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HARDY’S INEQUALITY ON FINITE NETWORKS
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ABSTRACT. The smallest eigenvalue of a weighted discrete Laplacian is closely
related to a generalized Hardy’s inequality on networks. We shall estimate
the smallest eigenvalue by using a discrete Kuramochi potential with some
numerical experiments.

1. PROBLEM SETTING

Let X be a finite set of nodes, Y be a finite set of arcs and K be the node-arc
incidence matrix. Assume that the graph G := {X,Y, K} is connected and has
no self-loop. For every two nodes a,b € X, denote by p(a, b) the geodesic distance
between a and b, i.e., the minimum number of arcs in the paths between a and
b.

For a strictly positive real-valued function r, N := {G, r} is called a network.
Denote by L(X) the set of all real valued functions on X, by L*(X) the set of
all nonnegative u € L(X).

For u € L(X), the discrete derivative du, the discrete Laplacian Au(x) and
the Dirichlet sum D(u) of u on N are defined by

du(y) = —r(y)~! zeXK(:E,y)u(x),
Bulr) = K y)du(y)]
D) = Y rly)lduty))

The mutual Dirichlet sum D(u,v) of u,v € L(X) is defined by
D(u,v) = Zyeyr(y)[du(y)][dv(y)]-

Let Ag be a nonempty subset of X such that X'\ Ag is connected and let m € L(X)
satisfy m(z) =0 on Ay and m(z) > 0 on X \ Ay.
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A generalized Hardy’s inequality is to find the best possible constant C,, > 0

such that
> - m(z)u(x)? < CpD(u)

for all uw € L(X) such that u(xz) = 0 on A,.

By special choices of N, Ay and m, we obtain Wirtinger’s inequality and
Hardy’s inequality in [2] and [3]. We shall show that 1/C,, is equal to the
smallest eigenvalue of an eigenvalue problem. We shall also give an esimation of
this value by using a discrete Kuramochi potential studied in [4] and [5].

2. MINIMUM EIGENVALUE

Let us put
L(X;Ap) :={ue L(X);u=0o0n Ay}
For simplicity, let us put

() = > ml@ulz)v(),

e = [(Ca )] 2
() = ﬁ(ﬁg;

We shall consider the extremum problem (H,,):
Find A, = inf{x,(u);ue L(X;A)}
= inf{D(u);u € L(X; Ao), ||u|/m = 1}.
Proposition 2.1. There exists an optimal solution @ of problem (H,,), i.e.,

Am = D(@), 1 € L(X; Ag) and ||, = 1.

Proof. Let {v;} be a sequence in L(X; Ag) such that x,,(vx) — A\ as k — oo.
Put ux = vg/||vk|lm. Then ||ug|l» = 1 and

Xom(u) = D(ur) = D(vr)/|vgll7, = Xom (vr)-

Since {uy(x)} is bounded for each x € X, we may assume that {u;} converges
pointwise to a function @ € L(X; Ay). We have ||i||,, = 1 and

lim D(uy) = D(@).
so that xm (@) = A\p,. O
Denote by S(A,,) be the set of all optimal solutions of problem (H,,), i.e.,
S(Am) = {u € L(X; Ao); Xm(u) = An}-

Consider the following eigenvalue problem of finding a number i and a nonzero
function u € L(X; Ap) which satisfy

(Eig) Au(z) = —pm(z)u(x) on X \ Ap.

Denote by E,,(A) the set of all u satisfying (Eig) and by EV,,(u) the set of
nonzero functions u satisfying (Eig) with u € E,,,(A).
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For every u € EV,,(u), we have
D(u) = _erx [Au(z)]u(x)
= 1Y m@u(@)? = .

Since D(u) is positive definite on the set L(X; Ap), we see that E,,(A) consists
of positive real numbers.
By the above observation, we have

Proposition 2.2. \,, = min{y; u € E,,(A)}.
Lemma 2.1. S(\,,) = EV,y(An).

Proof. By the above observation, it suffices to show S(\,,) C EV,,(\,). Let
u € S(A\n). Denote by €, € L(X) the characteristic function of the set {z}. For
any real number ¢ and x € X \ Ay, we have

Am = Xm(u) < xm(u + tey),

or
Allu + teg |2, < D(u + te,).
Noting the relation
D(u+te,) = D(u) + 2tD(q, ;) + t*D(e,),

lu+ teall?, = [ull2, + 2((u, &:))m + Ellea|,

we obtain

D(u,e;) = Ap((u,€2) ) m-
Since D(u,e,) = —Au(z) and ((u,ez))m = m(z)u(z), we conclude that u €
EVi (M) 0

Lemma 2.2. Assume that u € S(\,,). Then |u| € S(\,) and u(xy)u(xzs) > 0
for every x1,x9 € X \ Ag with p(x1,z) = 1.

Proof. Let v = |u|. Then v € L(X; Ap) and D(v) < D(u) holds (cf.[9]). Since
|v]|m = ||t||m, we have
Am < Xm (V) < Xm(w) = A,

and hence v € S(\;,). Suppose that there exist z1,2z5 € X \ Ay such that
p(z1,x9) = 1 and u(zy)u(zy) < 0. Let ¥/ € Y be an arc whose endpoints are x;
and x5. Then

|do(y)] = ( ) 1Iv(ffffl

~— —
@
~—~
s
[\
~—_ —

— u(ws)| = |du(y)],
so that D(v) < D(u). Thus A, = Xm(v) < Xm(u) = Ap,. This is a contradiction.
U

Corollary 2.1. Ifu € S(\n), then either u = |u| or u = —|u|.
Lemma 2.3. Ifu € S(\,) is non-negative, then u(x) > 0 on X \ Ay.
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Proof. Let u € S(\,,) be nonnegative. By Lemma 2.1,
Au(z) = =Apm(z)u(z) <0 on X\ Ap.

Namely u is superharmonic on X \ Ay. By the minimum principle (cf. [9]), we
have u(z) > 0 on X \ Ap. O

Corollary 2.2. Ifu € S(\,,), then either Au(z) < 0 on X \ Ao or Au(z) >0
on X\ Ay.

Lemma 2.4. The dimension of EV,,(An) is one. Namely, if uy,us € EVy(An),
then u; and uy are proportional.

Proof. Assume that there exist uq, us € EV,,(\,;,) such that they are not propor-
tional. Choose numbers v and 3 such that |a|+|5] > 0 and cus (21)+Bus(z1) =0
for some z; € X \ Ag. Let u = auy + [uy. Then u # 0, since u; and us are not
proportional. We have

Au(z) = alAui(x)+ BAuy(z)
= —Anm(z)ui(x) — Apm(z)us(x)
= —Aom(z)u(x).
Namely u € EV,,,(A) = S(A). We have
Au(zy) = Npm(z)u(zy) = 0.
This contadicts Corollary 2.2. O

Summing up these results, we obtain

Theorem 2.1. There exists a unique @ € L(X; Ag) such that
(1) A\ = D(a) and ||@||m = 1;

(2) u(zx) >0 on X\ Ao;

(3) Au(zr) = —Apm(x)a(z) on X \ Ayp.

3. ESTIMATION OF A,

Let us put
D(N; Ap) :={u € L(X; Ap); D(u) < oo}.

Since N is a finite network, we see that D(N;Ag) = L(X;Ag). Notice that
D(N; Ap) is a Hilbert space with the inner product D(u,v) (cf. [9]).

The Kuramochi function g, of N with pole at x € X \ Aq is defined by the
reproducing property:

u(x) = D(u, g,) for allu € D(N; Ap)
(cf. [4]). For each nonempty subset B of X \ Ay, let us put
d(Ao, B) :=1inf{D(u);u € D(N; Ap), v =1on B}.
We have
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Lemma 3.1. g, has the following properties:
(1) Go(2) =0 on Ay;

(2) 0<gs < gu(r) on X;

(3) Ag.(z) = —e.(2) on X \ Ap.

(4) d(Ao,{z}) =1/Gu(x).

Now we shall estimate the value of \,,. Our idea is to use the discrete Ku-
ramochi function studied in [4] and [5]. A similar idea can be founded in [8] to
estimate Lyapunov’s inequality.

The Kuramochi potential Gm(z) of m is defined by

Gm(x) := ZZGX Gz(z)m(2).
Lemma 3.2. Let @ be as in Theorem 2.1. Then
i(2) = A 3 m()(2)u(2).

Proof. By the reproducing property of the Kuramochi function and Lemma 3.1,
we have

i) = D(@,g.)
= =Y 8)]G()
= MY mE)a(e).

U
Theorem 3.1. The following estimation holds:
- 1 -
min{Gm(z);z € X \ Ao} < = < max{Gm(z);x € X \ Ao}.
Proof. Let @ be as in Theorem 2.1. There exists b € X \ Ay such that a(b) =
max{u(z);z € X}. Then we have by Lemma 3.2
i) = A m)E()]a:)

< M) Y dzm(2)

= Anit(b)Gm(b)

< Apii(b) max{Gm(z);z € X \ Ag}.
We can prove the right hand side inequality similarly. O

Theorem 3.2. Let m(X) := Z oy m(z). Then the following estimation holds:

min{d(Ao, {z});z € X \ Ao} < m(X)\,, < max{d(Ap, {z});x € X\ Ao}.
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Proof. Let @ be as in Theorem 2.1. There exists b € X \ Ay such that a(b) =
max{@(z);z € X}. Then we have by Lemma 3.2

i) = MY mEE()a)
< Apt(b) max{g.(z);z € X \ Ag}m(X)
= Ap(b) max{1/d(Ap, {z});x € X\ Ao}.

4. CLASSICAL HARDY’S INEQUALITY

In this section, we consider the following special finite network N = { XY, K, r}
defined by:

X = {warl?"' ,xn}’Y: {ylay2>"' ayn}
K(ziyy) =1, K(xi—y,y;) = —1fori=1,2,---.n
and K (x,y) = 0 for any other pair.

Notice that the graph {X,Y, K} is a subgraph of the one-dimesional lattice
domain Z. For simplicity, we set

wu = u(xg), k= 1Y), wy = rk_l(uk — Up_1).
Then Au(xy) = wpr1 —wy, for 1 <k <n—1, Au(zy) = w; and Au(z,) = —w,.
Furthermore

D(u) = Zrk_l(uk —up_)? = Zrkwi.
k=1 k=1

We shall prove

k
Theorem 4.1. Let Ay := {zo} and put Ry = er. Then

j=1
3 ri(oE)? < 4D(u)
BN

for every uw € L(X; Ap).
Proof. Let us put vy := u, — ug—; and oy, := uy/Rg. Then

TkOéi — QOékUk = TkOéi — QOék(OékRk — Oék_le_l)
(Tk — 2Rk)04i + 2Rk—1akak—1
(Tk — 2Rk)04i + Rk_l(Oé]z + Oéz_l)

2 2
= —RkOék + Rk—lak_l-

IA

Since ug = 0, we have

n n

Z(rkaz —2a0%) <Y (=Rpai + Rp_10i_)) = —R,a2 <0.
k=1 k=1
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Therefore we have

n

n
g rkozi < 22 QU
k=1

k=1
n n

213l S R

k=1 k=1

IN

so that

Zrkaﬁ < 427“,;121,% =4D(u).
k=1 k=1

Corollary 4.1. Let Ay = {xo} and my = m(xy) = % Then A\, > 1/4.

k

Corollary 4.2. Assume that Ag = {xo} and v, =1 for all k. Then

() <A — )’

1 p(zo, Tk) el

for allug (k=0,1,--- ,n) with ug = 0.

81

Notice that p(zg, zx) = Ry and p(zg, zx) = k in Corollary 4.2, this inequality
can be found in [2], page 239. We may expect that Corollary 4.2 would also
holds in the general case. However it is not true as shown by Table 4 in the next

section.

Hereafter in this section we always assume that Ay = {z¢} and m(xy) :
ry/R2. In order to obtain the value \,,, we calculate the minimum eigenvalue of

(Eig) numerically:

—2uy +uy = pmiug
—2Up + Uppr U1 = pmpup for2 <k<n-—1
—Up + Up—1 = UMpUp

In order to study A, as a function of the size n of N, we denote it by A(n) :=

Am(n). Some numerical experiments are given in the next section.
In the present case, the Kuramochi function is given by

~()_ Rj for OS]SI{Z
Jor\T5) = Ry for k<j<n

We estimate \,, by using the Kuramochi potential Gm:

k
J ; j
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It is easily seen that

pi(n) = max{Gm(z);z € X\ Ay} = Z %

fe(n) = min{Gm(z);z € X \ Ay} = Z ;—%

By Theorem 3.1, we have

1 1
—— < A(n) <
p(n) s (12)

Some numerical experiments for these quantities are also given in the next
section.

5. NUMERICAL EXPERIMENTS

Let G = {X,Y, K} be the same graph as in Section 4. The graph can be
drawn as follows:

We take Ay = {xo} and m(zy) := r/R? except in Table 4.
Table 1: The case where r, = 1 for all k.
n An) — 1/p*(n)  1/p.(n)
10 0.502934 0.341417 0.645258

100 0.376383 0.192776 0.611627
1000 0.318182 0.133592 0.608297

Table 2: The case where r, = 1/k for all k.

n 1/p*(n)  1/p.(n)
30 0.439971 0.625684
100 0.394713 0.604038
10,000 0.344817 0.583205

Calculus of the minimum eigenvalue:

n A(n) Software
30 0.553865 Mathematica
100 0.518052 Mathematica
10,000 0.4564519 Matlab

100,000 0.4412748 Matlab
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Table 3: The case where 1, = 2% for all k.

n o 1/u*(n)  1/u.(n) Software
15 0.622407 0.729114 Mathematica
20 0.622396 0.728854 Mathematica
28 0.622396 0.728854 Mathematica
29 0.622396 0.728854 Mathematica

Calculus by Mathematica shows that

1/p*(n) = 0.622396 for n > 19
1/ps(n) = 0.728854 for mn > 19

Calculus of the minimum eigenvalue:

n A(n) Software
5 0.708196 Mathematica
15 0.697629 Mathematica
17 0.697622 Mathematica
18 0.697625 Mathematica increases
20 0.69765 Mathematica increases
28 0.666465 Mathematica decreases
29 0 Mathematica absurd
29 0.697618 Matlab

Calculus by Mathematica shows that A(n) becomes strange if n > 18.

Finally we change m(x) slightly and estimate \,,(n) in this case.

Table 4: We choose m(zy) = o2 and r, = 2!7%. Then we obtain:
i

no An(n) Vp=(n) — 1/p.(n)
30 0.0663717 0.0632777  0.116446
100 1.68955? 0.0196387 0.0383323

Calculus by Mathematica shows that \,,(n) becomes strange if n > 51.
We remark that

n

~ 1
ti(n) = Gm(z,) = kz:; o7 — 00
as n — 00, so that \,,(n) — 0 as n — 0.
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