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Abstract. The smallest eigenvalue of a weighted discrete Laplacian is closely
related to a generalized Hardy’s inequality on networks. We shall estimate
the smallest eigenvalue by using a discrete Kuramochi potential with some
numerical experiments.

1. PROBLEM SETTING

Let X be a finite set of nodes, Y be a finite set of arcs and K be the node-arc
incidence matrix. Assume that the graph G := {X, Y, K} is connected and has
no self-loop. For every two nodes a, b ∈ X, denote by ρ(a, b) the geodesic distance
between a and b, i.e., the minimum number of arcs in the paths between a and
b.

For a strictly positive real-valued function r, N := {G, r} is called a network.
Denote by L(X) the set of all real valued functions on X, by L+(X) the set of
all nonnegative u ∈ L(X).

For u ∈ L(X), the discrete derivative du, the discrete Laplacian ∆u(x) and
the Dirichlet sum D(u) of u on N are defined by

du(y) := −r(y)−1
∑

x∈X
K(x, y)u(x),

∆u(x) :=
∑

y∈Y
K(x, y)[du(y)],

D(u) :=
∑

y∈Y
r(y)[du(y)]2.

The mutual Dirichlet sum D(u, v) of u, v ∈ L(X) is defined by

D(u, v) :=
∑

y∈Y
r(y)[du(y)][dv(y)].

Let A0 be a nonempty subset of X such that X\A0 is connected and let m ∈ L(X)
satisfy m(x) = 0 on A0 and m(x) > 0 on X \ A0.
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A generalized Hardy’s inequality is to find the best possible constant Cm > 0
such that

∑

x∈X
m(x)u(x)2 ≤ CmD(u)

for all u ∈ L(X) such that u(x) = 0 on A0.
By special choices of N, A0 and m, we obtain Wirtinger’s inequality and

Hardy’s inequality in [2] and [3]. We shall show that 1/Cm is equal to the
smallest eigenvalue of an eigenvalue problem. We shall also give an esimation of
this value by using a discrete Kuramochi potential studied in [4] and [5].

2. Minimum eigenvalue

Let us put
L(X; A0) := {u ∈ L(X); u = 0 on A0}.

For simplicity, let us put

((u, v))m :=
∑

x∈X
m(x)u(x)v(x),

‖u‖m := [((u, u))m]1/2,

χm(u) :=
D(u)

‖u‖2
m

.

We shall consider the extremum problem (Hm):

Find λm := inf{χm(u); u ∈ L(X; A0)}

= inf{D(u); u ∈ L(X; A0), ‖u‖m = 1}.

Proposition 2.1. There exists an optimal solution ũ of problem (Hm), i.e.,
λm = D(ũ), ũ ∈ L(X; A0) and ‖ũ‖m = 1.

Proof. Let {vk} be a sequence in L(X; A0) such that χm(vk) → λm as k → ∞.
Put uk = vk/‖vk‖m. Then ‖uk‖m = 1 and

χm(uk) = D(uk) = D(vk)/‖vk‖
2

m = χm(vk).

Since {uk(x)} is bounded for each x ∈ X, we may assume that {uk} converges
pointwise to a function ũ ∈ L(X; A0). We have ‖ũ‖m = 1 and

lim
k→∞

D(uk) = D(ũ),

so that χm(ũ) = λm.

Denote by S(λm) be the set of all optimal solutions of problem (Hm), i.e.,

S(λm) := {u ∈ L(X; A0); χm(u) = λm}.

Consider the following eigenvalue problem of finding a number µ and a nonzero
function u ∈ L(X; A0) which satisfy

(Eig) ∆u(x) = −µm(x)u(x) on X \ A0.

Denote by Em(∆) the set of all µ satisfying (Eig) and by EVm(µ) the set of
nonzero functions u satisfying (Eig) with µ ∈ Em(∆).
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For every u ∈ EVm(µ), we have

D(u) = −
∑

x∈X
[∆u(x)]u(x)

= µ
∑

x∈X
m(x)u(x)2 = µ‖u‖2

m.

Since D(u) is positive definite on the set L(X; A0), we see that Em(∆) consists
of positive real numbers.

By the above observation, we have

Proposition 2.2. λm = min{µ; µ ∈ Em(∆)}.

Lemma 2.1. S(λm) = EVm(λm).

Proof. By the above observation, it suffices to show S(λm) ⊂ EVm(λm). Let
u ∈ S(λm). Denote by εx ∈ L(X) the characteristic function of the set {x}. For
any real number t and x ∈ X \ A0, we have

λm = χm(u) ≤ χm(u + tεx),

or
λm‖u + tεx‖

2

m ≤ D(u + tεx).

Noting the relation

D(u + tεx) = D(u) + 2tD(ũ, εx) + t2D(εx),

‖u + tεx‖
2

m = ‖u‖2

m + 2t((u, εx))m + t2‖εx‖
2

m,

we obtain
D(u, εx) = λm((u, εx))m.

Since D(u, εx) = −∆u(x) and ((u, εx))m = m(x)u(x), we conclude that u ∈
EVm(λm).

Lemma 2.2. Assume that u ∈ S(λm). Then |u| ∈ S(λm) and u(x1)u(x2) ≥ 0
for every x1, x2 ∈ X \ A0 with ρ(x1, x2) = 1.

Proof. Let v = |u|. Then v ∈ L(X; A0) and D(v) ≤ D(u) holds (cf.[9]). Since
‖v‖m = ‖u‖m, we have

λm ≤ χm(v) ≤ χm(u) = λm,

and hence v ∈ S(λm). Suppose that there exist x1, x2 ∈ X \ A0 such that
ρ(x1, x2) = 1 and u(x1)u(x2) < 0. Let y′ ∈ Y be an arc whose endpoints are x1

and x2. Then

|dv(y′)| = r(y′)−1|v(x1) − v(x2)|

< r(y′)−1|u(x1) − u(x2)| = |du(y′)|,

so that D(v) < D(u). Thus λm = χm(v) < χm(u) = λm. This is a contradiction.

Corollary 2.1. If u ∈ S(λm), then either u = |u| or u = −|u|.

Lemma 2.3. If u ∈ S(λm) is non-negative, then u(x) > 0 on X \ A0.
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Proof. Let u ∈ S(λm) be nonnegative. By Lemma 2.1,

∆u(x) = −λmm(x)u(x) ≤ 0 on X \ A0.

Namely u is superharmonic on X \ A0. By the minimum principle (cf. [9]), we
have u(x) > 0 on X \ A0.

Corollary 2.2. If u ∈ S(λm), then either ∆u(x) < 0 on X \ A0 or ∆u(x) > 0
on X \ A0.

Lemma 2.4. The dimension of EVm(λm) is one. Namely, if u1, u2 ∈ EVm(λm),
then u1 and u2 are proportional.

Proof. Assume that there exist u1, u2 ∈ EVm(λm) such that they are not propor-
tional. Choose numbers α and β such that |α|+|β| > 0 and αu1(x1)+βu2(x1) = 0
for some x1 ∈ X \ A0. Let u = αu1 + βu2. Then u 6= 0, since u1 and u2 are not
proportional. We have

∆u(x) = α∆u1(x) + β∆u2(x)

= −λmm(x)u1(x) − λmm(x)u2(x)

= −λmm(x)u(x).

Namely u ∈ EVm(λm) = S(λm). We have

∆u(x1) = λmm(x)u(x1) = 0.

This contadicts Corollary 2.2.

Summing up these results, we obtain

Theorem 2.1. There exists a unique ũ ∈ L(X; A0) such that
(1) λm = D(ũ) and ‖ũ‖m = 1;
(2) ũ(x) > 0 on X \ A0;
(3) ∆ũ(x) = −λmm(x)ũ(x) on X \ A0.

3. Estimation of λm

Let us put

D(N ; A0) := {u ∈ L(X; A0); D(u) < ∞}.

Since N is a finite network, we see that D(N ; A0) = L(X; A0). Notice that
D(N ; A0) is a Hilbert space with the inner product D(u, v) (cf. [9]).

The Kuramochi function g̃x of N with pole at x ∈ X \ A0 is defined by the
reproducing property:

u(x) = D(u, g̃x) for all u ∈ D(N ; A0)

(cf. [4]). For each nonempty subset B of X \ A0, let us put

d(A0, B) := inf{D(u); u ∈ D(N ; A0), u = 1 on B}.

We have
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Lemma 3.1. g̃x has the following properties:
(1) g̃x(z) = 0 on A0;
(2) 0 ≤ g̃x ≤ g̃x(x) on X;
(3) ∆g̃x(z) = −εx(z) on X \ A0.
(4) d(A0, {x}) = 1/g̃x(x).

Now we shall estimate the value of λm. Our idea is to use the discrete Ku-
ramochi function studied in [4] and [5]. A similar idea can be founded in [8] to
estimate Lyapunov’s inequality.

The Kuramochi potential G̃m(x) of m is defined by

G̃m(x) :=
∑

z∈X
g̃x(z)m(z).

Lemma 3.2. Let ũ be as in Theorem 2.1. Then

ũ(x) = λm

∑

z∈X
m(z)[ũ(z)]g̃x(z).

Proof. By the reproducing property of the Kuramochi function and Lemma 3.1,
we have

ũ(x) = D(ũ, g̃x)

= −
∑

z∈X
[∆ũ(z)]g̃x(z)

= λm

∑

z∈X
m(z)[ũ(z)]g̃x(z).

Theorem 3.1. The following estimation holds:

min{G̃m(x); x ∈ X \ A0} ≤
1

λm

≤ max{G̃m(x); x ∈ X \ A0}.

Proof. Let ũ be as in Theorem 2.1. There exists b ∈ X \ A0 such that ũ(b) =
max{ũ(x); x ∈ X}. Then we have by Lemma 3.2

ũ(b) = λm

∑

z∈X
m(z)[ũ(z)]g̃b(z)

≤ λmũ(b)
∑

z∈X
g̃b(z)m(z)

= λmũ(b)G̃m(b)

≤ λmũ(b) max{G̃m(x); x ∈ X \ A0}.

We can prove the right hand side inequality similarly.

Theorem 3.2. Let m(X) :=
∑

x∈X
m(x). Then the following estimation holds:

min{d(A0, {x}); x ∈ X \ A0} ≤ m(X)λm ≤ max{d(A0, {x}); x ∈ X \ A0}.
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Proof. Let ũ be as in Theorem 2.1. There exists b ∈ X \ A0 such that ũ(b) =
max{ũ(x); x ∈ X}. Then we have by Lemma 3.2

ũ(b) = λm

∑

z∈X
m(z)[ũ(z)]g̃b(z)

≤ λmũ(b) max{g̃x(x); x ∈ X \ A0}m(X)

= λmũ(b) max{1/d(A0, {x}); x ∈ X \ A0}.

4. Classical Hardy’s inequality

In this section, we consider the following special finite network N = {X, Y, K, r}
defined by:

X = {x0, x1, · · · , xn}, Y = {y1, y2, · · · , yn}

K(xi, yi) = 1, K(xi−1, yi) = −1 for i = 1, 2, · · · , n

and K(x, y) = 0 for any other pair.
Notice that the graph {X, Y, K} is a subgraph of the one-dimesional lattice
domain Z. For simplicity, we set

uk := u(xk), rk := r(yk), wk = r−1

k (uk − uk−1).

Then ∆u(xk) = wk+1 − wk for 1 ≤ k ≤ n − 1, ∆u(x0) = w1 and ∆u(xn) = −wn.
Furthermore

D(u) =
n

∑

k=1

r−1

k (uk − uk−1)
2 =

∑

k=1

rkw
2

k.

We shall prove

Theorem 4.1. Let A0 := {x0} and put Rk =

k
∑

j=1

rj. Then

∞
∑

k=1

rk(
uk

Rk
)2 ≤ 4D(u)

for every u ∈ L(X; A0).

Proof. Let us put vk := uk − uk−1 and αk := uk/Rk. Then

rkα
2

k − 2αkvk = rkα
2

k − 2αk(αkRk − αk−1Rk−1)

= (rk − 2Rk)α
2

k + 2Rk−1αkαk−1

≤ (rk − 2Rk)α
2

k + Rk−1(α
2

k + α2

k−1)

= −Rkα
2

k + Rk−1α
2

k−1.

Since u0 = 0, we have
n

∑

k=1

(rkα
2

k − 2αkvk) ≤
n

∑

k=1

(−Rkα
2

k + Rk−1α
2

k−1) = −Rnα2

n ≤ 0.
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Therefore we have

n
∑

k=1

rkα
2

k ≤ 2

n
∑

k=1

αkvk

≤ 2[

n
∑

k=1

rkα
2

k]
1/2[

n
∑

k=1

r−1

k v2

k]
1/2,

so that
n

∑

k=1

rkα
2

k ≤ 4

n
∑

k=1

r−1

k v2

k = 4D(u).

Corollary 4.1. Let A0 = {x0} and mk = m(xk) :=
rk

R2
k

. Then λm ≥ 1/4.

Corollary 4.2. Assume that A0 = {x0} and rk = 1 for all k. Then

n
∑

k=1

(
uk

ρ(x0, xk)
)2 ≤ 4

n
∑

k=1

(uk − uk−1)
2

for all uk (k = 0, 1, · · · , n) with u0 = 0.

Notice that ρ(x0, xk) = Rk and ρ(x0, xk) = k in Corollary 4.2, this inequality
can be found in [2], page 239. We may expect that Corollary 4.2 would also
holds in the general case. However it is not true as shown by Table 4 in the next
section.

Hereafter in this section we always assume that A0 = {x0} and m(xk) :=
rk/R

2
k. In order to obtain the value λm, we calculate the minimum eigenvalue of

(Eig) numerically:

−2u1 + u2 = µm1u1

−2uk + uk+1 + uk−1 = µmkuk for 2 ≤ k ≤ n − 1

−un + un−1 = µmnun

In order to study λm as a function of the size n of N , we denote it by λ(n) :=
λm(n). Some numerical experiments are given in the next section.

In the present case, the Kuramochi function is given by

g̃xk
(xj) =

{

Rj for 0 ≤ j ≤ k
Rk for k < j ≤ n

We estimate λm by using the Kuramochi potential G̃m:

G̃m(xk) =
k

∑

j=1

rj

Rj

+ Rk

n
∑

j=k+1

rj

R2
j

.
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It is easily seen that

µ∗(n) := max{G̃m(x); x ∈ X \ A0} =

n
∑

k=1

rk

Rk

µ∗(n) := min{G̃m(x); x ∈ X \ A0} =

n
∑

k=1

rk

R2
k

.

By Theorem 3.1, we have

1

µ∗(n)
≤ λ(n) ≤

1

µ∗(n)

Some numerical experiments for these quantities are also given in the next
section.

5. Numerical experiments

Let G = {X, Y, K} be the same graph as in Section 4. The graph can be
drawn as follows:

©
x0

y1

−−−→©
x1

y2

−−−→©
x2

−−−→©−−−→ · · · −−−→©
yn

−−−→©
xn

We take A0 = {x0} and m(xk) := rk/R
2
k except in Table 4.

Table 1: The case where rk = 1 for all k.

n λ(n) 1/µ∗(n) 1/µ∗(n)
10 0.502934 0.341417 0.645258
100 0.376383 0.192776 0.611627
1000 0.318182 0.133592 0.608297

Table 2: The case where rk = 1/k for all k.

n 1/µ∗(n) 1/µ∗(n)
30 0.439971 0.625684
100 0.394713 0.604038
10, 000 0.344817 0.583205

Calculus of the minimum eigenvalue:

n λ(n) Software
30 0.553865 Mathematica
100 0.518052 Mathematica
10, 000 0.4564519 Matlab
100, 000 0.4412748 Matlab
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Table 3: The case where rk = 21−k for all k.

n 1/µ∗(n) 1/µ∗(n) Software
15 0.622407 0.729114 Mathematica
20 0.622396 0.728854 Mathematica
28 0.622396 0.728854 Mathematica
29 0.622396 0.728854 Mathematica

Calculus by Mathematica shows that

1/µ∗(n) = 0.622396 for n ≥ 19
1/µ∗(n) = 0.728854 for n ≥ 19

Calculus of the minimum eigenvalue:

n λ(n) Software
5 0.708196 Mathematica
15 0.697629 Mathematica
17 0.697622 Mathematica
18 0.697625 Mathematica increases
20 0.69765 Mathematica increases
28 0.666465 Mathematica decreases
29 0 Mathematica absurd
29 0.697618 Matlab

Calculus by Mathematica shows that λ(n) becomes strange if n ≥ 18.

Finally we change m(x) slightly and estimate λm(n) in this case.

Table 4: We choose m(xk) =
1

R2
k

and rk = 21−k. Then we obtain:

n λm(n) 1/µ∗(n) 1/µ∗(n)
30 0.0663717 0.0632777 0.116446
100 1.68955? 0.0196387 0.0383323

Calculus by Mathematica shows that λm(n) becomes strange if n ≥ 51.
We remark that

µ∗(n) = G̃m(x1) =

n
∑

k=1

1

R2
k

→ ∞

as n → ∞, so that λm(n) → 0 as n → ∞.
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