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This expository paper consists of two parts. In the first half we study

circles in a complex projective space and give a characterization of homogeneous

real hypersurfaces in a complex projective space by using geometric properties of
circles. In the latter half we study geodesics of geodesic spheres, which are the

simplest real hypersurfaces in a complex projective space, and investigate their

length spectrum in detail. Finally we characterize real and complex space forms
from this point of view.

0. Introduction.

The study of circles is one of the interesting objects in differential geometry.
We here recall the definition of circles.

A smooth curve γ : R → M in a complete Riemannian manifold M is called
a circle of curvature κ(= 0) if it is parametrized by its arclength s and satisfies
the following equation:

∇γ̇∇γ̇ γ̇(s) = −κ2γ̇(s),

where κ is a constant, which is called the curvature of the circle γ, and ∇γ̇ denotes
the covariant differentiation along γ with respect to the Riemmanian connection
∇ of M . A circle of null curvature is nothing but a geodesic. The notion of
circles is an extension of the notion of geodesics. As a matter of course, a circle
of curvature κ(> 0) in a Euclidean m-space Rm is a circle of radius 1

κ
in the sense

of Euclidean geometry and it is closed. However, in general a circle of positive
curvature in a Riemmanian manifold is not closed.

In section 1, we survey several results on geometric properties of circles in an
n-dimensional complex projective space CP n(c) of constant holomorphic sectional
curvature c (Theorems 1, 2). In this section we first show that for each positive
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constant κ, there exist infinitely many closed circles of curvature κ and infinitely
many open circles of curvature κ in CP n(c) up to an action of the isometry group
of CP n(c). The main purpose of section 1 is to give an answer to the following
question: If two closed circles γ1 and γ2 in CP n(c) have the same length, are
they congruent with respect to an isometry of CP n(c)?

In section 2, we study real hypersurfaces M 2n−1 in CP n. Typical examples
of real hypersurfaces are homogeneous real hypersurfaces, namely they are given
as orbits under subgroups of the projective unitary group PU(n + 1). Takagi
([17]) determined all homogeneous real hypersurfaces in CP n. Due to his work
we find that a homogeneous real hypersurface in CP n is locally congruent to one
of the six model spaces of type A1, A2, B, C, D and E. They are realized as tubes
of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2
(see Theorem A).

In the study of real hypersurfaces in CP n, there can be the following two
problems:

(i) Give a characterization of homogeneous real hypersurfaces.
(ii) Construct non-homogeneous nice real hypersurfaces and characterize such

examples.

In this paper we are devoted to the problem (i). It is well-known that a hyper-
surface Mn isometrically immersed into Rn+1 is locally congruent to a standard
sphere if and only if every geodesic of M is a circle of positive curvature in Rn+1.
But we remark that there does not exist a real hypersurface M 2n−1 all of whose
geodesics are circles in CP n. The main purpose of section 2 is to give a charac-
terization of all homogeneous real hypersurfaces M 2n−1 in CP n by observing the
extrinsic shape of geodesics of M in CP n (see Theorem 5).

In section 3, we restrict ourselves on geodesics of geodesic spheres in CP n.
Geodesic spheres in CP n, which are nothing but homogeneous real hypersurfaces
of type A1, are nice objects in intrinsic geometry as well as extrinsic geometry
(that is, submanifold theory).

From the view point of intrinsic geometry, we know that geodesic spheres of
sufficiently large radius in CP n are examples of Berger spheres. Namely, these
spheres are homogeneous Riemannian manifolds which are diffeomorphic to a
sphere, whose sectional curvatures lie in the interval [δK, K] for some δ ∈ (0, 1

9
),

and which have closed geodesics of length less than 2π√
K

. These show that odd-

dimensional version of Klingenberg’s lemma does not hold (for details, see [18]).
From the view point of submanifold theory, they are the simplest real hy-

persurfaces. In CP n (n = 3), geodesic spheres are the only examples of real
hypersurfaces with at most two distinct principal curvatures at its each point
(see [6]). In this context it is natural to study geodesics of these real hypersur-
faces. The main purpose of section 3 is to investigate the length spectrum of
geodesic spheres in CP n (see Theorems 7, 8, 9, 10). In this section we suppose
that a complex projective space CP n is furnished with the standard metric of
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constant holomorphic sectional curvatute 4.
In section 4, motivated by the discussion in section 3, we characterize real

and complex space forms by observing the extrinsic shape of geodesics on their
geodesic spheres.

Real space forms are Riemannian manifolds of constant curvature, which
are locally isometric to either one of standard spheres, Euclidean spaces or real
hyperbolic spaces. In a real space form M , a geodesic sphere Gm(r) = {p ∈
M | d(p, m) = r} with center m and radius r is a totally umbilic but not totally
geodesic hypersurface (with parallel second fundamental form). Here, d denotes
the distance function induced by Riemannian metric 〈 , 〉 on M . This fact tells
us that every geodesic on Gm(r) is a circle of positive curvature in the ambient
manifold M .

Next we consider geodesic spheres in complex space forms. Complex space
forms are Kähler manifolds of constant holomorphic sectional curvature. It is
well-known that these are locally complex analytically isometric to either one
of complex projective spaces, complex Euclidean spaces or complex hyperbolic
spaces. For a geodesic sphere Gm(r) of sufficiently small radius r in these complex
space forms M , we know that both of all geodesics orthogonal to ξ on Gm(r) and
all integral curves of ξ are circles of positive curvature in M , where ξ is the
characteristic vector field of Gm(r) in M (for details, see [14]).

Along these contexts we shall give some characterizations of real and complex
space forms (see Theorems 11, 12 and 13).

In this paper we study Riemannian manifolds without boundary.

1. Geometric properties of circles in CP n.

First of all we shall recall the Frenet formula for a smooth Frenet curve in a
Riemannian manifold M with Riemannian metric 〈 , 〉. A smooth curve γ = γ(s)
parametrized by its arclength s is called a Frenet curve of proper order d if there
exist orthonormal frame fields {V1 = γ̇, · · · , Vd} along γ and positive functions
κ1(s), · · · , κd−1(s) satisfying the following system of ordinary equations

(1.1) ∇γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), j = 1, · · · , d,

where V0 ≡ Vd+1 ≡ 0 and ∇γ̇ denotes the covariant differentiation along γ. We
call Equation (1.1) the Frenet formula for the Frenet curve γ. The functions
κj(s)(j = 1, · · · , d − 1) and the orthonormal frame {V1, · · · , Vd} are called the
curvatures and the Frenet frame of γ, respectively.

A Frenet curve is called a Frenet curve of order d if it is a Frenet curve
of proper order r(5 d). For a Frenet curve of order d which is of proper order
r(5 d), we use the convention in (1.1) that κj ≡ 0 (r 5 j 5 d − 1) and Vj ≡
0 (r+1 5 j 5 d). We call a smooth Frenet curve γ closed if there exists a nonzero
constant s0 with γ(s + s0) = γ(s) for every s. The minimum positive constant
with this property is called the length of γ and denoted by length(γ). For an
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open Frenet curve, that is a Frenet curve which is not closed, we put its length
as length(γ) = ∞.

We call a smooth Fenet curve a helix when all its curvatures are constant. A
helix of order 1 is nothing but a geodesic and a helix of order 2, that is a curve
which satisfies ∇γ̇V1(s) = κV2(s),∇γ̇V2(s) = −κV1(s), V1(s) = γ̇(s), is called a
circle of curvature κ.

Needless to say, a curve generated by a Killing vector field is a helix. But in
general, the converse does not hold. From this point of view we are interested in
the following well-known result.

Proposition 1. In a complete and simply connected real space form, which is

a Euclidean space Rn, a standard sphere Sn or a hyperbolic space Hn, a smooth

Frenet curve is a helix if and only if it is generated by a Killing vector field in

this space.

In order to obtain the complex version of Proposition 1, we review the def-
inition of complex torsions of Frenet curves in Kähler manifolds. Let M be an
n-dimensional Kähler manifold with complex structure J and Riemannian metric
〈 , 〉. For a Frenet curve γ = γ(s) in M of order d(5 2n) with the associated
Frenet frame {V1, · · · , Vd}, we set τij(s) = 〈Vi(s), JVj(s)〉 for 1 5 i < j 5 d and
call them its complex torsions. In the study of Frenet curves in a Kähler mani-
fold their complex torsions play an important role. The following is the complex
version of Proposition 1 (see [15]).

Proposition 2. In a complete and simply connected complex space form, which

is a complex Euclidean space Cn, a complex projective space CP n or a com-

plex hyperbolic space CHn, a smooth Frenet curve is generated by a holomorphic

Killing vector field in this space if and only if all its curvatures and all its complex

torsions are constant functions.

In a Kähler manifold, we call a smooth curve γ a holomorphic helix when
both of all curvatures and all complex torsions of γ are constant.

Let γ = γ(s) be a circle in a Kähler manifold M (with complex structure J)
satisfying the equations ∇γ̇ γ̇ = κV2(s),∇γ̇V2(s) = −κγ̇.
Then,

∇γ̇〈γ̇, JV2(s)〉 = 〈∇γ̇ γ̇, JV2(s)〉 + 〈γ̇, J∇γ̇V2(s)〉
= κ · 〈V2(s), JV2(s)〉 − κ · 〈γ̇, Jγ̇〉 = 0.

Hence the only complex torsion τ12, say τ (−1 5 τ 5 1), of each circle in a Kähler
manifold M is constant. Circles of complex torsion ±1 are called holomorphic

circles and circles of null complex torsion are called totally real circles. As an
immediate consequence of Proposition 2 we can see that in a complete and simply
connected complex space form M , every circle of curvature κ(> 0) is generated by
a Killing vector field of M . In order to get rid of the influence of the action of the
full isometry group, we say that two smooth curves γ1 and γ2 are congruent each
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other if there exist an isometry ϕ and a constant s0 with γ2(s) = ϕ ◦ γ1(s + s0)
for every s.

The congruence theorem for circles in a non-flat complex space form M is
stated as follows (see Theorem 5.1 in [15]):

Proposition 3. Two circles in a complete and simply connected non-flat complex

space form M(c), that is M(c) = CP n(c) or CHn(c), are congruent if and only if

they have the same curvatures and the same absolute values of complex torsion.

Therefore the moduli space of all congruency classes of circles on a non-flat
complex space form M(c) is bijective to the set [0,∞) × [0, 1]/ ∼, where (κ, τ)
and (κ′, τ ′) are equivalent if and only if (κ, τ) = (κ′, τ ′) in case of κκ′ 6= 0 or
κ = κ′ = 0 in case of κκ′ = 0.

We are now in a position to study circles in CP n(c) (for details, see [2,3]).
We call a smooth curve simple if it does not have self-intersection points. More
precisely, an open curve σ is called simple if σ(s1) 6= σ(s2) for every s1, s2 (s1 6=
s2), and a closed curve σ is called simple if σ(s1) 6= σ(s2) for every s1, s2 (0 5

s1 < s2 < length(σ)).

Theorem 1. Let γ be a circle of curvature κ and complex torsion τ in a complex

projective space CP n(c) of holomorphic sectional curvature c. Then the following

hold:

(1) When τ = 0, γ is a simple closed curve whose length is 4π√
4k2+c

.

(2) When τ = ±1, γ is a simple closed curve whose length is 2π√
k2+c

.

(3) When τ 6= 0,±1, we denote by a, b and d(a < b < d) the nonzero solutions

for

cλ3 − (4k2 + c)λ + 2
√

cκτ = 0.

Then we find the following:
(i) If one of the three ratios a/b, b/d and d/a is rational, γ is a simple closed

curve. Its length is the least common multiple of 4π√
c(b−a)

and 4π√
c(d−a)

.

(ii) If each of the three ratios a/b, b/d and d/a is irrational, γ is a simple

open curve.

Theorem 1 tells us that there exist infinitely many congruency classes of open
circles in CP n(c). In the following we pay attention to closed circles in CP n(c).

Theorem 2.

(1) Let γ1 and γ2 be closed circles with common length l in CP n(c). Suppose

that l satisfies the inequalities 2√
c
π < l 5 4

3

√
5
c
π. Then γ1 and γ2 are

congruent by an isometry of CP n(c).

(2) For each positive l 6∈
(

2√
c
π, 4

3

√
5
c
π

]
, there exist at least two congruency

classes of closed circles in CP n(c) whose length is l.

We consider lengths of closed circles of the fixed curvature κ.
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Proposition 4.

(1) For each κ(> 0), the set of length(γ) of all closed circles of curvature κ
in CP n(c) is an unbounded discrete subset of the real positive line (0,∞).

(2) The bottom of this unbounded subset is 2π√
κ2+c

. The holomorphic circle of

curvature κ is the only example of a closed circle of curvature κ whose

length is 2π√
κ2+c

.

(3) The second lowest element of this unbounded subset is 4π√
4κ2+c

. The totally

real circle of curvature κ is the only example of a closed circle of curvature

κ whose length is 4π√
4κ2+c

.

Proposition 4 shows that holomorphic circles and totally real circles are nice
examples in the class of closed circles in CP n(c). These two closed circles are
plane curves in CP n(c). Namely, they are lying on some real 2-dimensional
totally geodesic submanifolds of CP n(c). In fact, every holomorphic circle in
CP n(c) lies on CP 1(c) which is a holomorphic totally geodesic submanifold of
CP n(c), and every totally real circle in CP n(c) lies on RP 2( c

4 ) of curvature c
4

which is a totally real totally geodesic submanifold of CP n(c). We remark that
every circles in CP n(c) lies on a holomorphic totally geodesic CP 2(c).

We shall provide characterizations of holomorphic circles and totally real
circles in CP n(c) from the viewpoint of submanifold theory. Let f0 be an isometric
minimal imbedding of CP n(c) into a sphere Sn(n+2)−1(n+1

2n
c) of curvature n+1

2n
c

and ι be a totally umbilic imbedding of Sn(n+2)−1(n+1
2n

c) into Euclidean space

Rn(n+2). Put f = ι ◦ f0. Then f is an isometric parallel imbedding of CP n(c)
into Rn(n+2). It is well-known that the imbedding f is the only parallel full
imbedding of CP n(c) into a Euclidean space RN . This imbedding f has many
nice properties. For example, the imbedding f has a property that for each
geodesic γ of CP n(c) the curve f ◦ γ is a circle in Rn(n+2).

By using this imbedding f , we shall characterize holomorphic circles and
totally real circles in CP n(c) (cf. [7]).

Theorem 3. Let γ be a curve in CP n(c). Then γ is a geodesic or a holomorphic

circle if and only if the curve f ◦ γ is a circle in R
n(n+2), where f is a parallel

imbedding of CP n(c) into Rn(n+2).

Theorem 3 is a generalization of the fact that a curve γ on S2(c) is a circle,
that is γ is a great circle or a small circle of S2(c), if and only if γ is a circle in
R3. By virtue of Theorem 3 we obtain a characterization of geodesics of CP n(c)
from the viewpoint of submanifold theory:

Theorem 3’. Let γ be a curve in CP n(c). Then γ is a geodesic if and only if

the curve f ◦ γ is a circle of curvature
√

c in R
n(n+2).

We establish a characterization of totally real circles of CP n(c).
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Theorem 4. Let γ be a curve in CP n(c). Then γ is a totally real circle if and

only if γ lies on totally real totally geodesic RP n( c
4
) of CP n(c) and the curve f ◦γ

is a helix of proper order 4 in Rn(n+2).

If we omit the condition that γ lies on RP n( c
4
), Theorem 4 is not true

(for details, see [7]). The statement of a characterization of other circles γ with
complex torsion τ (−1 < τ 6= 0 < 1) in CP n(c) is more complicated (see Theorem
6 in page 182 in [7]).

Finally we remark that in CP n(c) even if closed circles have the same cur-
vature κ and the same length l, they are not necessarily congruent. For example,

let γ1 be a circle of curvature
√

2c
4 and complex torsion τ = 5698

559
√

559
and γ2 be a

circle of curvature
√

2c
4 and complex torsion τ = 12502

559
√

559
. These two circles are

closed circles of the same curvature
√

2c
4 and the same length 4

√
1118

3
√

c
π. But they

are not congruent each other (see [2]).

2. Characterizations of homogeneous real hypersurfaces in CP n.

Let M be a real hypersurface of CP n (of constant holomorphic sectional
curvature 4) and let N be a unit normal vector field on M . The Riemannian

connections ∇̃ on CP n and ∇ on M are related by

∇̃XY = ∇XY + 〈AX, Y 〉N
and

∇̃XN = −AX,

where 〈 , 〉 denotes the Riemmanian metric of M induced from the Fubini-Study
metric of CP n and A is the shape operator of M in CP n. Eigenvalues and
eigenvectors of the shape operator A are called principal curvatures and principal

curvature vectors, respectively. It is known that M admits an almost contact
metric structure (φ, ξ, η, 〈 , 〉) induced from the Kähler structure of CP n, which
satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1

and
〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ).

We recall the following ([17]).

Theorem A. Let M be a homogeneous real hypersurface of CP n. Then M is a

tube of radius r over the following Kähler submanifolds:

(A1) hyperplane CP n−1, where 0 < r < π
2 ,

(A2) totally geodesic CP k(1 5 k 5 n − 2), where 0 < r < π
2

(B) complex hyperquadric CQn−1, where 0 < r < π
4
,

(C) CP 1 × CP
n−1

2 , where 0 < r < π
4 and n(= 5) is odd,

(D) complex Grassmann CG2,5, where 0 < r < π
4

and n = 9,
(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < π

4 , and n = 15.



38 SADAHIRO MAEDA AND TOSHIAKI ADACHI

The numbers of distinct principal curvatures of homogeneous real hypersur-
faces are 2, 3, 3, 5, 5, 5, respectively.

In introduction we remark that there exist no real hypersurfaces all of whose
geodesics are circles in CP n. However, for each homogeneous real hypersurface
M by taking orthonormal vectors v1, · · · , v2n−2 orthogonal to ξ at each point p of
M in such a way that v1, · · · , v2n−2 are principal curvature vectors, all geodesics
γi = γi(s) on M with γi(0) = p and γ̇i(0) = vi (1 5 i 5 2n − 2) are circles in
CP n with positive curvature. Considering the converse of this fact, we establish
the following characterization of all homogeneous real hypersurfaces in CP n (cf.
[1]).

Theorem 5. Let M be a connected real hypersurface of CP n. Then M is locally

congruent to a homogeneous real hypersurface if and only if there exist orthonor-

mal vectors v1, · · · , v2n−2 orthogonal to ξ at each point p of M such that all

geodesics γi = γi(s) on M with γi(0) = p and γ̇i(0) = vi (1 5 i 5 2n − 2) are

circles in CP n with positive curvature.

In the hypothesis of Theorem 5 we do not need to suppose that we take
the vectors {v1, · · · , v2n−2} as a local field of orthonormal frames in M . But,
for every homogeneous real hypersurface M in CP n, we can take a local field of
orthonormal frames in M satisfying the hypothesis of Theorem 5. Every circle
in Theorem 5 is a totally real circle in CP n. We note that for any homogeneous
real hypersurface M , at each point p of M the geodesic γ = γ(s) with γ(0) = p
and γ̇(0) = ξ is a holomorphic circle of CP n.

In the following, we pay particular attention to geodesic spheres in CP n(4). It
is known that each geodesic sphere of radius r (0 < r < π

2
) in CP n(4) is congruent

to a tube of radius π
2 −r around a totally geodesic complex hyperplane CP n−1(4)

in CP n(4), which is the simplest homogeneous real hypersurface of CP n. The
following is a direct consequence of Theorem 5 (see [14]).

Theorem 6. Let M be a connected real hypersurface of CP n. Then M is locally

congruent to a geodesic sphere of radius r (0 < r < π
2 ) if and only if there exist

orthonormal vectors v1, · · · , v2n−2 orthogonal to ξ at each point p of M such that

all geodesics of M through p in the direction vi + vj (1 5 i 5 j 5 2n − 2) are

circles in CP n with positive curvature.

In the next section we shall investigate the extrinsic shape of every geodesic

of geodesic spheres in CP n(4) (for details, see [4]).

3. Extrinsic shape of geodesics of geodesic spheres.

Unless otherwise stated we here adopt the same terminology as that of the
preceding section. Let M be a geodesic sphere of radius r in CP n(4). Then the
shape operator A of M in CP n(4) is expressed as:

Aξ = (2 cot 2r)ξ and Au = (cot r)u
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for every tangent vector u ∈ TM orthogonal to ξ. Moreover, this real hypersur-
face M satisfies the following (cf. [16]).

1) The structure tensor φ and the shape operator A of M in CP n(4) are
commutative: φA = Aφ.

2) The covariant derivative of the shape operator A satisfies

(∇XA)Y = −{〈φX, Y 〉ξ + η(Y )φX}.

Let ι be an isometric imbedding of a geodesic sphere M into CP n(4). We shall
show that for every geodesic γ on M the curve ι ◦ γ in CP n(4) is a helix of order
4. Note that 〈γ̇(s), ξ〉 is constant along γ. Indeed,

∇γ̇〈γ̇(s), ξ〉 = 〈γ̇(s), φAγ̇〉 = 〈γ̇, Aφγ̇〉 = −〈φAγ̇, γ̇〉 = 0.

We shall call this constant the structure torsion of γ and denote by sin θ with
0 5 |θ| 5 π

2
. By direct computation we obtain the following:

Proposition 5. Let M be a geodesic sphere of radius r (0 < r < π
2
) in CP n(4).

We denote by ι an isometric imbedding of M into CP n(4). Then the extrinsic

shape ι ◦ γ of a geodesic γ on M is as follows:

(1) Suppose the radius r satisfies π
4 5 r < π

2 . If the structure torsion of γ is

± cot r, the curve ι ◦ γ is a geodesic.

(2) When r 6= π
4 , if the structure torsion of γ is ±1( i.e. γ̇ = ±ξ), the

curve ι ◦ γ is a circle of curvature 2| cot 2r| and of complex torsion ∓1 in

CP n(4). This circle lies on a totally geodesic CP 1(4).
(3) If γ has null structure torsion ( i.e. γ̇ is orthogonal to ξ), the curve ι ◦ γ

is a circle of curvature cot r and null complex torsion in CP n(4). This

circle lies on a totally geodesic RP 2(1).
(4) Generally, if the structure torsion of γ is of the form sin θ (0 < |θ| <

π
2 , sin θ 6= ± cot r), then the curve ι ◦ γ is a holomorphic helix of proper

order 4 whose curvatures are described as

κ1 = | cot r − tan r · sin2 θ|, κ2 = tan r · | sin θ| cos θ, κ3 = cot r.

Its complex torsions are described as

τ12 =

{ − sin θ, if cot r − tan r · sin2 θ > 0,

sin θ, if cot r − tan r · sin2 θ < 0,

τ14 =

{ −sgn(sin θ) cos θ, if cot r − tan r · sin2 θ > 0,

sgn(sin θ) cos θ, if cot r − tan r · sin2 θ < 0,

τ23 = sgn(sin θ) cos θ, τ34 = sin θ, τ13 = τ24 = 0,

where sgn(a) denotes the signature of a real number a. This helix ι ◦ γ
lies on a totally geodesic CP 2(4).
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It follows from Propositions 2 and 5 that every geodesic on a geodesic sphere
in CP n is generated by a Killing vector field on CP n as a curve in CP n. Thus
we have

Corollary 1. Every geodesic on a geodesic sphere in a complex projective space

is a simple curve.

The fact that the isometric imbedding ι of a geodesic sphere M into CP n

is an equivariant map, together with Propositions 2 and 5, shows the following
congruence theorem about geodesics on M :

Proposition 6. On a geodesic sphere M in a complex projective space, two

geodesics are congruent with respect the isometry group of M if and only if the

absolute values of their structure torsion coincide.

We are now in a position to study length of closed geodesics on a geodesic
sphere in a complex projective space. Let Π : S2n+1(1) → CP n(4) denote the
Hopf fibration of a unit sphere. For a smooth curve σ on CP n a smooth curve σ̃
is called a horizontal lift of σ if ˙̃σ(s) is a horizontal vector and dΠ( ˙̃σ(s)) = σ̇(s)
for all s. Our idea lies on considering a horizontal lift of a holomorphic helix ι ◦γ
for every geodesic γ on a geodesic sphere. The following elementary lemma is
useful in our argument.

Lemma 1. Let σ be a smooth simple curve on CP n(4). Suppose a horizontal lift

σ̃ of σ on S2n+1(1) is represented as

σ̃(s) = Ae
√
−1as + Be

√
−1bs + Ce

√
−1cs + De

√
−1ds,

which is a curve on Cn+1 with non-zero vectors A, B, C, D ∈ Cn+1 and mutually

distinct real numbers a, b, c, d which satisfy a + b + c + d = 0 and a 6= 0. Then

σ is closed if and only if all the ratios b/a, c/a, d/a are rational. In this case, its

length is

length(σ) = 2π × L.C.M.

(
1

|b − a| ,
1

|c − a| ,
1

|d − a|

)
.

Here for positive numbers α1, α2, α3, we denote by L.C.M.{α1, α2, α3} the min-

imum value of the set {jα1 | j = 1, 2, . . .} ∩ {jα2 | j = 1, 2, . . .} ∩ {jα3 | j =
1, 2, . . .}.

By virtue of this lemma we establish the following:

Theorem 7. Let γ be a geodesic on a geodesic sphere M of radius r (0 < r <
π/2) in CP n of holomorphic sectional curvature 4.

(1) If the structure torsion of γ is ±1, then γ is closed and its length is

π sin 2r.
(2) If γ has null structure torsion, then γ is also closed and its length is

2π sin r.
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(3) When the structure torsion of γ is of the form sin θ (0 < |θ| < π
2 ), then

it is closed if and only if

sin θ =
±q

sin r
√

p2 tan2 r + q2

with some relatively prime positive integers p and q with q < p tan2 r. In

this case, its length is

length(γ) =

{
2π

√
p2 sin2 r + q2 cos2 r, if pq is even

π
√

p2 sin2 r + q2 cos2 r, if pq is odd.

Remark. When the structure torsion is not equal to ±1, every horizontal lift γ̂
of ι ◦ γ for a geodesic γ on M is closed if and only if γ is closed.

When we study length spectrum of geodesics on a Riemannian manifold N , in
order to avoid the influence of the action of the isometry group of N , we consider
the moduli space of geodesics under the action of isometries. The moduli space
Geod(N) of geodesics on N is the quotient space of the set of all geodesics on N
under the congruency relation. We define the length spectrum LN : Geod(N) →
R ∪ {∞} of N by LN ([γ]) = length(γ), where [γ] denotes the congruency class
containing a geodesic γ. We also call the image Lspec(N) = LN (Geod(N)) ∩ R

the length spectrum of N . For example, the length spectrum of a standard unit
sphere is Lspec(Sm(1)) = {2π}.

As a direct consequence of Theorem 7, for a geodesic sphere M of radius r
in CP n(4), we can see that

Lspec(M) = {π sin 2r}
⋃

{2π sin r}

⋃ {
2π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣∣

p and q are relatively prime
positive integers which satisfy

pq is even and q < p tan2 r






⋃ {
π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣∣

p and q are relatively prime
positive integers which satisfy

pq is odd and q < p tan2 r



 .

Therefore we obtain the following.

Theorem 8. On a geodesic sphere M in CP n, there exist infinitely many con-

gruency classes of closed geodesics. Moreover the length spectrum Lspec(M) of

M is an unbounded discrete subset in the real line R.

For a length spectrum λ ∈ Lspec(N) we call the cardinality mN (λ) of the
set L−1

N (λ) the multiplicity of λ. When the multiplicity of a length spectrum is
1 we say it is simple. Clearly for a geodesic sphere M in a complex projective
space, we see by the expression of Lspec(M) that mM (λ) < ∞ at each λ. We here
study the first, the second and the third length spectrum, that is the minimum,
the second minimum and the third minimum of the length spectrum.
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Proposition 7. Let M be a geodesic sphere of radius r (0 < r < π/2) in CP n

of holomorphic sectional curvature 4.

(1) The first length spectrum of M is π sin 2r, which is the length of geodesics

with structure torsion ±1. It is simple.

(2) The second length spectrum of M is also simple. When 0 < r 5 π/4,
it is 2π sin r, which is the length of geodesics with null structure torsion.

When π/4 < r < π/2, it is π, which is the length of geodesics with

structure torsion ± cot r.
(3) The third length spectrum is also simple. When π/4 < r < π/2, it is

2π sin r, which is the length of geodesics with null structure torsion.

When
√

2m − 1 5 cot r <
√

2m + 1 (m = 1, 2, . . . ), in particular, 0 <

r 5 π/4, it is π
√

4m(m + 1) sin2 r + 1, which is the length of geodesics

with structure torsion ±1/(sin r
√

(2m + 1)2 tan2 r + 1).

Since the sectional curvature of a geodesic sphere M of radius r in CP n(4)
lies in the interval [cot2 r, 4 + cot2 r], the first length spectrum of M is smaller

than 2π/
√

4 + cot2 r if tan2 r > 2. Hence M is an example of a Bereger sphere, as
was pointed out in [18]. But for other length spectrum we find that the following
Klingenberg’s lemma holds:

Corollary 2. Let M be a geodesic sphere of radius r in CP n of holomorphic

sectional curvature 4. Except geodesics with structure torsion ±1, every geodesic

γ on M satisfies length(γ) > 2π/
√

4 + cot2 r.

Length spectrum is of course not necessarily simple. For example when M
is a geodesic sphere of radius π/4 in CP n, we have

Lspec(M) =
{

π,
√

2π,
√

10π, 2
√

5π,
√

26π,
√

34π,
√

50π, 2
√

13π,

√
58π, 2

√
17π,

√
74π,

√
82π, 10π,

√
106π, 2

√
29π,

√
130π, . . .

}

and the multiplicity of
√

130π is two; it is the length of geodesics of structure
torsions 3/

√
65 and 7/

√
65. Every spectrum which is smaller than

√
130π is

simple. Our aim here is to establish the following:

Theorem 9. Let M be a geodesic sphere of radius r (0 < r < π/2) in CP n of

holomorphic sectional curvature 4.

(1) If tan2 r is irrational, every length spectrum of M is simple.

(2) If tan2 r is rational, the multiplicity of each length spectrum of M is finite.

But it is not uniformly bounded; lim supλ→∞ mM (λ) = ∞. In this case,

the growth order of mM is not so rapid. It satisfies limλ→∞ λ−δmM (λ) =
0 for arbitrary positive δ.
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This theorem guarantees that on a geodesic sphere of radius r with irrational
tan2 r in a complex projective space, two closed geodesics are congruent if and
only if they have the same length. On the other hand, if tan2 r is rational, this
theorem shows that we can not classify congruency classes of geodesics only by
their length.

Now we make mention of the growth of the number of congruency classes
of geodesics with respect to their length spectrum for a geodesic sphere in a
complex projective space. For a Riemannian manifold N we denote by nN (λ)
the cardinality of the set {[γ] ∈ Geod(N) | LN ([γ]) 5 λ}.
Theorem 10. For a geodesic sphere M of radius r (0 < r < π/2) in CP n of

holomorphic sectional curvature 4 we have

lim
λ→∞

nM (λ)

λ2
=

3r

π4 sin 2r
.

4. Characterizations of space forms.

Our discussion is based on the expansion for the second fundamental form
of geodesic spheres due to Chen and Vanheche ([8]). For the sake of reader’s
convenience, we here place their result.

Let M be a Riemannian manifold of dimension greater than 2 with Rie-
mannian metric 〈 , 〉. We denote by Gm(r) a geodesic sphere with center m and
radius r in M , and by Am,r the shape operator of Gm(r) in M with respect to the
outward unit normal vector field. The following is a key lemma in this section.

Lemma 2 (Theorem 3.1 in [8]). For non-zero tangent vectors v, w ∈ TmM at a

point m ∈ M , we choose a unit tangent vector u ∈ TmM orthogonal to both v and

w. We respectively denote by vr, wr ∈ Texp
m

(ru)M the parallel displacements of

v and w along the geodesic segment expm(su), 0 5 s 5 r. Then for sufficiently

small r we have

〈Am,rvr, wr〉 =
1

r
〈v, w〉+

r

3
〈R(u, v)w, u〉+ O(r2),

where R is the curvature tensor of M .

In this section we characterize real space forms in terms of the extrinsic shape
of geodesics on geodesic spheres. It is well-known that for a real space form, every
geodesics on each geodesic sphere is a circle of positive curvature. We know the
converse holds.

Theorem 11. Let M be a Riemannian manifold with dim M = 3. Then the

following conditions are equivalent.

(1) M is a real space form.
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(2) At any point m ∈ M , every geodesic on a geodesic sphere Gm(r) of M is

a circle of positive curvature in M for each sufficiently small r.
(3) At any point m ∈ M , every geodesic sphere Gm(r) of M is totally umbilic

in M for each sufficiently small r.

The following is an improvement of Theorem 11. The same discussion as in
[14], together with Lemma 2 and Theorem 11, yields

Theorem 11’. A Riemannian manifold M with dim M = n = 3 is a real space

form if and only if at any point m ∈ M for each sufficiently small geodesic sphere

Gm(r) of M , there exist orthonormal vectors v1, v2, . . . , vn−1 at each point p of

Gm(r) such that all geodesics of Gm(r) through p in the direction vi + vj (1 5

i 5 j 5 n − 1) are circles of positive curvature in the ambient manifold M .

Finally we study geodesic spheres in a Kähler manifold M with complex
structure J . Let N be the outward unit normal vector field on Gm(r). Since
Gm(r) is a real hypersurface in M , it admits an almost contact metric structure
(φ, ξ, η, 〈 , 〉) induced from the Kähler structure J of M .

Paying attention on the characteristic vector field ξ of sufficiently small ge-
odesic spheres Gm(r), we obtain the following characterization of complex space
forms in the class of Kähler manifolds.

Theorem 12. Let M be a complex n(= 2)-dimensional Kähler manifold. Then

the following conditions are equivalent each other.

(1) M is a complex space form.

(2) At any point m ∈ M , each sufficiently small geodesic sphere Gm(r) of M
is a Hopf hypersurface of M , that is, the characteristic vector ξ of Gm(r)
is a principal curvature vector in M at each point p ∈ Gm(r).

(3) At any point m ∈ M , for each sufficiently small geodesic sphere Gm(r),
every integral curve of the vector field ξ is a geodesic on Gm(r).

(4) At any point m ∈ M , for each sufficiently small geodesic sphere Gm(r),
the geodesic on Gm(r) through p in the direction of the vector ξ is a circle

of positive curvature in M at every point p ∈ Gm(r).

Next we give attention to the extrinsic shape of geodesics on Gm(r) orthogo-
nal to the characteristic vector ξ. The following is a complex version for Theorem
11 in some sense.

Theorem 13. A complex n(= 2)-dimensional Kähler manifold M is a complex

space form if and only if at an arbitrary point m ∈ M , for any geodesic sphere

Gm(r) of sufficiently small radius r, every geodesic through any fixed point p of

Gm(r), which is orthogonal to the vector ξ at the point p, is a circle of positive

curvature in the ambient manifold M .

As an immediate consequence of our argument we find the following result
which corresponds to Theorem 11’.
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Theorem 13’. A complex n(= 2)-dimensional Kähler manifold M is a complex

space form if and only if at an arbitrary point m ∈ M , for any geodesic sphere

Gm(r) of sufficiently small radius r, there exist orthonormal vectors v1, v2, . . . , v2n−2

orthogonal to the characteristic vector ξ at each point p of Gm(r) such that all

geodesics on Gm(r) through p in the direction vi + vj (1 5 i 5 j 5 2n − 2) are

circles of positive curvature in the ambient manifold M .
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