

(Received: December 24, 2000)

Abstract. In this paper we continue with the study of the category MAP of
continuous maps and their morphisms, introduced in [3]. This category is an
extension of both the category TOPY (of continuous maps into a fixed space
Y and their morphisms) and TOP (of topological spaces and continuous maps
as morphisms). Partial products are used to obtain universal type theorems for
T0, Tychonoff and zero-dimensional maps. Finally we introduce zero-dimensional
and strongly zero-dimensional maps and generalize some well known results in the
category TOP concerning zero-dimensional and strongly zero-dimensional spaces
to the category MAP.

1. Introduction

The study of General Topology is usually concerned with the category TOP of
topological spaces as objects, and continuous maps as morphisms. One of the most
important operations on objects in TOP is the Tychonoff product which gives rise
to many interesting results and examples. The Tychonoff product of an arbitrary
number of topological spaces was defined by A.Tychonoff in 1930 [15].

The concepts of space and map are equally important and one can even look
at a space as a map from this space onto a singleton space and in this manner
identify these two concepts. With this in mind, a branch of General Topology
which has become known as General Topology of Continuous Maps, or Fibrewise
General Topology, was initiated. This field of research is concerned most of all in
extending the main notions and results concerning topological spaces to that of
continuous maps. For an arbitrary topological space Y one considers the category
TOPY , the objects of which are continuous maps into the space Y , and for the
objects f : X → Y and g : Z → Y , a morphism from f into g is a continuous
map λ : X → Z with the property f = g ◦ λ. This situation is a generalization
of the category TOP, since the category TOP is isomorphic to the particular case
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of TOPY in which the space Y is a singleton space. As is the case in TOP, one of
the most important operations on objects in the category TOPY is the fibrewise
product of maps defined by B.A.Pasynkov [10, 11, 12].

As mentioned above, the Tychonoff product gives rise to many interesting results.
In particular, results concerning universal spaces. Recall that a space X is said
to be universal for all spaces having a topological property P if the space X has
property P and every space having property P is homeomorphically embeddable
in X. Universal spaces are very useful since they reduce the study of a class of
spaces having some topological property P to the study of subspaces of a fixed
space. We will be interested in the following three results obtained respectively by
A.Tychonoff [15], P.S.Alexandroff [1] and N.Vedenissoff [16].

Theorem 1.1. The Tychonoff cube I
�

is universal for all Tychonoff spaces of
weight m > ℵ0.

Theorem 1.2. The Alexandroff cube F
�

is universal for all T0-spaces of weight
m > ℵ0.

Theorem 1.3. The Cantor cube D
�

is universal for all zero-dimensional spaces
of weight m > ℵ0.

Completely regular and Tychonoff maps were defined by B.A.Pasynkov in 1984.
These definitions made it possible to generalize and obtain an analogue to Theorem
1.1 in the category TOPY [12].

Theorem 1.4. A Tychonoff map f : X → Y has weight W(f) 6 m (m > ℵ0) if
and only if, the map f is homeomorphically embeddable into the projection p of a
partial topological product P = P (Y, {Zα}, {Oα} : α ∈ A), where Zα = I for every
α ∈ A and |A| 6 m.

The following result was also given as a corollary to Theorem 1.4 in [12].

Corollary 1.5. A continuous map is Tychonoff if and only if it is homeomorphi-
cally embeddable into the projection of a partial topological product, all the fibres of
which are segments.

B.A.Pasynkov also generalized and obtained an analogue to the result in TOP of
the existence of a compactification for a Tychonoff space having the same weight
and also constructed a maximal Tychonoff compactification for a Tychonoff map
(i.e. an analogue to the Stone-Čech compactification) [12].

In [3], a category of maps MAP in which one does not restrain oneself with a
fixed base space Y was introduced. The aim of this paper is to generalize and
obtain an analogue to Theorems 1.1, 1.2 and 1.3 in the category MAP. For more
details and undefined terms on the General Topology of Continuous Maps one can
consult [2, 3, 4, 5, 7, 8, 9, 12, 13].

2. Preliminary notions on the category MAP

The objects of MAP are continuous maps from any topological space into any
topological space. For two objects f1 : X1 → Y1 and f2 : X2 → Y2, a morphism
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from f1 into f2 is a pair of continuous maps {λT , λB}, where λT : X1 → X2 and
λB : Y1 → Y2, such that the diagram

X1
λT−−−→ X2

f1





y





y

f2

Y1 −−−→
λB

Y2

is commutative. It is not difficult to see that this definition of a morphism in
MAP satisfies the necessary axioms that morphisms should satisfy in any category
(see, for example, [14]).

Let PT and PB be two topological/set theoretic properties of maps (for example:
closed, open, 1-1, onto, etc.). If λT has property PT and λB has property PB then
we say that {λT , λB} is a {PT ,PB}-morphism. If PT is the continuous property,
then we say that {λT , λB} is a {∗,PB}-morphism, similarly for PB. Therefore, a
{∗, ∗}-morphism is just a morphism. Also, if PT = PB = P then a {PT ,PB}-
morphism is called a P-morphism.

As noted in the introduction, separation axioms for maps have already been
defined in the category TOPY and since these axioms involve only one map, they
have also been defined for the category MAP. We only give the definitions of
functionally Hausdorff and Tychonoff maps, for the other separation axioms one
can consult for example [12, 13, 2, 4, 5, 3].

Definition 2.1. The subsets A and B of the space X are said to be functionally
separated in U ⊂ X, if the sets A ∩ U and B ∩ U are functionally separated in U
(that is, there exists a continuous function φ : U → [0, 1] such that A∩U ⊂ φ−1(0)
and B ∩ U ⊂ φ−1(1)).

Definition 2.2. A continuous map f : X → Y is said to be functionally Hausdorff
or T2 1

2

, if for every two distinct points x and x′ in X lying in the same fibre, there

exists a neighborhood O of the point f(x), such that the sets {x} and {x′} are
functionally separated in f−1O.

Definition 2.3. A continuous map f : X → Y is said to be completely regular,
if for every point x ∈ X and every closed set F in X, not containing the point x,
there exists a neighborhood O of the point f(x), such that the sets {x} and F are
functionally separated in f−1O.

Definition 2.4. A completely regular T0-map is called a Tychonoff (or T3 1

2

-) map,

where a map f : X → Y is said to be a T0-map if for every two distinct points
x, x′ ∈ X lying in the same fibre, at least one of the points x, x′ has a neighborhood
in X which does not contain the other point.

It can be easily verified that every Tychonoff map is functionally Hausdorff.
We now give the definition of a submap as an analogue of subspace. Since we

do not restrict ourselves to a fixed base space Y our definition slightly differs from
that given in the category TOPY [12]. This definition was introduced in [3].
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Definition 2.5. The map g : A → B is said to be a (closed, open, everywhere
dense, etc.) submap of the map f : X → Y , if g is the restriction of the map
f on the (closed, open, everywhere dense, etc.) subset A of the space X and
g(A) = f(A) ⊂ B ⊂ Y .

The following result is known [3].

Proposition 2.1. Any submap of a Ti-map is a Ti-map for i 6 3 1
2
. Prenormality,

functional prenormality, normality, functional normality, collectionwise prenormal-
ity and collectionwise normality are hereditary with respect to closed submaps.

The proof of the following proposition for the case B = Y can be found in [13].
For the situation given below the proof is analogous and so is omitted. Remember
that in TOPY (and also in MAP), by a compact map we mean a perfect map,
namely, a closed map with compact fibres. It is evident that a closed submap of a
compact map is compact.

Proposition 2.2. Let the compact map g : A → B be a submap of a T2-map
f : X → Y and let B be a closed subset of Y , the g is a closed submap of f .

Finally, we give the definitions of base and weight for a continuous map, both
given by B.A.Pasynkov [10, 12].

Definition 2.6. Let f : X → Y be a map of topological spaces. A set U ⊂ X
is said to be f -functionally open, if there exists an open subset O of Y such that
U ⊂ f−1O and U is functionally open in f−1O.

Definition 2.7. Let f : X → Y be a map of topological spaces. A collection Bf

of open (resp. f -functionally open, functionally open) subsets of X is called a base
(resp. f -functionally open base, functionally open base), for the map f if for every
point x ∈ X and every neighborhood Ux of x in X there exists a neighborhood Oy

of the point y = f(x) in Y and an element V ∈ Bf such that x ∈ f−1Oy ∩V ⊂ Ux.

Definition 2.8. A collection Sf of open (resp. f -functionally open, functionally
open) subsets of X is called a subbase (resp. f -functionally open subbase, function-
ally open subbase), for the map f if the intersection of finite subcollections of the
collection Sf constitute a base for the map f .

Definition 2.9. The minimal cardinal number of the form |Bf |, where Bf is a
base (resp. f -functionally open base, functionally open base) for the map f (if such
bases exist), is called the weight (resp. f -functional weight, functional weight) of
the continuous map f and is denoted by w(f) (resp. W(f),W′(f)).

A proof for the following two propostions can be found in [13].

Proposition 2.3. For a continuous map f : X → Y the following hold:

1. If the respective bases are defined, then

w(f) 6 W(f) and W(f) 6 W
′(f);
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2. If g : A → B is a submap of the map f , then every (resp. every functionally
open, every f -functionally open) base of f induces a base (resp. a functionally
open base, a g-functionally open base) of g and

w(g) 6 w(f), W(g) 6 W(f) and W
′(g) 6 W

′(f),

when the respective bases are defined.

Proposition 2.4. The map f : X → Y is completely regular if and only if there
exists an f -functionally open base of f .

The above proposition shows in particular that for a Tychonoff map f , the weight
W(f) is defined.

3. Elementary partial topological products

Elementary partial topological products were defined by B.A.Pasynkov in 1964
[10, 11]. By taking fan products of elementary partial topological products, which
are called partial topological products, he proved Theorem 1.4, the analogue of The-
orem 1.1 in the category TOPY . In this section we give the definition of elementary
partial topological products, as given by B.A.Pasynkov, and in the following sec-
tions we go on to define partial topological products for both the Tychonoff product
of maps and fan product relative to an inverse system, the two types of products in
the category MAP introduced in [3]. In the following sections, using the same ap-
proach of B.A.Pasynkov in proving Theorem 1.4, we use these definitions to obtain
analogues of Theorems 1.1, 1.2 and 1.3 (and so also Theorem 1.4) in the category
MAP.

Definition 3.1. Let Y and Z be topological spaces and let O be an open subset
of Y . Consider the disjoint union D of the sets Y \O and O×Z and define a map
p : D → Y by letting p(y) = y if y ∈ Y \O and p(y, z) = y if (y, z) ∈ O×Z. Let ΩY

and ΩO×Z be the topologies of Y and O × Z respectively. The elementary partial
topological product (≡ EPTP) with base space Y , fibre Z and open set O is the set
D endowed with the topology generated by the base p−1ΩY ∪ΩO×Z and is denoted
by P (Y, Z,O). The continuous map p : P (Y, Z,O) → Y is called the projection of
the EPTP P (Y, Z,O). The projection q of the product O × Z ⊂ P (Y, Z,O) onto
the factor Z is called the side projection of the EPTP P (Y, Z,O).

Thus, the EPTP P (Y, Z,O) induces on O × Z the topology of the topological
product O×Z, and on Y \O, the subspace topology as a subspace of Y . Also, the
projection p is continuous, open and its restriction on Y \ O is a homeomorphic
embedding. The following result can be found in [13].

Proposition 3.1. The projection p : P → Y of the EPTP P = P (Y, Z,O) satisfies
the inequality w(p) 6 w(Z) + 1. If the fibre Z is a Ti-space, then the projection
p is a Ti-map, for i 6 3. If the fibre Z is completely regular, then the projection
p is completely regular and W(p) = w(Z) + 1. If moreover, the set O ⊂ Y is
functionally open, then the weight W

′(p) is defined and W
′(p) = W(p).

The following definition will be of importance later.
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Definition 3.2. Let there be given an EPTP P = P (Y, Z,O), topological spaces
X and B, and continuous maps f : X → B, λB : B → Y and g : f−1(λB)−1O → Z.
The map 4(f, g;λB) : X → P , mapping a point x ∈ X\f−1(λB)−1O onto the point
λB◦f(x) ∈ Y \O ⊂ P and a point x ∈ f−1(λB)−1O onto the point (λB◦f(x), g(x)) ∈
O × Z ⊂ P , will be called the diagonal product of the maps f and g over the map
λB. If B = Y and λB = idY then 4(f, g;λB) ≡ 4(f, g; idY ) ≡ 4(f, g) and is
called simply the diagonal product of the maps f and g.

It is not difficult to see that the map 4(f, g;λB) is a continuous map and that
the projection p : P (Y, Z,O) → Y and side projection q : O×Z ⊂ P (Y, Z,O) → Z
satisfy the following relations:

p ◦ 4(f, g;λB) = λB ◦ f ;

q ◦ 4(f, g;λB)|f−1(λB)−1O = g.

A proof of the following result can be found in [13].

Proposition 3.2. If P = P (Y, Z,O) is an EPTP, p : P → Y is its projection and
pr : Y × Z → Y is the projection of the topological product Y × Z onto the factor
Y , then there exists a continuous onto map ψ : Y × Z → P such that pr = p ◦ ψ.

As a corollary to the above proposition we have:

Corollary 3.3. The projection p : P → Y of an EPTP P = P (Y, Z,O) with
compact fibre Z is compact.

Proof. Since the space Z is compact, it follows that the map pr : Y × Z → Y is
compact. Since the map ψ : Y ×Z → P is onto, the result follows from the relation
pr = p ◦ ψ.

4. Tychonoff products

Tychonoff products of maps is taken to be the Tychonoff product of objects in
the category MAP [3]. We recall the definition.

Definition 4.1. Let {fα : α ∈ A} be a collection of continuous maps, where
fα : Xα → Yα. The Tychonoff product of the maps {fα : α ∈ A}, which is
denoted by

∏

{fα : α ∈ A}, is the continuous map which assigns to the point
x = {xα} ∈

∏

{Xα : α ∈ A} the point {fα(xα)} ∈
∏

{Yα : α ∈ A}.

If prαT :
∏

{Xα : α ∈ A} → Xα and prαB :
∏

{Yα : α ∈ A} → Yα are the
projections, then the diagram

∏

{Xα : α ∈ A}
prα

T−−−→ Xα

�
{fα:α∈A}





y





y

fα

∏

{Yα : α ∈ A} −−−→
prα

B

Yα

is commutative. Therefore, the pair {prαT , pr
α
B} is a {onto, onto}-morphism of

∏

{fα : α ∈ A} into fα.
The following two results were proved in [3].
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Proposition 4.1. Let f =
∏

{fα : α ∈ A} : X =
∏

{Xα : α ∈ A} → Y =
∏

{Yα :
α ∈ A} be the Tychonoff product of the maps fα : Xα → Yα. If Bfα

is a base for
the map fα for every α ∈ A, then the collection Sf =

⋃

{(prαT )−1Bfα
: α ∈ A} is a

subbase for the map f and the weight w(f) 6 max {|A|, sup{w(fα) : α ∈ A},ℵ0}.

Remark 4.1. It is not difficult to show that in the above context, if the map fα is
completely regular for every α ∈ A, then W(f) 6 max {|A|, sup{W(fα) : α ∈ A},ℵ0}.

Proposition 4.2. The Tychonoff product
∏

{fα : α ∈ A} of Ti-maps fα is a
Ti-map for i 6 3 1

2
.

Let there be given a continuous map f : X → Y , a collection of continuous maps
fα : Xα → Yα, α ∈ A, and a collection of morphisms {λTα , λ

B
α } : f → fα, α ∈ A.

Consider the standard diagonal products 4λTα ≡ 4{λTα : α ∈ A} : X →
∏

{Xα :
α ∈ A} and 4λBα ≡ 4{λBα : α ∈ A} : Y →

∏

{Yα : α ∈ A}. It is not difficult
to see that {4λTα ,4λ

B
α } is a morphism of the map f into the Tychonoff product

∏

fα ≡
∏

{fα : α ∈ A}. We therefore have
∏

fα ◦ 4λ
T
α = 4λBα ◦ f.

Proposition 4.3. If under the above conditions we have:

1. the collection {λBα : α ∈ A} separates points and for every point y ∈ Y and
every two distinct points x and x′ in the fibre f−1y there exists some α ∈ A,
such that λTα(x) 6= λTα(x′), and

2. for every closed set F in X and every point x ∈ X \ F , there exists some
α ∈ A and an open set U in Xα such that x ∈ (λTα)−1U ⊂ (X \ F ),

then the morphism {4λTα ,4λ
B
α } is a {homeomorphic embedding, 1-1}-morphism of

f into the Tychonoff product
∏

fα.

Proof. Take any two distinct points x and x′ in X. If f(x) 6= f(x′), then by
condition (1), there exists some α ∈ A such that λBα ◦f(x) 6= λBα ◦f(x′). Therefore,
from the relation λBα ◦ f = fα ◦ λTα we get that λTα(x) 6= λTα(x′). If f(x) = f(x′),
then again by condition (1), there exists some α ∈ A such that λTα(x) 6= λTα(x′). In
both cases we have the inequality 4λTα(x) 6= 4λTα(x′). We have thus shown that
the continuous map 4λTα is 1-1. That 4λBα is a 1-1 map follows from the fact that
the collection {λBα : α ∈ A} separates points.

We now show that the corestriction of 4λTα onto its image, that is 4λTα as a map
fromX onto 4λTα(X), is an open map. Take any open set V in X. By condition (2),
for every x ∈ V there exists some α(x) ∈ A and an open set U(x) inXα(x), such that

x ∈ (λTα(x))
−1U(x) ⊂ V . From this follows that x ∈ (4λTα)−1(pr

α(x)
T )−1U(x) ⊂ V .

The set U =
⋃

{(pr
α(x)
T )−1U(x) : x ∈ V } is open in

∏

Xα and V = (4λTα)−1U .
Hence 4λTα(V ) = U ∩ 4λTα(X) and so the map 4λTα : X →

∏

Xα is open, from
which we conclude that 4λTα is a homeomorphic embedding.

We now introduce and define Tychonoff partial topological products.

Definition 4.2. . Let Pα = P (Yα, Zα, Oα) be an EPTP with base space Yα, fibre
Zα and open set Oα for every α in some indexing set A and let pα : Pα → Yα be the
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corresponding projection of the EPTP Pα. The Tychonoff product
∏

Pα ≡
∏

{Pα :
α ∈ A} is called the Tychonoff partial topological product (≡ TPTP) of the EPTPs
Pα, α ∈ A. The Tychonoff product

∏

pα ≡
∏

{pα : α ∈ A} of the projections pα is
called the projection of the TPTP

∏

Pα onto its base. The projection of the TPTP
∏

Pα onto the EPTP Pα is denoted by prα.

We now formulate our main theorem of this section, an analogue of Theorem 1.1
in the category MAP with respect to Tychonoff products. Below, by I we denote
the unit interval [0, 1] ⊂ R.

Theorem 4.4. For a Tychonoff map f : X → Y the following are equivalent:

1. The map f has weight W(f) 6 m (m > ℵ0);
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y, I, Oα) and
|A| 6 m;

3. There exists a homeomorphic embedding-morphism of the map f into the pro-
jection of a TPTP

∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, I, Oα) and
|A| 6 m.

We can write down the following corollaries to the above theorem. Since a T2 1

2

compact map is Tychonoff, we have:

Corollary 4.5. For a T2 1

2

compact map f : X → Y into a Hausdorff space Y the

following are equivalent:

1. The map f has weight W(f) 6 m (m > ℵ0);
2. There exists a {closed homeomorphic embedding,homeomorphic embedding}-

morphism of the map f into the projection of a TPTP
∏

{Pα : α ∈ A}, where
the EPTP Pα = P (Y, I, Oα) and |A| 6 m;

3. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a TPTP

∏

{Pα : α ∈ A}, where
the EPTP Pα = P (Yα, I, Oα) and |A| 6 m.

Corollary 4.6. For a continuous map f : X → Y the following are equivalent:

1. The map f is Tychonoff;
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y, I, Oα);
3. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, I, Oα).

Corollary 4.7. For a continuous map f : X → Y into a Hausdorff space Y the
following are equivalent:

1. The map f is T2 1

2

and compact;

2. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a TPTP

∏

{Pα : α ∈ A}, where
the EPTP Pα = P (Y, I, Oα);

3. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a TPTP

∏

{Pα : α ∈ A}, where
the EPTP Pα = P (Yα, I, Oα).
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We now give some results to help us prove the above theorem and corollaries.
Let

∏

Pα ≡
∏

{Pα : α ∈ A} be the TPTP of the EPTPs Pα = P (Yα, Zα, Oα) and
let there be given topological spaces X and Y , and continuous maps f : X → Y ,
λBα : Y → Yα and gα : f−1(λBα )−1Oα → Zα for every α ∈ A. Then, the diagonal
product of the maps f and gα over the map λBα , 4α ≡ 4(f, gα;λ

B
α ) : X → Pα, is

defined and we have that {4α, λ
B
α } : f → pα, where pα : Pα → Yα is the projection

of the EPTP Pα. Therefore, by taking the standard diagonal products, we get
a morphism {4(4α),4λ

B
α } of the map f into the projection

∏

pα of the TPTP
∏

Pα, and so
∏

pα ◦ 4(4α) = 4λBα ◦ f.

Proposition 4.8. If under the above conditions we have:

1. the collection {λBα : α ∈ A} separates points and for every point y ∈ Y and
every two distinct points x and x′ in the fibre f−1y there exists some α ∈ A,
such that y ∈ (λBα )−1Oα and gα(x) 6= gα(x

′), and
2. the collection Bf =

⋃

{{g−1
α W : W open in Zα} : α ∈ A} is a base for the

map f and µBα ≡ λBα |(λB
α )−1Oα

: (λBα )−1Oα → Oα ∩ λ
B
α (Y ) is an open map,

then the morphism {4(4α),4λ
B
α} is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection
∏

pα of the
TPTP

∏

Pα.

Proof. If two distinct points x and x′ in the fibre f−1y, and some index α ∈ A
satisfy gαx 6= gαx

′, then we have 4αx 6= 4αx
′.

Now let F be a closed subset of X and let x ∈ X \ F . By the hypothesis,
there exists an index α ∈ A, an open set W in Zα and an open set O in Y , such
that x ∈ f−1O ∩ g−1

α W ⊂ X \ F . Let H = µBα
(

O ∩ (λBα )−1Oα

)

and let Ĥ be an

open subset of Yα satisfying H = Ĥ ∩ λBα (Y ). We then have x ∈ f−1O ∩ g−1
α W =

(4α)
−1
(

(Ĥ ∩ Oα) ×W
)

⊂ X \ F and the set (Ĥ ∩ Oα) ×W is open in Pα.

The result now follows from Proposition 4.3.

Corollary 4.9. If under the above conditions we have:

1. the collection {λBα : α ∈ A} separates points and the map f is a T0-map, and
2. the collection Bf =

⋃

{{g−1
α W : W open in Zα} : α ∈ A} is a base for the

map f and µBα ≡ λBα |(λB
α )−1Oα

: (λBα )−1Oα → Oα ∩ λ
B
α (Y ) is an open map,

then the morphism {4(4α),4λ
B
α} is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection
∏

pα of the
TPTP

∏

Pα.

Proof. Take any point y ∈ Y and any two distinct points x and x′ in the fibre f−1y.
Since f is a T0-map, one can assume without loss of generality, that the point x has
a neighborhood U satisfying x′ /∈ U . Thus, by property 2., there exists some α ∈ A,
an open subset W of Zα and an open subset O of Y satisfying x ∈ f−1O ∩ W .
Therefore, we can conclude that gα(x) ∈ W , while gα(x

′) /∈ W , since x ∈ f−1y∩W .
Hence, property 1. of Proposition 4.8 is satisfied.

Corollary 4.10. If under the above conditions we have:
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1. the space Y is a T0-space and the map f is a T0-map, and
2. the collection Bf =

⋃

{{g−1
α W : W open in Zα} : α ∈ A} is a base for the

map f and µBα ≡ λBα |(λB
α )−1Oα

: (λBα )−1Oα → Oα ∩ λ
B
α (Y ) is an open map,

then the morphism {4(4α),4λ
B
α} is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection
∏

pα of the
TPTP

∏

Pα.

Proof. Take any two distinct points y and y′ in the T0-space Y . Without loss of
generality, one can assume that the point y has a neighborhood O satisfying y ′ /∈ O.
There exists some α ∈ A such that y ∈ (λBα )−1Oα. Then, by property 2., it is not
difficult to see that µBα (y) 6= µBα (y′). The result now follows from Corollary 4.9.

Finally we need the following results for the case of compact fibres.

Proposition 4.11. Let
∏

Pα ≡
∏

{Pα : α ∈ A} be the TPTP of the EPTPs
Pα = P (Yα, Zα, Oα), where the fibres Zα are compact for every α ∈ A. Then, the
projection

∏

pα ≡
∏

{pα : α ∈ A} of the TPTP
∏

Pα onto its base is a compact
map.

Proof. By Corollary 3.3 we have that the projections pα : Pα → Yα are compact.
Therefore, we can conclude that the projection

∏

pα is also compact, as a Tychonoff
product of compact maps (see [6, 3]).

Corollary 4.12. Let
∏

Pα be the TPTP of the EPTPs Pα = P (Yα, Zα, Oα), where
the fibres Zα are compact and metrizable for every α ∈ A. Then, the projection
∏

pα of the TPTP
∏

Pα onto its base is a compact Tychonoff map with weight
W(
∏

pα) 6 max(|A|,ℵ0).

Proof. The fact that the map
∏

pα is compact follows from Proposition 4.11 and
the fact that it is Tychonoff, together with the inequality for the weight W(

∏

pα),
follows from Propositions 3.1 and 4.2 and Remark 4.1.

Proof of Theorem 4.4. We begin by showing that (1) implies (2). Let f : X → Y
be a Tychonoff map with weight W(f) 6 m, where m > ℵ0. Let Bf = {Uα :
α ∈ A} be an f -functionally open base for the map f with |A| 6 m. For every
α ∈ A, take an open subset Oα of Y and a continuous map gα : f−1Oα → I
satisfying Uα = g−1

α (]0, 1]). Let Pα = P (Y, I, Oα) be an EPTP for every α ∈ A
and let id : Y → Y be the identity map. By Corollary 4.9 we can conclude
that the morphism {4(4α),4idα}, where 4α = 4(f, gα; id) and idα = id, is a
homeomorphic embedding-morphism of f into the projection

∏

pα of the TPTP
∏

Pα.
That (3) follows from (2) is evident. We are left to show that (3) implies (1). If

there exists a homeomorphic embedding-morphism of the map f into the projection
∏

pα of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, I, Oα) and |A| 6 m,
then by Proposition 2.3 and Corollary 4.12 we have

W(f) 6 W(
∏

pα) 6 |A| 6 m.
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Proof of Corollary 4.5. We only need to show that (1) implies (2). Since the space
Y is Hausdorff, the diagonal 4idα(Y ), where idα ≡ id : Y → Y , is a closed subset of
the Tychonoff product Y |A|. Therefore, the result follows from Proposition 2.2.

Proof of Corollary 4.6. We only need to show that (3) implies (1) and this follows
from Corollary 4.12 and Proposition 2.1.

Proof of Corollary 4.7. The fact that (1) implies (2) follows from Corollary 4.5.
That (2) implies (3) is evident and the proof that (3) implies (1) follows from
Corollary 4.12 and the fact, as was already noted, that a closed submap of a
compact map is compact.

We end this section by a universal type theorem for T0-maps in MAP, an ana-
logue to Theorem 1.2 in TOP. Below, by the space F we denote the two point set
{0, 1} with the topology consisting of the empty set, the set {0} and the whole
space. Clearly, the space F is T0.

Theorem 4.13. For a T0-map f : X → Y the following are equivalent:

1. The map f has weight w(f) 6 m (m > ℵ0);
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y, F, Y ) and
|A| 6 m;

3. There exists a homeomorphic embedding-morphism of the map f into the pro-
jection of a TPTP

∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, F, Oα) and
|A| 6 m.

Proof. We begin by showing that (1) implies (2). Let f : X → Y be a T0-map
with weight w(f) 6 m, where m > ℵ0. Let Bf = {Uα : α ∈ A} be a base for
the map f with |A| 6 m. For every α ∈ A, take a continuous map gα : X → F
satisfying Uα = g−1

α {0}. Let Pα = P (Y, F, Y ) be an EPTP for every α ∈ A
and let id : Y → Y be the identity map. By Corollary 4.9 we can conclude
that the morphism {4(4α),4idα}, where 4α = 4(f, gα; id) and idα = id, is a
homeomorphic embedding-morphism of f into the projection

∏

pα of the TPTP
∏

Pα.
That (3) follows from (2) is evident. We are left to show that (3) implies (1). If

there exists a homeomorphic embedding-morphism of the map f into the projection
of a TPTP

∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, F, Oα) and |A| 6 m,
then by Propositions 2.3 and 3.1 we have

w(f) 6 w(
∏

pα) 6 |A| 6 m.

Corollary 4.14. For a continuous map f : X → Y the following are equivalent:

1. The map f is T0;
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y, F, Y );
3. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, F, Oα).
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5. Fan products

We recall the definition of fan product with respect to a collection of maps and
an inverse system, introduced in [3]. For undefined terms with respect to inverse
systems one can consult [6].

Suppose we are given a collection of maps fσ : Xσ → Yσ for every σ ∈ Σ, where
the indexing set Σ is directed by the relation 6. We further suppose that we are
given an inverse system {Yσ, λ

σ
ρ ,Σ}. We denote by P , the subspace of the Tychonoff

product
∏

{Xσ : σ ∈ Σ} given by
{

{xσ} : λσρ(fσxσ) = fρxρ for every σ, ρ ∈ Σ satisfying ρ 6 σ
}

.

We call this space, the fan product of the spaces Xσ with respect to the maps fσ
and the inverse system {Yσ, λ

σ
ρ ,Σ}. The space P is denoted by

∏
{

Xσ, fσ, {Yσ, λ
σ
ρ ,Σ}

}

.
For every σ ∈ Σ, the restriction of the projection prσ :

∏

{Xσ : σ ∈ Σ} → Xσ

on the subspace P will be denoted by πσ and is called the projection of the fan
product P to Xσ. From the definition of fan product we have λσρ ◦ fσ ◦ πσ = fρ ◦ πρ
for every σ, ρ ∈ Σ satisfying ρ 6 σ. In this way one can define a map p : P →
lim
←

{Yσ, λ
σ
ρ ,Σ}, called the projection of the fan product P to the limit of the inverse

system {Yσ, λ
σ
ρ ,Σ}, by

p =
∏

{fσ ◦ πσ : σ ∈ Σ}.

It is evident that the projections p and πσ, σ ∈ Σ are continuous maps. The
projection p is called the fibrewise product of the maps fσ with respect to the inverse
system {Yσ, λ

σ
ρ ,Σ} and is denoted by

∏
{

fσ, {Yσ, λ
σ
ρ ,Σ}

}

. It is not difficult to see
that for every point y = {yσ} ∈ lim

←
{Yσ, λ

σ
ρ ,Σ}, the preimage p−1y is homeomorphic

to the Tychonoff product of the fibres f−1
σ yσ, that is

∏

{f−1
σ yσ : σ ∈ Σ}.

The folowing two results were proved in [3].

Proposition 5.1. Let p : P → lim
←

{Yσ, λ
σ
ρ ,Σ} be the fibrewise product of the maps

fσ with respect to the inverse system {Yσ, λ
σ
ρ ,Σ}. If Bfσ

is a base for the map fσ
for every σ ∈ Σ, then the collection Sp =

⋃

{π−1
σ Bfσ

: σ ∈ Σ} is a subbase for the
map p and the weight w(p) 6 max {|Σ|, sup{w(fσ) : σ ∈ Σ},ℵ0}.

Remark 5.1. It is not difficult to show that in the above context, if the map fσ is
completely regular for every σ ∈ Σ, then W(p) 6 max {|Σ|, sup{W(fα) : σ ∈ Σ},ℵ0}.

Proposition 5.2. The fibrewise product p =
∏
{

fσ, {Yσ, λ
σ
ρ ,Σ}

}

of Ti-maps fσ
with respect to the inverse system {Yσ, λ

σ
ρ ,Σ} is a Ti-map for i 6 3 1

2
.

Let there be given a continuous map f : X → Y , a collection of continuous
maps fσ : Xσ → Yσ, σ ∈ Σ, where Σ is a non-empty directed set, an inverse
system {Yσ, λ

σ
ρ ,Σ} and a collection of morphisms {µTσ , µ

B
σ } : f → fσ, σ ∈ Σ, where

λσρ ◦ µ
B
σ = µBρ for any ρ, σ ∈ Σ satisfying ρ 6 σ. It is not difficult to see that under

the above conditions, the standard diagonal product 4µTσ ≡ 4{µTσ : σ ∈ Σ} : X →
∏

{Xσ : σ ∈ Σ} has its image in P =
∏
{

Xσ, fσ, {Yσ, λ
σ
ρ ,Σ}

}

and the standard

diagonal product 4µBσ ≡ 4{µBσ : σ ∈ Σ} : Y →
∏

{Yσ : σ ∈ Σ} has its image



PARTIAL TOPOLOGICAL PRODUCTS IN
�����

33

in lim
←

{Yσ, λ
σ
ρ ,Σ}. One can also see that the diagonal product {4µTα ,4µ

B
α } is a

morphism of the map f into the projection p : P → lim
←

{Yσ, λ
σ
ρ ,Σ}. We therefore

have
p ◦ 4µTσ = 4µBσ ◦ f.

As a corollary to Proposition 4.3 we have the following result.

Corollary 5.3. If under the above conditions we have:

1. the collection {µBσ : σ ∈ Σ} separates points and for every point y ∈ Y and
every two distinct points x and x′ in the fibre f−1y there exists some σ ∈ Σ,
such that µTσ (x) 6= µTσ (x′), and

2. for every closed set F in X and every point x ∈ X \ F , there exists some
σ ∈ Σ and an open set U in Xσ such that x ∈ (µTσ )−1U ⊂ (X \ F ),

then the morphism {4µTσ ,4µ
B
σ } is a {homeomorphic embedding, 1-1}-morphism of

f into the projection p.

We now introduce and define Fan partial topological products.

Definition 5.1. . Let Pσ = P (Yσ, Zσ, Oσ) be an EPTP with base space Yσ, fibre
Zσ and open set Oσ for every σ in some directed set Σ and let pσ : Pσ → Yσ be
the corresponding projection of the EPTP Pσ. Also, let there be given an inverse
system {Yσ, λ

σ
ρ ,Σ}. The fan product P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

is called the Fan
partial topological product (≡ FPTP) of the EPTPs Pσ, σ ∈ Σ, with respect to the
inverse system {Yσ, λ

σ
ρ ,Σ}. The fibrewise product p =

∏
{

pσ, {Yσ, λ
σ
ρ ,Σ}

}

of the
projections pσ with respect to the inverse system {Yσ, λ

σ
ρ ,Σ} is called the projection

of the FPTP P onto its base. The projection of the FPTP P onto the EPTP Pσ
is denoted by πσ.

We now formulate our main theorem of this section, an analogue of Theorem 1.1
in the category MAP with respect to Fan products. Remember that in the above
context, if Y0 is a topological space and Yσ = Y0 for every σ ∈ Σ, and we further
have the binding maps λσρ = idY0

for every σ, ρ ∈ Σ satisfying ρ 6 σ, then the
inverse system S(Y0,Σ) = {Yσ, λ

σ
ρ ,Σ} is called the constant inverse system of the

space Y0 on the set Σ and we have that the limit lim
←

{Yσ, λ
σ
ρ ,Σ} is homeomorphic

to Y0.

Theorem 5.4. For a Tychonoff map f : X → Y the following are equivalent:

1. The map f has weight W(f) 6 m (m > ℵ0);
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a FPTP P =
∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y, I, Oσ)
and |Σ| 6 m;

3. There exists a homeomorphic embedding-morphism of the map f into the
projection of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, I, Oσ) and |Σ| 6 m.

We can write down the following corollaries to the above theorem. Since a T2 1

2

compact map is Tychonoff, we have:



34 DAVID BUHAGIAR

Corollary 5.5. For a T2 1

2

compact map f : X → Y the following are equivalent:

1. The map f has weight W(f) 6 m (m > ℵ0);
2. There exists a {closed homeomorphic embedding,homeomorphic embedding}-

morphism of the map f into the projection of a FPTP P =
∏

{Pσ, pσ,S(Y,Σ)},
where the EPTP Pσ = P (Y, I, Oσ) and |Σ| 6 m;

3. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

,
where the EPTP Pσ = P (Yσ, I, Oσ) and |Σ| 6 m.

Corollary 5.6. For a continuous map f : X → Y the following are equivalent:

1. The map f is Tychonoff;
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a FPTP P =
∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y, I, Oσ);
3. There exists a homeomorphic embedding-morphism of the map f into the

projection of a FPTP P =
∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, I, Oσ).

Corollary 5.7. For a continuous map f : X → Y the following are equivalent:

1. The map f is T2 1

2

and compact;

2. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a FPTP P =

∏

{Pσ, pσ,S(Y0,Σ)},
where the EPTP Pσ = P (Y, I, Oσ);

3. There exists a {closed homeomorphic embedding,homeomorphic embedding}-
morphism of the map f into the projection of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

,
where the EPTP Pσ = P (Yσ, I, Oσ).

Remark 5.2. One can note that contrary to Corollaries 4.5 and 4.7, in Corollaries
5.5 and 5.7 the Hausdorffness of the space Y is not necessary to ensure closeness
of the top homeomorphic embedding.

We now give some results to help us prove the above theorem and corollaries.
Let P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

be the FPTP of the EPTPs Pσ, σ ∈ Σ, with
respect to the inverse system {Yσ, λ

σ
ρ ,Σ} and let there be given topological spaces

X and Y , and continuous maps f : X → Y , µBσ : Y → Yσ with λσρ ◦ µ
B
σ = µBρ for

any ρ, σ ∈ Σ satisfying ρ 6 σ, and gσ : f−1(µBσ )−1Oσ → Zσ for every σ ∈ Σ. Then,
the diagonal product of the maps f and gσ over the map µBσ , 4σ ≡ 4(f, gσ;µ

B
σ ) :

X → Pσ, is defined and we have that {4σ, µ
B
σ } : f → pσ, where pσ : Pσ → Yσ

is the projection of the EPTP Pσ. It is not difficult to see that by taking the
standard diagonal products, we get a morphism {4(4σ),4µ

B
σ } of the map f into

the projection p of the FPTP P , and so

p ◦ 4(4σ) = 4µBσ ◦ f.

As corollaries to Proposition 4.8 and Corollaries 4.9 and 4.10 we have the fol-
lowing results.

Corollary 5.8. If under the above conditions we have:
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1. the collection {µBσ : σ ∈ Σ} separates points and for every point y ∈ Y and
every two distinct points x and x′ in the fibre f−1y there exists some σ ∈ Σ,
such that y ∈ (µBσ )−1Oσ and gσ(x) 6= gσ(x

′), and
2. the collection Bf =

⋃

{{g−1
σ W : W open in Zσ} : σ ∈ Σ} is a base for the

map f and ηBσ ≡ µBσ |(µB
σ )−1Oσ

: (µBσ )−1Oσ → Oσ ∩ µ
B
σ (Y ) is an open map,

then the morphism {4(4σ),4µ
B
σ } is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection p of the FPTP
P .

Corollary 5.9. If under the above conditions we have:

1. the collection {µBσ : σ ∈ Σ} separates points and the map f is a T0-map, and
2. the collection Bf =

⋃

{{g−1
σ W : W open in Zσ} : σ ∈ Σ} is a base for the

map f and ηBσ ≡ µBσ |(µB
σ )−1Oσ

: (µBσ )−1Oσ → Oσ ∩ µ
B
σ (Y ) is an open map,

then the morphism {4(4σ),4µ
B
σ } is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection p of the FPTP
P .

Corollary 5.10. If under the above conditions we have:

1. the space Y is a T0-space and the map f is a T0-map, and
2. the collection Bf =

⋃

{{g−1
σ W : W open in Zσ} : σ ∈ Σ} is a base for the

map f and ηBσ ≡ µBσ |(µB
σ )−1Oσ

: (µBσ )−1Oσ → Oσ ∩ µ
B
σ (Y ) is an open map,

then the morphism {4(4σ),4µ
B
σ } is a {homeomorphic embedding, 1-1

local homeomorphic embedding}-morphism of f into the projection p of the FPTP
P .

Finally we need the following results for the case of compact fibres, the first of
which was proved in [3].

Proposition 5.11. The fibrewise product p =
∏
{

fσ, {Yσ, λ
σ
ρ ,Σ}

}

of compact maps
fσ with respect to the inverse system {Yσ, λ

σ
ρ ,Σ} is a compact map.

Proposition 5.12. Let P =
∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

be the FPTP of the EPTPs
Pσ, σ ∈ Σ, with respect to the inverse system {Yσ, λ

σ
ρ ,Σ}, where the fibres Zσ are

compact for every σ ∈ Σ. Then, the projection p of the FPTP P onto its base is a
compact map.

Proof. By Corollary 3.3 we have that the projections pσ : Pσ → Yσ are compact.
Therefore, we can conclude by Proposition 5.11, that the projection p is also com-
pact as a fibrewise product of compact maps.

Corollary 5.13. Let P =
∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

be the FPTP of the EPTPs
Pσ, σ ∈ Σ, with respect to the inverse system {Yσ, λ

σ
ρ ,Σ}, where the fibres Zσ are

compact and metrizable for every σ ∈ Σ. Then, the projection p of the FPTP P
onto its base is a compact Tychonoff map with weight W(p) 6 max(|Σ|,ℵ0).

Proof. The fact that the map p is compact follows from Proposition 5.12 and the
fact that it is Tychonoff, together with the inequality for the weight W(p), follows
from Propositions 3.1 and 5.2 and Remark 5.1.
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Proof of Theorem 5.4. The proof of (1) implies (2) follows on the same lines as that
of (1) implies (2) in Theorem 4.4, using the corresponding results of this section.
That (3) follows from (2) is evident. We are left to show that (3) implies (1). If
there exists a homeomorphic embedding-morphism of the map f into the projection
p of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ = P (Yσ, I, Oσ) and
|Σ| 6 m, then by Proposition 2.3 and Corollary 5.13 we have

W(f) 6 W(p) 6 |Σ| 6 m.

Proof of Corollary 5.5. We only need to show that (1) implies (2). Since the di-
agonal 4idσ(Y ), where idσ ≡ id : Y → Y , is homeomorphic to the limit of the
constant inverse system S(Y,Σ), the result follows from Proposition 2.2.

Proof of Corollary 5.6. We only need to show that (3) implies (1) and this follows
from Corollary 5.13 and Proposition 2.1.

Proof of Corollary 5.7. The fact that (1) implies (2) follows from Corollary 5.5.
That (2) implies (3) is evident and the proof that (3) implies (1) follows from
Corollary 5.13 and the fact that a closed submap of a compact map is compact.

Finally, we end this section by a universal type theorem for T0-maps in MAP

for Fan poducts corresponding to Theorem 4.13. This is an analogue of Theorem
1.2 in the category MAP with respect to Fan products. The proof is omitted as
it is analogous, using the corresponding results of this section, to that of Theorem
4.13.

Theorem 5.14. For a T0-map f : X → Y the following are equivalent:

1. The map f has weight w(f) 6 m (m > ℵ0);
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a FPTP P =
∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y, F, Y )
and |Σ| 6 m;

3. There exists a homeomorphic embedding-morphism of the map f into the
projection of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, F, Oσ) and |Σ| 6 m.

Corollary 5.15. For a continuous map f : X → Y the following are equivalent:

1. The map f is T0;
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a FPTP P =
∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y, F, Y );
3. There exists a homeomorphic embedding-morphism of the map f into the

projection of a FPTP P =
∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, F, Oσ).

6. Zero-dimensional and strongly zero-dimensional maps

In this section we define zero-dimensional and strongly zero-dimensional maps.
We note that our definition of zero-dimensional maps differ from that given in [6].
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Using our definition one can see that many properties of zero-dimensional spaces
can be generalized from the category TOP to the category MAP.

Definition 6.1. Let there be given a continuous map f : X → Y . A set U ⊂ X
is said to be f -closed-open (f -clopen), if there exists an open subset O of Y such
that U ⊂ f−1O and U is clopen in f−1O.

Definition 6.2. Let there be given a continuous map f : X → Y , where X 6= ∅.
The map f is called zero-dimensional if it is a T1-map and has a base Bf consisting
of f -clopen sets, where a map f : X → Y is said to be a T1-map if for every two
distinct points x, x′ ∈ X lying in the same fibre, each of the points x, x′ has a
neighborhood in X which does not contain the other point.

Note that if the set U is f -clopen then it is also open in X but is not necessarily
closed in X. It is not difficult to see that every zero-dimensional map is Tychonoff.
Remember that for a continuous map f : X → Y , two subsets A and B of the
space X are said to be f -functionally separated if for every point y ∈ Y there exists
a neighborhood O of y in Y , such that the sets A and B are functionally separated
in f−1O.

Definition 6.3. Let there be given a Tychonoff map f : X → Y , where X 6=
∅. The map f is called strongly prezero-dimensional if for every pair A,B of
functionally separated subsets of the space X and for every y ∈ Y , there exists
a neighborhood O of y in Y and a clopen (in f−1O) set U ⊂ f−1O, such that
A ∩ f−1O ⊂ U ⊂ f−1O \ B. The map f is called strongly zero-dimensional if for
every open set O ⊂ Y , the map f |f−1O : f−1O → O is strongly prezero-dimensional.

One can note that if the map f : X → Y is strongly zero-dimensional, then
for every pair A,B of f -functionally separated subsets of the space X and for
every y ∈ Y , there exists a neighborhood O of y in Y and a clopen (in f−1O) set
U ⊂ f−1O, such that A ∩ f−1O ⊂ U ⊂ f−1O \B.

Proposition 6.1. Every strongly zero-dimensional map is zero-dimensional.

Proof. Say f : X → Y is a strongly zero-dimensional map. Take any closed set F
in X and any point x ∈ X \ F = W . Also, let y = f(x). Since f is Tychonoff,
there exists a neighborhood O of y in Y and a function φ : f−1O → [0, 1] such that
x ∈ φ−1(0) and F ∩ f−1O ⊂ φ−1(1). Furthermore, there exists a neighborhood O′

of y in Y such that O′ ⊂ O, and a clopen (in f−1O′) set U in f−1O′ such that
x ∈ U ⊂ f−1O′ \ F = f−1O′ ∩ W . Therefore, f is a zero-dimensional map as
required to prove.

Theorem 6.2. A Tychonoff map f : X → Y , where X 6= ∅, is strongly zero-
dimensional if and only if, for every y ∈ Y , every neighborhood O of y in Y and
every finite f -functionally open cover U = {Ui : i = 1, . . . , k} of f−1O there exists
a neighborhood O′ ⊂ O of y and a finite refinement V = {Vi : i = 1, . . . , k} of
U ∧ f−1O′ such that Vi ∩ Vj = ∅ whenever i 6= j. Note that by the hypothesis,
⋃

V =
⋃

{Vi : i = 1, . . . , k} = f−1O′.
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Proof. Let f : X → Y be a strongly zero-dimensional map and take any point y
in Y . Let O be any neighborhood of y in Y and consider a finite f -functionally
open cover U = {Ui : i = 1, . . . , k} of f−1O. We apply induction with respect
to k. For k = 1, the existence of the refinement V is obvious. Assume that the
existence of V is true for every k < m and consider the case of k = m. By the
inductive hypothesis, there exists a neighborhood O1 ⊂ O of y in Y and a cover
{W1, . . . ,Wm−1} of f−1O1 consisting of pairwise disjoint open sets (and so are
f -clopen), satisfying

Wi ⊂ Ui for i < m− 1, and Wm−1 ⊂ Um−1 ∪ Um.

Consider the sets Wm−1 \ Um−1 and Wm−1 \ Um, which are disjoint and f -
functionally closed. Thus, there exist neighborhoods O2 and O3 of y in Y and
functions ψ, φ : f−1(O2 ∩O3) = f−1O4 → [0, 1] satisfying

Wm−1 \ Um−1 = ψ−1(0)

Wm−1 \ Um = φ−1(0)

Let η : f−1O4 → [0, 1] be defined by η(x) = ψ(x)
ψ(x)+φ(x)

. Then Wm−1 \ Um−1 =

η−1(0) and Wm−1 \Um = η−1(1) and therefore the sets Wm−1\Um−1 and Wm−1 \Um
are functionally separated in f−1O4. There exists a neighborhood O5 ⊂ O4 of y in
Y and a clopen (in f−1O5) set U ⊂ f−1O5 such that

(Wm−1 \ Um−1) ∩ f
−1O5 ⊂ U ⊂ f−1O5 \ (Wm−1 \ Um).

The latter inclusion implies that

U ⊂ (f−1O5 \Wm−1) ∪ (f−1O5 ∩ Um),

and hence

(Wm−1 \ U) ∩ f−1O5 ⊂ Um−1 and U ∩Wm−1 ⊂ Um.

Consequently, one can easily see that the collection V = {Vi : i = 1, . . . , m},
where

Vi = Wi ∩ f
−1O5 for i < m− 1,

Vm−1 = (Wm−1 \ U) ∩ f−1O5 and Vm = U ∩Wm−1,

is the desired refinement of U ∧ f−1O5.
Conversely, take any pair A,B of functionally separated subsets of the space

X and take any point y in Y . There exists a function φ : X → [0, 1] such that
A ⊂ φ−1(0) and B ⊂ φ−1(1). The sets U1 = φ−1(]0, 1]) and U2 = φ−1([0, 1[) form a
functionally open (and so an f -functionally open) cover of X. By the hypothesis,
there exists a neighborhood O of y in Y and a disjoint open refinement V = {V1, V2}
of (U = {U1, U2}) ∧ f

−1O. Therefore, the f -clopen set V2 satisfies

A ∩ f−1O ⊂ V2 ⊂ f−1O \B,

which proves that the map f is strongly prezero-dimensional. In an analogous
manner one can show that f is strongly zero-dimensional.
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Recall that a map f : X → Y is called functionally prenormal if every two dis-
joint closed sets in X are f -functionally separated. The map f is called functionally
normal if for every open set O in Y the map f : f−1O → O is functionally prenor-
mal. A functionally normal T3 1

2

-map ia called a T4 1

2

-map. Functionally normal (as

well as normal) maps were defined by B.A.Pasynkov [12]. With slight modifications
in the proof of Theorem 6.2 one can get the following result.

Theorem 6.3. A T4 1

2

-map f : X → Y , where X 6= ∅, is strongly zero-dimensional

if and only if, for every y ∈ Y , every neighborhood O of y in Y and every finite
open cover U = {Ui : i = 1, . . . , k} of f−1O there exists a neighborhood O′ ⊂ O of
y and a finite refinement V = {Vi : i = 1, . . . , k} of U ∧ f−1O′ such that Vi∩Vj = ∅
whenever i 6= j. Note that by the hypothesis,

⋃

V =
⋃

{Vi : i = 1, . . . , k} = f−1O′.

Remember that a map f : X → Y is called finally compact if f is closed and for
every y ∈ Y the fibre f−1y is finally compact, that is every open cover of f−1y has
a countable subcover. A finally compact T3-map is called a Lindelöf map. Thus,
every compact (Hausdorff) map is finally compact (Lindelöf) and every Lindelöf
map is a T4 paracompact map [2].

Theorem 6.4. Every zero-dimensional Lindelöf map is strongly zero-dimensional.

Proof. Let A,B be a pair of functionally separated subsets of the space X and take
any point y ∈ Y . There exists a function φ : X → [0, 1] such that

A ⊂ φ−1(0) = A′ and B ⊂ φ−1(1) = B′.

Then the sets A′ and B′ are closed and disjoint in X.
For every x ∈ f−1y one can find an f -clopen set U(x) and a neighborhood OU(x)

of y in Y such that

(U(x) ∩ f−1OU(x)) ∩ A
′ = ∅, or (U(x) ∩ f−1OU(x)) ∩B

′ = ∅.

Let U ′(x) = U(x) ∩ f−1OU(x), where one can assume that U ′(x) is clopen in
f−1OU(x). Since the map f is Lindelöf, there exists a countable subcollection
{U ′(xi) : i < ω} of {U ′(x) : x ∈ f−1y} covering f−1y. Let

W (xi) =

[

U ′(xi) \
⋃

j<i

U ′(xj)

]

⋂

f−1

(

⋂

j � i
OU(xj)

)

for i < ω.

The collection W = {W (xi) : i < ω} consists of f -clopen and pairwise disjoint
sets, and covers f−1y. By the closedness of f , there exists a neighborhood O of
y in Y such that W covers f−1O. Let W ′ = W ∧ f−1O. The set U =

⋃

{Wi :
A ∩Wi 6= ∅,Wi ∈ W ′} has the following properties:

U is clopen in f−1O and A ∩ f−1O ⊂ U ⊂ f−1O \B.

Thus f is strongly prezero-dimensional. Analogously one can prove that the map
f is strongly zero-dimensional.

Corollary 6.5. Zero-dimensionality and strong zero-dimensionality are equivalent
in the realm of compact maps f : X → Y , where X 6= ∅.
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Theorem 6.6. If f : X → Y is a zero-dimensional map, then so is any submap
g : A→ B, where A 6= ∅.

If f : X → Y is a strongly zero-dimensional map and g : A→ B is a submap of
f , where A 6= ∅, B is closed in Y and for every open in Y set O, every continuous
function φ : g−1(O ∩ B) → [0, 1] is continuously extendable to a function ψ :
f−1O → [0, 1], then g is also strongly zero-dimensional.

Proof. The first part of the theorem follows from the definitions. The second
part follows from Definition 6.3, since under the assumptions on the map g, any
two g|g−1(O∩B)-functionally separated subsets of the space g−1(O ∩ B) are f |f−1O-
functionally separated in f−1O for any open set O in Y .

We now prove the following result concerning the maximal Tychonoff compact-
ification βf : βfX → Y of a Tychonoff map f : X → Y . A compact map
bf : bfX → Y is said to be a compactification of f : X → Y if there exists a
{dense homeomorphic embedding}-morphism {λ, idY } : f → bf [17, 18]. In this
situation we usually identify X with λ(X) and so bfX = [X]bfX and f = bf |X ,
where by [X]bfX we mean the closure of X in bfX. For details concerning compact-
ifications of Tychonoff maps, in particular the construction of βf , one can consult
[12, 13, 9].

Theorem 6.7. The compactification βf : βfX → Y of a Tychonoff map f : X →
Y is strongly zero-dimensional if and only if the map f is strongly zero-dimensional.

For the proof of the above theorem we need some preliminary lemmas.

Lemma 6.8 (Pasynkov [12]). For a Tychonoff compactification bf : bfX → Y of
a Tychonoff map f : X → Y , the following properties are equivalent:

1. bf ≡ βf : βfX → Y , where by equivalence we understand that bf and βf are
canonically isomorphic, i.e. there exists a homeomorphism λ : βfX → bfX
equal to the identity on X such that βf = bf ◦ λ;

2. For any open set O in Y and any continuous bounded function φ : f−1O →
[a, b], there exists a continuous extension of φ on (bf)−1O;

3. For any open set O in Y and any two functionally separated in f−1O subsets
F and H we have

[F ]bfX ∩ [H]bfX ∩ (bf)−1O = ∅.

Below, by the space D we understand the two point set {0, 1} with the discrete
topology.

Lemma 6.9. Let βf : βfX → Y be the maximal Tychonoff compactification of a
Tychonoff map f : X → Y . Let U ⊂ X be an f -clopen subset, i.e. there exists an
open set O in Y such that U ⊂ f−1O and U is clopen in f−1O. Then [U ](βf)−1O is
clopen in (βf)−1O and so is a βf -clopen set.

Proof. There exists a function φ : f−1O → D ⊂ [0, 1] such that U = φ−1(0) and
f−1O\U = φ−1(1). Therefore, U and f−1O\U are functionally separated in f−1O.
Consequently, by Lemma 6.8, [U ](βf)−1O is clopen in (βf)−1O.
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Proof of Theorem 6.7. If the map βf is strongly zero-dimensional then so is the
map f by Theorem 6.6 and Lemma 6.8.

We need to show that if the map f is strongly zero-dimensional then so is the
map βf . Let A,B be a pair of functionally separated subsets in (βf)−1O, where
O is an open set in Y . There exists a function φ : (βf)−1O → [0, 1] such that
A ⊂ φ−1(0) and B ⊂ φ−1(1).

Consider the sets A1 = X ∩ φ−1([0, 1
3
[) and B1 = X ∩ φ−1(]2

3
, 1]) which are

functionally separated in f−1O. Since the map f is strongly zero-dimensional, for
any point y ∈ O, there exists a neighborhood O′(y) ⊂ O of y in Y and a clopen
in f−1O′(y) set U ⊂ f−1O′(y) such that A1 ∩ f

−1O′(y) ⊂ U ⊂ f−1O′(y) \ B1. By
Lemma 6.9 we have that [U ](βf)−1O′(y) is clopen in (βf)−1O′(y).

Since X is dense in βfX we have A ⊂ [A1](βf)−1O and B ⊂ [B1](βf)−1O. From
Lemma 6.8 we also have that [B1](βf)−1O′(y) ∩ [U ](βf)−1O′(y) = ∅ and consequently

A ∩ (βf)−1O′(y) ⊂ [A1](βf)−1O′(y) = [A1 ∩ f
−1O′(y)](βf)−1O′(y) ⊂

[U ](βf)−1O′(y) ⊂ (βf)−1O′(y) \ [B1](βf)−1O′(y) ⊂

(βf)−1O′(y) \
(

B ∩ (βf)−1O′(y)
)

.

Proposition 6.10. The Tychonoff product f =
∏

{fα : α ∈ A} : X =
∏

{Xα :
α ∈ A} → Y =

∏

{Yα : α ∈ A}, where A 6= ∅ and Xα 6= ∅ for every α ∈ A, is
zero-dimensional if and only if all the maps fα are zero-dimensional.

Proof. The fact that fα is zero-dimensional if the Tychonoff product f is zero-
dimensional follows from Theorem 6.6.

Conversely, say fα is zero-dimensional for every α ∈ A. Then f is a T1-map by
Proposition 4.2. Let Bfα

be an fα-clopen base for the map fα, for every α ∈ A.
Then by Proposition 4.1, the collection Sf = ∪{(prαT )−1Bfα

: α ∈ A} is an f -
clopen subbase for the map f and thus it is not difficult to see that f has an
f -clopen base.

In a similar fashion one can prove the following results.

Proposition 6.11. Let p : P =
∏
{

Xσ, fσ, {Yσ, λ
σ
ρ ,Σ}

}

→ lim
←

{Yσ, λ
σ
ρ ,Σ} be the

fibrewise product of the maps fσ with respect to the inverse system {Yσ, λ
σ
ρ ,Σ},

where lim
←

{Yσ, λ
σ
ρ ,Σ} 6= ∅. If all the maps fσ are zero-dimensional then the map p

is also zero-dimensional.

Proposition 6.12. Let lim
←

Sf = lim
←

{

fσ, {π
σ
ρ , λ

σ
ρ},Σ

}

: lim
←

ST = lim
←

{Xσ, π
σ
ρ ,Σ} →

lim
←

SB = lim
←

{Yσ, λ
σ
ρ ,Σ} be the limit map of the inverse system Sf =

{

fσ, {π
σ
ρ , λ

σ
ρ},Σ

}

.

If all the maps fσ are zero-dimensional and lim
←

ST 6= ∅ then the map lim
←

Sf is also

zero-dimensional.

With respect to sums we have the following result. The proof is not difficult and
so is omitted.
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Proposition 6.13. The sum f =
⊕

{fα : α ∈ A} : X =
⊕

{Xα : α ∈ A} → Y =
⊕

{Yα : α ∈ A}, where A 6= ∅ and Xα 6= ∅ for every α ∈ A, is zero-dimensional
(strongly zero-dimensional) if and only if all the maps fα are zero-dimensional
(strongly zero-dimensional).

We next prove a lemma concerning EPTPs having zero-dimensional fibre.

Lemma 6.14. The projection p : P → Y , where Y 6= ∅, of an EPTP P =
P (Y, Z,O) with zero-dimensional fibre Z is zero-dimensional and W(p) = w(Z)+1.

Proof. Let p be the projection of an EPTP with zero-dimensional fibre Z. That
the map p is a T1-map and that W(p) = w(Z) + 1 follows from Proposition 3.1.
Let B be a base for the space Z consisting of clopen sets and of cardinality w(Z).
The collection Bp consisting of the sets {P} and {O × V : V ∈ B} is a base for
the map p. It is not difficult to see that Bp consists of p-clopen sets and therefore
the map p is zero-dimensional.

Next we have the following universal type theorem for zero-dimensional maps,
the proof of which is analogous to that of Theorems 4.4 and 5.4 and so is omitted.
This is an analogue of Theorem 1.3 in the category MAP.

Theorem 6.15. For a zero-dimensional map f : X → Y the following are equiva-
lent:

1. The map f has weight W(f) 6 m (m > ℵ0);
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y,D,Oα) and
|A| 6 m;

3. There exists a homeomorphic embedding-morphism of the map f into the pro-
jection of a TPTP

∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, D,Oα) and
|A| 6 m;

4. There exists a homeomorphic embedding-morphism of the map f into the pro-
jection of a FPTP P =

∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y,D,Oσ)
and |Σ| 6 m;

5. There exists a homeomorphic embedding-morphism of the map f into the
projection of a FPTP P =

∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, D,Oσ) and |Σ| 6 m.

We can write down the following corollary to the above theorem. We omit the
proof as it is analogous to that of Corollaries 4.6 and 5.6.

Corollary 6.16. For a continuous map f : X → Y , where X 6= ∅, the following
are equivalent:

1. The map f is zero-dimensional;
2. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Y,D,Oα);
3. There exists a homeomorphic embedding-morphism of the map f into the pro-

jection of a TPTP
∏

{Pα : α ∈ A}, where the EPTP Pα = P (Yα, D,Oα);
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4. There exists a homeomorphic embedding-morphism of the map f into the pro-
jection of a FPTP P =

∏

{Pσ, pσ,S(Y,Σ)}, where the EPTP Pσ = P (Y,D,Oσ);
5. There exists a homeomorphic embedding-morphism of the map f into the

projection of a FPTP P =
∏
{

Pσ, pσ, {Yσ, λ
σ
ρ ,Σ}

}

, where the EPTP Pσ =
P (Yσ, D,Oσ).

Finally we have the following result concerning Tychonoff compactifications.

Theorem 6.17. Every zero-dimensional map f : X → Y of weight W(f) = m >

ℵ0 has a zero-dimensional compactification bf : bfX → Y of weight W(bf) = m.

Proof. By Theorem 6.15 (4), the map f can be identified with a submap of the
projection p : P → lim

←
S(Y,Σ) ∼= Y of a FPTP P =

∏

{Pσ, pσ,S(Y,Σ)}, where

the EPTP Pσ = P (Y,D,Oσ) and |Σ| = m. Let bfX be the closure of X in P and
let bf = p|bfX . By Proposition 5.12 the map p is compact, and therefore so is bf
as a closed submap of a compact map. This implies that bf is a compactification
of the map f and by Lemma 6.14 and Proposition 6.11, we have that bf is zero-
dimensional. Finally we have

m = W(f) 6 W(bf) 6 W(p) = m,

from which follows the equality W(bf) = m.
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