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1. Introduction

In our usual logic, we do not infer arbitrary proposition from a contradictory
one. Also in executing programs, there is a state that a proposition A holds
in some program and in another there is a state in which A does not hold. To
explain these situations, recently, the logic called paraconsistent is proposed and
investigated. ([1, 2, 3] etc.) Since the logic has two kinds of negation operators,
there are cases such that both A and not A are theorems and hence it is difficult
to obtain the concept of truth. To the contrary, De Glas has proposed in [4]
a pseudoconsistent logic (PCL) in which A∧ ∼ A → ⊥ is not a theorem but
so ∼ (A∧ ∼ A) is. He also gave the axiomatization of PCL and proved the
completeness theorem by two kinds of models, PC-models and I-models. These
models are based on PC-algebras and partially ordered sets, respectively.

But there is an important question which is not referred : Is the logic PCL
decidable ?

In the present paper we prove the decidabily of PCL according to the following
steps:

1. PCL is characterized by the the class of pre-ordered sets instead of that of
partially ordered sets, that is `PCL A ⇐⇒ A : PO-valid ;

2. TL is characterized by the class of some kinds of Kripke-type models, that
is, `TL A ⇐⇒ A : TL-valid ;

3. PCL can be embedded into a certain tense logic (TL), that is, for some
map ξ, A : PO-valid ⇐⇒ ξ(A) : TL-valid ;

4. TL is decidable and hence so PCL is.

2. Pseudoconsistent logic and its semantics

First of all we define (propositional) pseudoconsistent logic according to De
Glas [4]. In the following we simply write PCL. The logic has the language as
follows:
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• p0, p1, p2, · · · : denumerable propositional variables
• ⊥ : constant
• ∼,∧,∨,→ : logical symbols

We put Π0 = {p0, p1, p2, · · · } ∪ {⊥} and denote by Π the set of all formulas
and by A, B, C, · · · formulas.

PCL is the following axiomatic system:
Axioms

1. ⊥ → A
2. A → (B → A)
3. (A → B) → ((A → (B → C)) → (A → C))
4. A ∧ B → A B ∧ A → A
5. A → (B → (A ∧ B))
6. A → A ∨ B A → B ∨ A
7. (A → C) → ((B → C) → (A ∨ B → C))
8. (A → B) → (∼ A ∨ B)
9. A∨ ∼ A

10. ∼∼ A → A
11. ∼ (A∧ ∼ A)

Rules of inference

1. B is inferred from A and A → B
2. ∼ A → B is inferred from A → B

If A is a provable in PCL, then we write `PCL A. It is proved in [4] that

Proposition 1. 1. `PCL A ∧ (A → B) → B
2. `PCL (∼ A → B) → (A ∨ B)
3. if `PCL A → B and `PCL A → (B → C) then `PCL A → C
4. if `PCL A → B and `PCL B → C then `PCL A → C
5. if `PCL∼ A → B then `PCL∼ B → A
6. if `PCL A → B then `PCL∼ B →∼ A
7. if `PCL A → B then `PCL∼ A ∨ B
8. if `PCL A → B and `PCL A →∼ B then `PCL∼ A
9. if `PCL A then `PCL∼ A → B for any B

10. if `PCL A and `PCL∼ B then `PCL B for any B
11. if `PCL A then `PCL∼∼ A.

In order to develop the algebraic semantics for the logic PCL we define a
PC-algebra.

We call a structure (L,∧,∨,→,¬, 0, 1) a PC-algebra when it satisfies the con-
ditions:

1. (L,≤,∧,∨) is a complete distributive lattice
2. x → y =

∨

{z : x ∧ z ≤ y}
3. ¬x =

∧

{y : x ∨ y = 1}

It is clear that any Boolean algebra is a PC-algebra. We note that if we define
¬x as the element

∨

{z : x ∧ z = 0} then the algebra is called a Heyting algebra.
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So the difference of PC-algebra and Heyting one is only the definition of ¬x. We
have the following results of PC-algebra in [4].

Proposition 2. 1. x ≤ y ⇐⇒ x → y
2. x ∧ ¬x ≥ 0
3. ¬(x ∧ y) = ¬x ∨ ¬y
4. ¬(x ∨ y) = ¬x ∧ ¬y
5. ¬¬x ≤ x
6. ¬x ≤ y ⇐⇒ x ∨ y = 1
7. x = 1 ⇐⇒ ¬¬x = 1
8. if ¬x = 0 then x = 1
9. if ¬x = 1 then x ≥ 0

10. ¬y → x = 1 =⇒ ¬x → y = 1
11. ¬y → ¬x = 1 =⇒ x → y = 1
12. x → 1 = 1
13. 0 → x = 1
14. x → (y → x) = 1
15. x → (y → x ∧ y) = 1
16. x → x ∨ y = 1

We have a well-known example of the PC-algebra. Let X be a topological
space and Ω be the set of closed subspaces. For any element A, B ∈ Ω if we
define

1. A ∧ B = A ∩ B
2. A ∨ B = A ∪ B
3. A → B =

⋃

{C ∈ Ω : A ∩ C ⊆ B}
4. ¬A = closure of (X − A)

then (Ω,∧,∨,→,¬, φ, X) is the PC-algebra. Moreover it is proved in [4] that
any PC-algebra A can be embedded into a topological PC-algebra Ω.

We define a global semantics. A mapping v : Π0 → A is called a valuation
on a PC-algebra A. The valuation v can be extended to the set Π of formulas
recursively:

• v(⊥) = 0
• v(∼ A) = ¬v(A)
• v(A ∧ B) = v(A) ∧ v(B)
• v(A ∨ B) = v(A) ∨ v(B)
• v(A → B) = v(A) → v(B)

A formula A is called an A-valid if v(A) = 1 for every valuation v : Π → A.
We say that A is PC-valid when it is A-valid for any PC-algebra A. It is proved
in [4] the completeness theorem of PCL.

Theorem 1. `PCL A if and only if A is PC-valid.

Another semantics called local semantics is given in [4]. This is a Kripke-like
style and is based on the partially ordered sets (poset). Let (I,≤) be a poset. A
subset S ⊆ I is said to be anti-hereditary if whenever i ∈ S and j ≤ i then j ∈ S.
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We denote by I∗ the set of all anti-hereditary subsets of I. A PCL-model on I
is a structure I = (I,≤, ϕ), where ϕ : Π0 → I∗ is a mapping which is called an
I-valuation in [4]. Of course the map ϕ can be extended to one with the domain
Π the set of all formulas. By I |=i A or simply |=i A, we mean that a formula A
is true in the model I at a state i ∈ I, which is defined as follows:

• |=i p iff i ∈ ϕ(p), where p ∈ Π0 ;
• 6|=i ⊥ , that is, it is not the case |=i ⊥ ;
• |=i∼ A iff there exists j such that i ≤ j and not |=j A ;
• |=i A ∧ B iff |=i A and |=i B ;
• |=i A ∨ B iff |=i A or |=i B ;
• |=i A → B iff for any j ≤ i if |=j A then |=j B.

A formula A is called true in I, denoted I |= A, if I |=i A for every i ∈ I. Also
A is said to be I-valid, denoted I |= A, when A is true in the model I = (I,≤).
For the local semantics it is proved in [4]

Proposition 3. `PCL A iff A is I-valid for any poset I.

We note that in the proof of the above we do not use the condition of asym-
metricity of the relation. This implies that it can be proved for the class of
pre-ordered sets. That is,

Theorem 2. `PCL A iff A is I-valid for any pre-ordered set I.

3. Tense logic TL and its semantics

In this section we define a certain tense logic (TL) and show the completeness
theorem by the class of Kripke-type models. The logic has the following language
:

• p0, p1, p2, · · · : denumerable propositional variables
• H, G : unary tense operators
• ¬,∧,∨,→ : logical symbols

TL-formulas are defined as usual, especially, we denote ¬G¬A and ¬H¬A
by FA and PA, respectively. We put Φ0 the set of all propositional variables,
that is, Φ0 = {p0, p1, p2, · · · }, Φ the set of all TL-formulas, and A, B, C, · · · the
TL-formulas. TL is the axiomatic system which is defined as the smallest tense
logic Kt with the axioms expressing reflexivity and transitivity, that is,

Axioms

1. every tautology
2. G(A → B) → (GA → GB)
3. H(A → B) → (HA → HB)
4. A → HFA, A → GPA
5. GA → A, HA → A
6. GA → GGA, HA → HHA

As is well-known in the theory of modal (or tense) logic, axiom 4 expresses
the reflexivity and axiom 5 transitivity.

Rules of inference
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1. B inferred from A and A → B
2. GA is inferred from A
3. HA is inferred from A

Now we define a semantics called a Kripke-model. Let < W, R > be a structure
where (i) W is a non-empty set (ii) R is a reflexive and transitive relation on
W , that is, W is the pre-ordered set with the relation R. We write xRy instead
of (x, y) ∈ R. Hence the condition (ii) is expressed by

• xRx for every x ∈ W
• xRy, yRz =⇒ xRz for any x, y, z ∈ W

A function V : Φ0 → 2W is also called a valuation on the strucutre < W, R >.
The valuation V is extended to V ∗ which domain is the set Φ of all the TL-
formulas as follows:

1. V ∗(p) = V (p) if p ∈ Φ0

2. V ∗(¬A) = {x|x /∈ V ∗(A)}
3. V ∗(A ∧ B) = V ∗(A) ∩ V ∗(B)
4. V ∗(A ∨ B) = V ∗(A) ∪ V ∗(B)
5. V ∗(A → B) = {x|x ∈ V ∗(A) =⇒ V ∗(B)}
6. V ∗(GA) = {x|∀y(xRy =⇒ y ∈ V ∗(A))}
7. V ∗(HA) = {x|∀y(yRx =⇒ y ∈ V ∗(A))}

For the sake of simplicity we use the same symbol V as the extended valuation.
A formula A ∈ Φ is said to be true at x in a model M =< W, R, V > when
x ∈ V (A) and denoted by M |=x A. We say that a formula A is TL-valid if A is
true at each element x ∈ W in every model M =< W, R, V >, that is, M |=x A
for every model M =< W, R, V > and x ∈ W . For the semantics we can show
the soundness theorem of the logic TL.

Theorem 3. `TL A =⇒ A is TL-valid.

Proof. By induction on the length of the proof.

In order to prove the converse (Completeness Theorem), we define a special
model called the canonical model. For any set of formulas Γ ⊆ Φ, we say that Γ
is inconsistent if there exist some formulas Ai ∈ Γ such that `TL ¬(A1∧· · ·∧An)
and that consistent otherwise. We can show that every consistent set of formulas
has a maximal one, that is,

Proposition 4. If Γ is a consistent set, then there exists a maximal consistent
set Γ∗ containing Γ.

Proof. We define a sequence { Γn } of subsets of formulas as follows:
Γ0 = Γ

Γn+1 =

{

Γn ∪ {An} if Γn ∪ {An} is consistent
Γn ∪ {¬An} otherwise

It easy to show that each Γn is consistent and so Γ∗ =
⋃

n Γn is. It is also clear
that Γ∗ is the maximal consistent set contaning Γ.
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Concerning to any maximal consistent set we have the results.

Proposition 5. For every maximal consistent set ∆, we have

1. `TL A =⇒ A ∈ ∆
2. A /∈ ∆ ⇐⇒ ¬A ∈ ∆
3. A ∧ B ∈ ∆ ⇐⇒ A ∈ ∆ and B ∈ ∆
4. A ∨ B ∈ ∆ ⇐⇒ A ∈ ∆ or B ∈ ∆
5. A → B ∈ ∆ ⇐⇒ if A ∈ ∆ then B ∈ ∆.

Proof. We only show the case of (1). Suppose that `TL A and A /∈ ∆. Since
∆ ∪ {A} is inconsistent by maximality of ∆, there exist some formulas Bi ∈ ∆
such that `TL ¬(B1 ∧ · · ·Bn ∧ A). This yields to `TL A → ¬(B1 ∧ · · · ∧ Bn). It
follows from `TL A that `TL ¬(B1 ∧ · · · ∧ Bn) and hence that ∆ is inconsistent.
But this is a contradiction. Hence if `TL A then A ∈ ∆.

For any maximal consistent sets x, y, we have

Lemma 1. For every formula A ∈ Ψ, the two conditions

1. If GA ∈ x then A ∈ y.
2. If HA ∈ y then A ∈ x.

are equivalent to each other.

Proof. Suppose that (1). If HA ∈ y but A /∈ x, since x is the maximal consistent
set, then ¬A ∈ x. From `TL ¬A → GP¬A, we have GP¬A ∈ x and hence
P¬A ∈ y by (1). This means that ¬HA ∈ y. This contradicts to the fact y
being consistent.

The converse can be proved similarly.

Now we are ready to define a canonical model. Let WTL be the set of all
maximal consistent sets of TL. For every x, y ∈ WTL, we define a relation RTL

on WTL as

xRTLy ⇐⇒ ∀A ∈ Φ (GA ∈ x =⇒ A ∈ y).

Lastly, a valuation VTL is defined by VTL(p) = {x ∈ WTL|p ∈ x}. In this case
we call < WTL, RTL, VTL > the canonical model of TL. The model plays an
important role in the theory of modal or tense logics. We note from the above

xRTLy if and only if ∀A ∈ Φ (HA ∈ y =⇒ A ∈ x).

Lemma 2. < WTL, RTL, VTL > is indeed our model, that is, RTL is reflective
and transitive.

Proof. First of all we shall prove that RTL is reflexive. Suppose that GA ∈ x
for any x ∈ WTL. Since `TL GA → A, we have GA → A ∈ x and thus A ∈ x.
This implies that xRTLx. Secondly, suppose that xRTLy, yRTLz, and GA ∈ x.
Since `TL GA → GGA, we have GGA ∈ x. It follows from xRTLy that GA ∈ y.
We also obtain A ∈ z from yRTLz. This means that RTL is transitive. Thus
< WTL, RTL, VTL > is certainly our considered model.

As to the canonical model we have the fundamental theorem to be able to
show the completeness.
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Theorem 4. For every formula A ∈ Φ and maximal consistent set x ∈ WTL,

x ∈ VTL(A) ⇐⇒ MTL |=x A.

Proof. We shall prove the theorem by induction on the construction of a formula.
If A is a propositional variable p ∈ Φ0, then it is evident from definition that

x ∈ VTL(p) iff p ∈ x.
If A is a formula of the form ¬B, then we have x ∈ VTL(¬B) iff x /∈ VTL(B)

iff MTL 6|=x B by induction hypothesis (IH) iff MTL |= ¬B.
It is similar to the cases of B ∧ C, B ∨ C, and of B → C.
Let A be a formula of the form GB. Suppose that x ∈ VTL(GB) and xRTLy

for every y ∈ Φ. By definition of VTL we have y ∈ VTL. It follows from IH that
MTL |=y B for every y such that xRTLy. Thus MTL |=x GB by definition.

Conversely, we assume that MTL |=x GB. If x /∈ VTL(GB), then there exists
y ∈ Φ such that xRTLy and y /∈ VTL(B) by definition of VTL. It follows from
IH that MTL 6|=y B for some y such that xRTLy. This implies MTL 6|=x GB and
hence a contradiction. Thus we have x ∈ VTL(GB) iff MTL |=x GB.

We can also prove the theorem in the case of HB similarly.

From the above we can show the completeness theorem of TL.

Theorem 5. If A is TL-valid then `TL A. Hence
`TL A ⇐⇒ A : TL-valid.

Proof. Suppose that 6`TL A. Since {¬A} is a consistent set, there exists a maxi-
mal consistent set x ∈ WTL such that {¬A} ⊆ x. It follows from the above that
MTL 6|=x A. This means that A is not TL-valid.

4. Decidability of TL

In this section we shall prove the decidability of the logic TL using the filtration
method. The method is familiar to the theory of modal logics. Let Ψ ⊆ Φ be a
subset of TL-formulas which is closed under subformulas, that is, if A ∈ Ψ and
B is a subformula of A then B ∈ Ψ. For every TL-model M =< W, R, V >, we
define a relation ≡ on W as follows: For any x, y ∈ W ,

x ≡ y ⇐⇒ ∀A ∈ Ψ (M |=x A iff M |=y A).

It is easy to show that the relation is the equivalence one, so we omit the proof.

Proposition 6. ≡ is the equivalence relation.

We define a filtration model M ∗ =< W ∗, R∗, V ∗ > of M =< W, R, V >
through Ψ. We put W ∗ = {[x]|x ∈ W} and [x] = {y ∈ W | x ≡ y}. For each
[x], [y] ∈ W ∗, a binary relation R∗ is define as

[x]R∗[y] ⇐⇒ ∀GA ∈ Ψ(M |=x GA =⇒ M |=y GA ∧ A) and
∀HB ∈ Ψ(M |=y HB =⇒ M |=x HB ∧ B).

The valuation V ∗ is also defined by

V ∗(p) =

{

{[x] | M |=x p} if p ∈ Ψ0

W ∗ otherwise
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The following is proved from the definition of R∗.

Lemma 3. If xRy in M , then [x]R∗[y] in M∗.

Proof. Suppose xRy. For every formula of the form GA ∈ Ψ, if M |=x GA,
then M |=y A by xRy. On the other hand, since M |=x GA → GGA, we have
M |=x GGA and hence M |=y GA. This implies that M |=y GA ∧ A. In case
of HB ∈ Ψ, we assume M |=y HB. It follows from xRy that M |=x B. Since
M |=y HB → HHB, we have M |=y HHB, M |=x HB and thus M |=x HB∧B.
Hence these mean that [x]R∗[y].

According to the definition, we can show that the filtration model is indeed a
TL-model.

Lemma 4. M∗ =< W ∗, R∗, V ∗ > is the TL-model.

Proof. We only show that R∗ is a reflexive and transitive relation on W ∗. Firstly
suppose that [x] ∈ W ∗. For every formula GA ∈ Ψ, if M |=x GA, since M |=x

GA → A, we have M |=x A and hence M |=x GA ∧ A. It is similar for any
formula of the form HB ∈ Ψ. This implies that [x]R∗[x] and that R∗ is reflexive.

Secondly, suppose that [x]R∗[y] and [y]R∗[z]. For any formula GA ∈ Ψ, if
M |=x GA, since M |=y GA ∧ A by supposition, then we have M |=y GA. It
follows that M |=z GA ∧ A. This means that R∗ is transitive.

For the filtration model M ∗ of M through Ψ, we establish the fundamental
theorem.

Theorem 6. For every A ∈ Ψ and x ∈ W ,
M∗ |=[x] A ⇐⇒ M |=x A

Proof. By induction on A.
• If p ∈ Ψ0 then M∗ |=[x] p iff p ∈ V ∗([x]) iff M |=x p.
• For the formula of the form B ∧ C ∈ Ψ, since B, C ∈ Ψ, we have M ∗ |=[x]

B ∧ C iff M∗ |=[x] B and M∗ |=[x] C iff M |=x B and M |=x C iff M |=x B ∧ C.
• For the case of GB ∈ Ψ, suppose that M 6|=x GB. There exists an element

y ∈ W such that xRy and M 6|=y B. Since [x]R∗[y] and M∗ 6|=[y] B by induction
hypothesis (IH), we have M ∗ 6|=[x] GB. Conversely, if M ∗ 6|=[x] GB then there
exists [y] ∈ W ∗ such that [x]R∗[y] and M∗ 6|=[y] B. It follows from IH that
M 6|=y B and hence M 6|=y GB ∧ B. Since [x]R∗[y], this means that M 6|=x GB.

• The other cases are proved similarly.

Now we show the decidability of TL. Let 6`TL A and Ψ be the set of sub-
formulas of A. It is clear that Ψ is finite and closed under subformulas. By
completeness theorem of TL, there exists a TL-model M =< W, R, V > and
x ∈ W such that M 6|=x A. By the above we can construct the filtration model
M∗ of M through Ψ. Since Ψ is the finite set, M ∗ is also a finite TL-model. For
that model we have M ∗ 6|=[x] A. This means that if A is not a TL-theorem then it
is not TL-valid in some finite model. Since the logic TL is finitely axiomatized,
we can prove

Theorem 7. TL is decidable.
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5. Embedding of PCL into TL

Let ξ be a map from the set Π of all PCL-formulas to the set Φ of all TL-
formulas as follows:

1. ξ(p) = Hp , where p ∈ Π0 − {⊥} = Φ0

2. ξ(⊥) = p ∧ ¬p for some fixed p ∈ Φ0

3. ξ(∼ A) = F¬ξ(A)
4. ξ(A ∧ B) = ξ(A) ∧ ξ(B)
5. ξ(A → B) = H(ξ(A) → ξ(B))

We can show that PCL can be embedded into TL in the sense that A is
PCL-valid iff ξ(A) is TL-valid for every formula A ∈ Π.

Theorem 8. For every formula A ∈ Π,
A is PCL-valid ⇐⇒ ξ(A) is TL-valid.

Proof. If ξ(A) is not TL-valid, then there exists a TL-model M =< W, R, V >
such that M 6|=x ξ(A) for some element x ∈ W . We note that the relation R is
reflexive and transitive, that is, < W, R > is a pre-ordered set. We construct a
PCL-model I =< I,≤, ϕ > as follows:

• I = W
• ≤= R, that is, x ≤ y if and only if xRy
• ϕ(p) = {x ∈ W |∀y(yRx =⇒ y ∈ V (p)}

We note that ϕ(p) is anti-hereditary. For if x ∈ ϕ(p) and y ≤ x, then we have
yRx for every z such that yRz. By transitivity, zRx. This yields to z ∈ V (p).
Hence ϕ(p) is anti-hereditary and I is indeed the PCL-model. For that model we
can show that I |=x α iff M |=x ξ(α) for any formula αinΠ. Since M 6|=x ξ(A),
we obtain that I 6|=x A for the PCL-model I. Thus A is not PCL-valid unless
ξ(A) is TL-valid.

Conversely, assume that A is not PCL-valid. There exists a PCL-model
I =< I,≤, ϕ > such that I 6|=x A for some x ∈ I. From that model we can
construct a TL-model M =< W, R, V >, where

1. W = I
2. R =≤, that is, xRy is defined by x ≤ y
3. V (p) = ϕ(p).

It is obvious that M is the TL-model. It is also easy to show that I |=u α
iff M |=u ξ(α) for every formula α ∈ Π and u ∈ W . Since I 6|=x A, we have
M 6|=x ξ(A). This means that ξ(A) is not TL-valid.

Therefore we can prove the theorem completely.

From the above we can obtain the main result of our paper.

Theorem 9. PCL is decidable.
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Proof.

6`PCL A ⇐⇒ A : not PCL − valid

⇐⇒ ξ(A) : not TL − valid

⇐⇒ ∃M : finte TL − model, ∃x; M 6|=x ξ(A)

⇐⇒ ∃I : finite PCL − model, ∃x; I 6|=x A

Since PCL is the finitely axiomatizable logic, it follows from the above that
it is decidable.

References

[1] D.Batens, Paraconsistent extensional propositional logics, Logique et Analyse, vol. 90-91

(1980), 195-234.
[2] N.C.A. da Costa, On the theory of inconsistent formal systems, Notre Dame Jour. of

Formal Logic, vol. 15 (1974), 497-510.
[3] N.C.A. da Costa and E.H.Alves, A semantical analysis of the calculi Cn , Notre Dame

Jour. of Formal Logic, vol. 18 (1977), 621-630.
[4] M.De Glas, Pseudoconsistent logic:Towards a formal framework for handling contradic-

tions, Logic at Work, E.Orlowska (ed.), Physica-Verlag, Springer (1999), 512-529.
[5] G.Priest, Reasoning about truth, Artificial Intelligence, vol. 39 (1989), 231-244.

Department of Mathematics and Computer Science, Shimane University, Mat-

sue 690-8504 JAPAN

E-mail address : kondo@cis.shimane-u.ac.jp


