HARDY'S INEQUALITY ON FINITE NETWORKS

Yukihiro SHOGENJI and Maretsugu YAMASAKI

(Received: December 25, 1998)

ABSTRACT. The smallest eigenvalue of a weighted discrete Laplacian is closely related to a generalized Hardy's inequality on networks. We shall estimate the smallest eigenvalue by using a discrete Kuramochi potential with some numerical experiments.

1. PROBLEM SETTING

Let X be a finite set of nodes, Y be a finite set of arcs and K be the node-arc incidence matrix. Assume that the graph $G := \{X, Y, K\}$ is connected and has no self-loop. For every two nodes $a, b \in X$, denote by $\rho(a, b)$ the geodesic distance between a and b, i.e., the minimum number of arcs in the paths between a and b.

For a strictly positive real-valued function $r, N := \{G, r\}$ is called a network. Denote by L(X) the set of all real valued functions on X, by $L^+(X)$ the set of all nonnegative $u \in L(X)$.

For $u \in L(X)$, the discrete derivative du, the discrete Laplacian $\Delta u(x)$ and the Dirichlet sum D(u) of u on N are defined by

$$\begin{array}{lcl} du(y) &:= & -r(y)^{-1} \sum_{x \in X} K(x,y) u(x), \\ \Delta u(x) &:= & \sum_{y \in Y} K(x,y) [du(y)], \\ D(u) &:= & \sum_{y \in Y} r(y) [du(y)]^2. \end{array}$$

The mutual Dirichlet sum D(u, v) of $u, v \in L(X)$ is defined by

$$D(u,v) := \sum_{y \in Y} r(y)[du(y)][dv(y)].$$

Let A_0 be a nonempty subset of X such that $X \setminus A_0$ is connected and let $m \in L(X)$ satisfy m(x) = 0 on A_0 and m(x) > 0 on $X \setminus A_0$.

¹⁹⁹¹ Mathematics Subject Classification. 31C20, 39A10.

Key words and phrases. Network, Discrete Inequality, Kuramochi Function, eigenvalue problem.

This work was supported in part by Grant-in-Aid for Scientific Research (C)(No. 09640188), Japanese Ministry of Education, Science and Culture.

A generalized Hardy's inequality is to find the best possible constant $C_m > 0$ such that

$$\sum_{x \in X} m(x)u(x)^2 \le C_m D(u)$$

for all $u \in L(X)$ such that u(x) = 0 on A_0 .

By special choices of N, A_0 and m, we obtain Wirtinger's inequality and Hardy's inequality in [2] and [3]. We shall show that $1/C_m$ is equal to the smallest eigenvalue of an eigenvalue problem. We shall also give an esimation of this value by using a discrete Kuramochi potential studied in [4] and [5].

2. MINIMUM EIGENVALUE

Let us put

$$L(X; A_0) := \{ u \in L(X); u = 0 \text{ on } A_0 \}.$$

For simplicity, let us put

$$((u,v))_m := \sum_{x \in X} m(x)u(x)v(x),$$

$$\|u\|_m := [((u,u))_m]^{1/2},$$

$$\chi_m(u) := \frac{D(u)}{\|u\|_m^2}.$$

We shall consider the extremum problem (H_m) :

Find
$$\lambda_m := \inf\{\chi_m(u); u \in L(X; A_0)\}\$$

= $\inf\{D(u); u \in L(X; A_0), \|u\|_m = 1\}.$

Proposition 2.1. There exists an optimal solution \tilde{u} of problem (H_m) , i.e., $\lambda_m = D(\tilde{u}), \tilde{u} \in L(X; A_0) \text{ and } \|\tilde{u}\|_m = 1.$

Proof. Let $\{v_k\}$ be a sequence in $L(X; A_0)$ such that $\chi_m(v_k) \to \lambda_m$ as $k \to \infty$. Put $u_k = v_k / ||v_k||_m$. Then $||u_k||_m = 1$ and

$$\chi_m(u_k) = D(u_k) = D(v_k) / \|v_k\|_m^2 = \chi_m(v_k).$$

Since $\{u_k(x)\}$ is bounded for each $x \in X$, we may assume that $\{u_k\}$ converges pointwise to a function $\tilde{u} \in L(X; A_0)$. We have $\|\tilde{u}\|_m = 1$ and

$$\lim_{k \to \infty} D(u_k) = D(\tilde{u}),$$

so that $\chi_m(\tilde{u}) = \lambda_m$.

Denote by $S(\lambda_m)$ be the set of all optimal solutions of problem (H_m) , i.e.,

$$S(\lambda_m) := \{ u \in L(X; A_0); \chi_m(u) = \lambda_m \}.$$

Consider the following eigenvalue problem of finding a number μ and a nonzero function $u \in L(X; A_0)$ which satisfy

(*Eig*)
$$\Delta u(x) = -\mu m(x)u(x)$$
 on $X \setminus A_0$.

Denote by $E_m(\Delta)$ the set of all μ satisfying (Eig) and by $EV_m(\mu)$ the set of nonzero functions u satisfying (Eig) with $\mu \in E_m(\Delta)$.

For every $u \in EV_m(\mu)$, we have

$$D(u) = -\sum_{x \in X} [\Delta u(x)]u(x)$$

= $\mu \sum_{x \in X} m(x)u(x)^2 = \mu ||u||_m^2.$

Since D(u) is positive definite on the set $L(X; A_0)$, we see that $E_m(\Delta)$ consists of positive real numbers.

By the above observation, we have

Proposition 2.2. $\lambda_m = \min\{\mu; \mu \in E_m(\Delta)\}.$

Lemma 2.1. $S(\lambda_m) = EV_m(\lambda_m)$.

Proof. By the above observation, it suffices to show $S(\lambda_m) \subset EV_m(\lambda_m)$. Let $u \in S(\lambda_m)$. Denote by $\varepsilon_x \in L(X)$ the characteristic function of the set $\{x\}$. For any real number t and $x \in X \setminus A_0$, we have

$$\lambda_m = \chi_m(u) \le \chi_m(u + t\varepsilon_x),$$

or

$$\lambda_m \| u + t\varepsilon_x \|_m^2 \le D(u + t\varepsilon_x).$$

Noting the relation

$$D(u + t\varepsilon_x) = D(u) + 2tD(\tilde{u}, \varepsilon_x) + t^2D(\varepsilon_x),$$

$$\|u + t\varepsilon_x\|_m^2 = \|u\|_m^2 + 2t((u, \varepsilon_x))_m + t^2\|\varepsilon_x\|_m^2,$$

we obtain

$$D(u,\varepsilon_x) = \lambda_m((u,\varepsilon_x))_m.$$

Since $D(u, \varepsilon_x) = -\Delta u(x)$ and $((u, \varepsilon_x))_m = m(x)u(x)$, we conclude that $u \in EV_m(\lambda_m)$.

Lemma 2.2. Assume that $u \in S(\lambda_m)$. Then $|u| \in S(\lambda_m)$ and $u(x_1)u(x_2) \ge 0$ for every $x_1, x_2 \in X \setminus A_0$ with $\rho(x_1, x_2) = 1$.

Proof. Let v = |u|. Then $v \in L(X; A_0)$ and $D(v) \leq D(u)$ holds (cf.[9]). Since $||v||_m = ||u||_m$, we have

$$\lambda_m \le \chi_m(v) \le \chi_m(u) = \lambda_m$$

and hence $v \in S(\lambda_m)$. Suppose that there exist $x_1, x_2 \in X \setminus A_0$ such that $\rho(x_1, x_2) = 1$ and $u(x_1)u(x_2) < 0$. Let $y' \in Y$ be an arc whose endpoints are x_1 and x_2 . Then

$$\begin{aligned} |dv(y')| &= r(y')^{-1} |v(x_1) - v(x_2)| \\ &< r(y')^{-1} |u(x_1) - u(x_2)| = |du(y')| \end{aligned}$$

so that D(v) < D(u). Thus $\lambda_m = \chi_m(v) < \chi_m(u) = \lambda_m$. This is a contradiction.

Corollary 2.1. If $u \in S(\lambda_m)$, then either u = |u| or u = -|u|. Lemma 2.3. If $u \in S(\lambda_m)$ is non-negative, then u(x) > 0 on $X \setminus A_0$. Proof. Let $u \in S(\lambda_m)$ be nonnegative. By Lemma 2.1,

$$\Delta u(x) = -\lambda_m m(x)u(x) \le 0 \quad \text{on } X \setminus A_0.$$

Namely u is superharmonic on $X \setminus A_0$. By the minimum principle (cf. [9]), we have u(x) > 0 on $X \setminus A_0$.

Corollary 2.2. If $u \in S(\lambda_m)$, then either $\Delta u(x) < 0$ on $X \setminus A_0$ or $\Delta u(x) > 0$ on $X \setminus A_0$.

Lemma 2.4. The dimension of $EV_m(\lambda_m)$ is one. Namely, if $u_1, u_2 \in EV_m(\lambda_m)$, then u_1 and u_2 are proportional.

Proof. Assume that there exist $u_1, u_2 \in EV_m(\lambda_m)$ such that they are not proportional. Choose numbers α and β such that $|\alpha| + |\beta| > 0$ and $\alpha u_1(x_1) + \beta u_2(x_1) = 0$ for some $x_1 \in X \setminus A_0$. Let $u = \alpha u_1 + \beta u_2$. Then $u \neq 0$, since u_1 and u_2 are not proportional. We have

$$\Delta u(x) = \alpha \Delta u_1(x) + \beta \Delta u_2(x)$$

= $-\lambda_m m(x) u_1(x) - \lambda_m m(x) u_2(x)$
= $-\lambda_m m(x) u(x).$

Namely $u \in EV_m(\lambda_m) = S(\lambda_m)$. We have

$$\Delta u(x_1) = \lambda_m m(x) u(x_1) = 0.$$

This contadicts Corollary 2.2.

Summing up these results, we obtain

Theorem 2.1. There exists a unique $\tilde{u} \in L(X; A_0)$ such that

(1) $\lambda_m = D(\tilde{u}) \text{ and } \|\tilde{u}\|_m = 1;$ (2) $\tilde{u}(x) > 0 \text{ on } X \setminus A_0;$

(3) $\Delta \tilde{u}(x) = -\lambda_m m(x) \tilde{u}(x)$ on $X \setminus A_0$.

3. Estimation of λ_m

Let us put

$$D(N; A_0) := \{ u \in L(X; A_0); D(u) < \infty \}.$$

Since N is a finite network, we see that $D(N; A_0) = L(X; A_0)$. Notice that $D(N; A_0)$ is a Hilbert space with the inner product D(u, v) (cf. [9]).

The Kuramochi function \tilde{g}_x of N with pole at $x \in X \setminus A_0$ is defined by the reproducing property:

$$u(x) = D(u, \tilde{g}_x)$$
 for all $u \in D(N; A_0)$

(cf. [4]). For each nonempty subset B of $X \setminus A_0$, let us put

$$d(A_0, B) := \inf\{D(u); u \in D(N; A_0), u = 1 \text{ on } B\}.$$

We have

Lemma 3.1. \tilde{g}_x has the following properties: (1) $\tilde{g}_x(z) = 0$ on A_0 ; (2) $0 \le \tilde{g}_x \le \tilde{g}_x(x)$ on X;

- (3) $\Delta \tilde{g}_x(z) = -\varepsilon_x(z) \text{ on } X \setminus A_0.$
- (4) $d(A_0, \{x\}) = 1/\tilde{g}_x(x).$

Now we shall estimate the value of λ_m . Our idea is to use the discrete Kuramochi function studied in [4] and [5]. A similar idea can be founded in [8] to estimate Lyapunov's inequality.

The Kuramochi potential Gm(x) of m is defined by

$$\tilde{G}m(x) := \sum_{z \in X} \tilde{g}_x(z)m(z).$$

Lemma 3.2. Let \tilde{u} be as in Theorem 2.1. Then

$$\tilde{u}(x) = \lambda_m \sum_{z \in X} m(z) [\tilde{u}(z)] \tilde{g}_x(z).$$

Proof. By the reproducing property of the Kuramochi function and Lemma 3.1, we have

$$\begin{split} \tilde{u}(x) &= D(\tilde{u}, \tilde{g}_x) \\ &= -\sum_{z \in X} [\Delta \tilde{u}(z)] \tilde{g}_x(z) \\ &= \lambda_m \sum_{z \in X} m(z) [\tilde{u}(z)] \tilde{g}_x(z). \end{split}$$

Theorem 3.1. The following estimation holds:

$$\min\{\tilde{G}m(x); x \in X \setminus A_0\} \le \frac{1}{\lambda_m} \le \max\{\tilde{G}m(x); x \in X \setminus A_0\}.$$

Proof. Let \tilde{u} be as in Theorem 2.1. There exists $b \in X \setminus A_0$ such that $\tilde{u}(b) = \max{\{\tilde{u}(x); x \in X\}}$. Then we have by Lemma 3.2

$$\begin{split} \tilde{u}(b) &= \lambda_m \sum_{z \in X} m(z) [\tilde{u}(z)] \tilde{g}_b(z) \\ &\leq \lambda_m \tilde{u}(b) \sum_{z \in X} \tilde{g}_b(z) m(z) \\ &= \lambda_m \tilde{u}(b) \tilde{G} m(b) \\ &\leq \lambda_m \tilde{u}(b) \max\{\tilde{G} m(x); x \in X \setminus A_0\}. \end{split}$$

We can prove the right hand side inequality similarly.

Theorem 3.2. Let $m(X) := \sum_{x \in X} m(x)$. Then the following estimation holds: $\min\{d(A_0, \{x\}); x \in X \setminus A_0\} \le m(X)\lambda_m \le \max\{d(A_0, \{x\}); x \in X \setminus A_0\}.$ Proof. Let \tilde{u} be as in Theorem 2.1. There exists $b \in X \setminus A_0$ such that $\tilde{u}(b) = \max{\{\tilde{u}(x); x \in X\}}$. Then we have by Lemma 3.2

$$\widetilde{u}(b) = \lambda_m \sum_{z \in X} m(z) [\widetilde{u}(z)] \widetilde{g}_b(z)
\leq \lambda_m \widetilde{u}(b) \max\{\widetilde{g}_x(x); x \in X \setminus A_0\} m(X)
= \lambda_m \widetilde{u}(b) \max\{1/d(A_0, \{x\}); x \in X \setminus A_0\}.$$

4. Classical Hardy's inequality

In this section, we consider the following special finite network $N = \{X, Y, K, r\}$ defined by:

$$X = \{x_0, x_1, \cdots, x_n\}, Y = \{y_1, y_2, \cdots, y_n\}$$

$$K(x_i, y_i) = 1, \ K(x_{i-1}, y_i) = -1 \text{ for } i = 1, 2, \cdots, n$$

and K(x, y) = 0 for any other pair.

Notice that the graph $\{X, Y, K\}$ is a subgraph of the one-dimesional lattice domain **Z**. For simplicity, we set

$$u_k := u(x_k), r_k := r(y_k), w_k = r_k^{-1}(u_k - u_{k-1}).$$

Then $\Delta u(x_k) = w_{k+1} - w_k$ for $1 \le k \le n-1$, $\Delta u(x_0) = w_1$ and $\Delta u(x_n) = -w_n$. Furthermore

$$D(u) = \sum_{k=1}^{n} r_k^{-1} (u_k - u_{k-1})^2 = \sum_{k=1}^{n} r_k w_k^2.$$

We shall prove

Theorem 4.1. Let
$$A_0 := \{x_0\}$$
 and put $R_k = \sum_{j=1}^k r_j$. Then
 $\sum_{k=1}^{\infty} r_k (\frac{u_k}{R_k})^2 \le 4D(u)$

for every $u \in L(X; A_0)$.

Proof. Let us put $v_k := u_k - u_{k-1}$ and $\alpha_k := u_k/R_k$. Then

$$r_{k}\alpha_{k}^{2} - 2\alpha_{k}v_{k} = r_{k}\alpha_{k}^{2} - 2\alpha_{k}(\alpha_{k}R_{k} - \alpha_{k-1}R_{k-1})$$

$$= (r_{k} - 2R_{k})\alpha_{k}^{2} + 2R_{k-1}\alpha_{k}\alpha_{k-1}$$

$$\leq (r_{k} - 2R_{k})\alpha_{k}^{2} + R_{k-1}(\alpha_{k}^{2} + \alpha_{k-1}^{2})$$

$$= -R_{k}\alpha_{k}^{2} + R_{k-1}\alpha_{k-1}^{2}.$$

Since $u_0 = 0$, we have

$$\sum_{k=1}^{n} (r_k \alpha_k^2 - 2\alpha_k v_k) \le \sum_{k=1}^{n} (-R_k \alpha_k^2 + R_{k-1} \alpha_{k-1}^2) = -R_n \alpha_n^2 \le 0.$$

Therefore we have

$$\sum_{k=1}^{n} r_k \alpha_k^2 \leq 2 \sum_{k=1}^{n} \alpha_k v_k$$

$$\leq 2 [\sum_{k=1}^{n} r_k \alpha_k^2]^{1/2} [\sum_{k=1}^{n} r_k^{-1} v_k^2]^{1/2},$$

so that

$$\sum_{k=1}^{n} r_k \alpha_k^2 \le 4 \sum_{k=1}^{n} r_k^{-1} v_k^2 = 4D(u).$$

Corollary 4.1. Let $A_0 = \{x_0\}$ and $m_k = m(x_k) := \frac{r_k}{R_k^2}$. Then $\lambda_m \ge 1/4$.

Corollary 4.2. Assume that $A_0 = \{x_0\}$ and $r_k = 1$ for all k. Then

$$\sum_{k=1}^{n} \left(\frac{u_k}{\rho(x_0, x_k)}\right)^2 \le 4 \sum_{k=1}^{n} (u_k - u_{k-1})^2$$

for all u_k $(k = 0, 1, \dots, n)$ with $u_0 = 0$.

Notice that $\rho(x_0, x_k) = R_k$ and $\rho(x_0, x_k) = k$ in Corollary 4.2, this inequality can be found in [2], page 239. We may expect that Corollary 4.2 would also holds in the general case. However it is not true as shown by Table 4 in the next section.

Hereafter in this section we always assume that $A_0 = \{x_0\}$ and $m(x_k) := r_k/R_k^2$. In order to obtain the value λ_m , we calculate the minimum eigenvalue of (Eig) numerically:

$$-2u_1 + u_2 = \mu m_1 u_1$$

$$-2u_k + u_{k+1} + u_{k-1} = \mu m_k u_k \text{ for } 2 \le k \le n-1$$

$$-u_n + u_{n-1} = \mu m_n u_n$$

In order to study λ_m as a function of the size n of N, we denote it by $\lambda(n) := \lambda_m(n)$. Some numerical experiments are given in the next section.

In the present case, the Kuramochi function is given by

$$\tilde{g}_{x_k}(x_j) = \begin{cases} R_j & \text{for } 0 \le j \le k \\ R_k & \text{for } k < j \le n \end{cases}$$

We estimate λ_m by using the Kuramochi potential $\tilde{G}m$:

$$\tilde{G}m(x_k) = \sum_{j=1}^k \frac{r_j}{R_j} + R_k \sum_{j=k+1}^n \frac{r_j}{R_j^2}.$$

It is easily seen that

$$\mu^{*}(n) := \max\{\tilde{G}m(x); x \in X \setminus A_{0}\} = \sum_{k=1}^{n} \frac{r_{k}}{R_{k}}$$
$$\mu_{*}(n) := \min\{\tilde{G}m(x); x \in X \setminus A_{0}\} = \sum_{k=1}^{n} \frac{r_{k}}{R_{k}^{2}}.$$

By Theorem 3.1, we have

$$\frac{1}{\mu^*(n)} \le \lambda(n) \le \frac{1}{\mu_*(n)}$$

Some numerical experiments for these quantities are also given in the next section.

5. Numerical experiments

Let $G = \{X, Y, K\}$ be the same graph as in Section 4. The graph can be drawn as follows:

We take $A_0 = \{x_0\}$ and $m(x_k) := r_k/R_k^2$ except in Table 4. **Table 1**: The case where $r_k = 1$ for all k.

n	$\lambda(n)$	$1/\mu^*(n)$	$1/\mu_{*}(n)$
10	0.502934	0.341417	0.645258
100	0.376383	0.192776	0.611627
1000	0.318182	0.133592	0.608297

Table 2: The case where $r_k = 1/k$ for all k.

n	$1/\mu^*(n)$	$1/\mu_*(n)$
30	0.439971	0.625684
100	0.394713	0.604038
10,000	0.344817	0.583205

Calculus of the minimum eigenvalue:

n	$\lambda(n)$	Software
30	0.553865	Mathematica
100	0.518052	Mathematica
10,000	0.4564519	Matlab
100,000	0.4412748	Matlab

Table 3: The case where $r_k = 2^{1-k}$ for all k.

n	$1/\mu^*(n)$	$1/\mu_*(n)$	Software
15	0.622407	0.729114	Mathematica
20	0.622396	0.728854	Mathematica
28	0.622396	0.728854	Mathematica
29	0.622396	0.728854	Mathematica

Calculus by Mathematica shows that

$1/\mu^*(n) = 0.622$	2396 for	$n \ge 19$
$1/\mu_*(n) = 0.728$	8854 for	$n \ge 19$

Calculus of the minimum eigenvalue:

n	$\lambda(n)$	Software	
5	0.708196	Mathematica	
15	0.697629	Mathematica	
17	0.697622	Mathematica	
18	0.697625	Mathematica	increases
20	0.69765	Mathematica	increases
28	0.666465	Mathematica	decreases
29	0	Mathematica	absurd
29	0.697618	Matlab	

Calculus by Mathematica shows that $\lambda(n)$ becomes strange if $n \geq 18$.

Finally we change m(x) slightly and estimate $\lambda_m(n)$ in this case. **Table 4**: We choose $m(x_k) = \frac{1}{R_k^2}$ and $r_k = 2^{1-k}$. Then we obtain: $\begin{array}{ccc}
n & \lambda_m(n) & 1/\mu^*(n) & 1/\mu_*(n) \\
30 & 0.0663717 & 0.0632777 & 0.116446 \\
100 & 1.68955? & 0.0196387 & 0.0383323\end{array}$

Calculus by Mathematica shows that $\lambda_m(n)$ becomes strange if $n \ge 51$. We remark that

$$\mu_*(n) = \tilde{G}m(x_1) = \sum_{k=1}^n \frac{1}{R_k^2} \to \infty$$

as $n \to \infty$, so that $\lambda_m(n) \to 0$ as $n \to \infty$.

REFERENCES

- K. Fujiwara, Growth and the spectrum of the Laplacian of an infinite graph, Tôhoku Math. J. 48(1996), 293-302.
- [2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1964.
- [3] G. V. Milovanović, Recent progress in inequalities, Kluwer Academic Publishers, 1998.
- [4] A. Murakami, Kuramochi boundaries of infinite networks and extremal problems, Hiroshima Math. J. 24(1994), 243–256.
- [5] A. Murakami and M. Yamasaki, An introduction of Kuramochi boundary of an infinite network, Mem. Fac. Sci. Eng. Shimane Univ. 30(1997), 57–89.

- [6] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Math. 219, Longman Science & Technical, 1990.
- [7] S.S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J. 12(1983), 105-112.
- [8] S.S. Cheng, L.Y. Hsoen and D.Z.T. Chao, Discrete Lyapunov inequality conditions for partial difference equations, ibid. 19(1990), 229-239.
- [9] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Shimane Univ. 13(1979), 31–44.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE 690 JAPAN *E-mail address*: yamasaki@math.shimane-u.ac.jp