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Abstract. Stability and boundedness of solutions of Volterra integro-differ-
ential equations are discussed. In particular, we show stability of the zero
solution, boundedness and uniform boundedness of solutions by using suitable
Liapunov functionals or functions. Moreover we give several examples to our
theorems.

1. Introduction

Many results have been obtained for stability and boundedness in functional
differential equations (for instance, [1-6] and references cited therein). In partic-
ular, concerning stability and boundedness in Volterra integro-differential equa-
tions, we can find many interesting results in the books [2,3] by Burton and many
papers in their references.

In this paper, we discuss stability and boundedness of solutions of Volterra
integro-differential equations. In §2, we discuss stability of the zero solution of a
nonlinear Volterra integro-differential equation by using a Liapunov functional,
and give an example. Finally in §3, we discuss boundedness and uniform bound-
edness of solutions of linear or nonlinear Volterra integro-differential equations
by employing Liapunov functionals or functions, and give several examples to
our theorems. In particular, we use the Liapunov-Razumikhin method to prove
Theorems 3.4 and 3.5.
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2. Stability

In this section, we discuss stability of the zero solution of a nonlinear Volterra
integro-differential equation. Consider the nonlinear system

x′(t) = a(x(t)) +

∫ t

0

C(t, s)f(x(s))ds,(2.1)

in which

a(x) = Ax + b(x),

and b, f : Rn → Rn are continuous, f(0) = 0,

|b(x)| ≤ γ|x|,

|f(x)| ≤ δ|x|

for some γ, δ > 0, and A is a constant n × n matrix and C an n × n matrix of
functions continuous for 0 ≤ s ≤ t < ∞, where | · | is a norm of Rn. We suppose
that there is a symmetric matrix B with

AT B + BA = −I,(2.2)

where AT denotes the transpose of A, and I denotes the n × n identity matrix.

Definition 2.1. The zero solution of (2.1) is stable if, for each ε > 0 and each
t0 ≥ 0, there exists δ > 0 such that

|φ(s)| < δ on [0, t0] and t ≥ t0

imply |x(t)| < ε.

Concerning stability of the zero solution of (2.1), first we obtain the following
stability theorem.

Theorem 2.1. Let (2.2) hold and suppose that there is a constant M > 0 with

|B|(
∫ t

0

|C(t, s)|ds + δ2

∫ ∞

t

|C(u, t)|du + 2γ) ≤ M < 1.(2.3)

If xT Bx > 0 for each x 6= 0, then the zero solution of (2.1) is stable.

Proof. We define

V1(t, x(·)) = x(t)T Bx(t) + |B|
∫ t

0

∫ ∞

t

|C(u, s)|du|f(x(s))|2ds.
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Then we have

V ′
1(2.1)(t, x(·)) = {xT AT + bT (x) +

∫ t

0

fT (x(s))CT (t, s)ds}Bx

+ xT B{Ax + b(x) +

∫ t

0

C(t, s)f(x(s))ds}

+ |B|
∫ ∞

t

|C(u, t)|du|f(x)|2 − |B|
∫ t

0

|C(t, s)||f(x(s))|2ds

= xT AT Bx + xT BAx + 2xT Bb(x)

+ 2xT B

∫ t

0

C(t, s)f(x(s))ds + |B|
∫ ∞

t

|C(u, t)|du|f(x)|2

− |B|
∫ t

0

|C(t, s)||f(x(s))|2ds

≤ −|x|2 + 2|x||B||b(x)| + 2|x||B|
∫ t

0

|C(t, s)||f(x(s))|ds

+ |B|
∫ ∞

t

|C(u, t)|du|f(x)|2 − |B|
∫ t

0

|C(t, s)||f(x(s))|2ds

≤ −|x|2 + 2γ|B||x|2 + |B|
∫ t

0

|C(t, s)|{|x|2 + |f(x(s))|2}ds

+ δ2|B|
∫ ∞

t

|C(u, t)|du|x|2 − |B|
∫ t

0

|C(t, s)||f(x(s))|2ds

≤ −|x|2 + 2γ|B||x|2 + |B|
∫ t

0

|C(t, s)|ds|x|2

+ δ2|B|
∫ ∞

t

|C(u, t)|du|x|2

= {−1 + |B|(2γ +

∫ t

0

|C(t, s)|ds + δ2

∫ ∞

t

|C(u, t)|du)}|x|2

≤ {−1 + M}|x|2 def
= −α|x|2, α > 0.

Now, if xT Bx > 0 for all x 6= 0, then V1 is positive definite and V ′
1(2.1) is

negative definite, so x = 0 is stable. This completes the proof.

Remark 2.1. In [2; Theorem 8.2.6], we can find a boundedness result of Grimmer-
Seifert for the linear equation

x′(t) = Ax(t) +

∫ t

0

C(t, s)x(s)ds + g(t).(2.4)

Now we show an example to Theorem 2.1

Example 2.1. Consider the scalar equation

x′ = (−x(t) + b(x(t))) +

∫ t

0

e−3(t−s)x(s) sin x(s)ds,(2.5)
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where

b(x) =

{

1
2
log(x + 1) if x ≥ 0

−1
2
log(−x + 1) if x < 0.

Then we can take γ = B = 1
2
, δ = 1, and we have

|B|(
∫ t

0

|C(t, s)|ds + δ2

∫ ∞

t

|C(u, t)|du + 2γ)

=
1

2
(

∫ t

0

e−3(t−s)ds + 12

∫ ∞

t

e−3(u−t)du + 2 · 1

2
)

=
1

2
(
5

3
− 1

3
e−3t) <

5

6
= M < 1.

Thus all conditions of Theorem 2.1 are satisfied, so that the zero solution of (2.5)
is stable.

3. Boundedness

In this section, we discuss boundedness of solutions of Volterra integro-differ-
ential equations. First we consider a perturbed form of (2.1)

x′(t) = a(x(t)) + g(t, x(t)) +

∫ t

0

C(t, s)f(x(s))ds(3.1)

with a(x) and C, f as in (2.1), g : [0,∞) × Rn → Rn continuous, and

|g(t, x)| ≤ λ(t)(|x| + 1),(3.2)

where λ : [0,∞) → [0,∞) is continuous,
∫ ∞

0

λ(s)ds < ∞ and λ(t) → 0 as t → ∞.(3.3)

Definition 3.1. Solutions of (3.1) are uniformly bounded if, for each H > 0
there exists D > 0 such that

t0 ≥ 0 and |φ(s)| < H on [0, t0] and t ≥ t0

imply |x(t)| < D.

The following theorem is our first boundedness theorem.

Theorem 3.1. Suppose that (2.2), (2.3), (3.2) and (3.3) hold. If xT Bx > 0 for
x 6= 0, then all solutions of (3.1) are bounded.

Proof. In the proof of Theorem 2.1. we found V ′
1(2.1)(t, x(·)) ≤ −α|x|2, α > 0.

Select L > 0 so that

−α|x|2 + 2|B||x|(|x| + 1)λ(t) − Lλ(t) ≤ −ᾱ|x|2,
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for some ᾱ > 0 and all x when t is large enough, say, t ≥ S. Next, define

V (t, x(·)) = [x(t)T Bx(t) + 1 + |B|
∫ t

0

∫ ∞

t

|C(u, s)|du|f(x(s))|2ds]

× exp[−L

∫ t

0

λ(s)ds],

so that

V ′
(3.1)(t, x(·)) ≤ −Lλ(t)V + exp[−L

∫ t

0

λ(s)ds]

× {V ′
1(2.1)(t, x(·)) + 2|B||x||g(t, x)|}

≤ −Lλ(t)V + exp[−L

∫ t

0

λ(s)ds]

× {−α|x|2 + 2|B||x|λ(t)(|x| + 1)}

≤ exp[−L

∫ t

0

λ(s)ds]{−α|x|2 + 2|B||x|λ(t)(|x| + 1) − Lλ(t)}

≤ −ᾱ|x|2 exp[−L

∫ t

0

λ(s)ds]

def
= −β|x|2, if t ≥ S.

Suppose that xT Bx > 0 for all x 6= 0. If x(t) is any solution of (3.1), then
by the growth condition of g, it can be continued for all future time. Hence, for
t ≥ S we have V (t, x(·)) ≤ V (S, x(·)), so that x(t) is bounded. This completes
the proof.

Example 3.1. Consider the perturbed form of the scalar equation (2.5)

x′(t) = −x(t) + b(x(t)) + g(t, x(t)) +

∫ t

0

e−3(t−s)x(s) sin x(s)ds,(3.4)

where b(x) is the function given in Example 2.1. If we suppose that

g(t, x) =

{

1
6

√
xe−t if x ≥ 0

−1
6

√
−xe−t if x < 0,

then

|g(t, x)| ≤ 1

12
e−t(|x| + 1),

so that we take

λ(t) =
1

12
e−t.

Thus
∫ ∞

0

λ(s)ds =

∫ ∞

0

1

12
e−sds =

1

12
[−e−s]∞0 =

1

12
< ∞

λ(t) → 0 as t → ∞.
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Hence, the condition for g holds.
We select L > 0 so that there exists ᾱ > 0 such that when t ≥ S, for all x

−1

6
x2 +

1

12
|x|(|x| + 1)e−t − 1

12
Le−t ≤ − −

α x2.

In fact, we suppose that ᾱ = 1
24

and we have

−1

6
x2 +

1

12
|x|(|x| + 1)e−t − 1

12
Le−t ≤ − 1

24
x2

−4x2 + 2x2e−t + 2|x|e−t − 2Le−t ≤ −x2

(3 − 2e−t)x2 − 2|x|e−t + 2Le−t ≥ 0

(3 − 2e−t)(|x| − e−t

3 − 2e−t
)2 − e−2t

3 − 2e−t
+ 2Le−t ≥ 0.

Therefore we can select L > 0 satisfying − e−2t

3−2e−t + 2Le−t ≥ 0 for t ≥ S, say,

L ≥ 1

2(3et − 2)
for t ≥ S.

Now we take L = 1
2(3eS−2)

. Thus all conditions of Theorem 3.1 are satisfied and

all solutions of (2.5) are bounded.

The next result is a boundedness theorem for an equation with a variable
coefficient. We consider a system of Volterra equations

x′(t) = A(t)x(t) +

∫ t

0

C(t, s)x(s)ds + F (t),(3.5)

where A(t) = A + P (t) and A is a matrix such that there are positive constants
r, k and K with

AT B + BA = −I(3.6)

|Bx| ≤ K[xT Bx]
1

2(3.7)

|x| ≥ 2k[xT Bx]
1

2(3.8)

[xT Bx]
1

2 ≥ r|x|.(3.9)

We ask that C(t, s) is an n×n matrix continuous function for 0 ≤ s ≤ t < ∞ and
that F : [0,∞) → Rn is continuous and bounded, P (t) is an n × n continuous
matrix with

|P (t)| ≤ ρ for t ≥ 0,(3.10)

where ρ is a constant with 0 < ρ < 1.

Theorem 3.2. Let (3.6) - (3.10) hold and suppose that

(a) there is K̄ > K with

|x|[k − Kρ − K̄

∫ ∞

t

|C(u, t)|du] ≥ (K̄ − K)[|Ax| + |x|],
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(b) for some D with 0 < D < K̄ − K + r,
∫ t

0

∫ ∞

t

K̄|C(u, s)|duds ≤ D.

Then all solutions of (3.5) are bounded.

Proof. We define

V (t, x(·)) = [x(t)T Bx(t)]
1

2 + K̄

∫ t

0

∫ ∞

t

|C(u, s)|du|x(s)|ds.

A calculation yields

V ′
(3.5)(t, x(·)) ≤ [−k + Kρ + K̄

∫ ∞

t

|C(u, t)|du]|x|+ K|F (t)|

+ [−K̄ + K]

∫ t

0

|C(t, s)||x(s)|ds.

By assumption (a),

V ′
(3.5)(t, x(·)) ≤ −(K̄ − K)[|Ax| + |x|] + K|F (t)|

− (K̄ − K)

∫ t

0

|C(t, s)||x(s)|ds

= −(K̄ − K)[|Ax| + |P (t)||x| +
∫ t

0

|C(t, s)||x(s)|ds

+ |F (t)|] − (K̄ − K)|x| + K̄|F (t)| + (K̄ − K)|P (t)||x|
≤ −(K̄ − K)|x′| − (K̄ − K)(1 − ρ)|x| + K̄|F (t)|.

Because |F | is bounded, there is U > 0 with V ′ ≤ −(K̄ −K)|x′| if |x(t)| ≥ 2kU .
We define

[xT Bx]
1

2 = Q(x),

so that Q = U implies U 2 = xT Bx ≥ r2|x|2, or

|x| ≤ U

r

def
= L.

Because r|x| ≤ [xT Bx]
1

2 , we define

W1(|x|) = r|x|.

Since we also have

V (t, x(·)) ≤ Q(x) + sup
0≤s≤t

|x(s)|
∫ t

0

∫ ∞

t

K̄|C(u, s)|duds,

define

W2(p) = Dp, p ≥ 0.
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Then we obtain

W1(|x(t)|) ≤ V (t, x(·)) ≤ Q(x(t)) + W2(‖x‖[0,t]),

Q(x) = U implies |x| ≤ L,

Q(x(t)) ≥ U implies V ′
(3.5)(t, x(·)) ≤ −(K̄ − K)|x′(t)|,

where ‖x‖[0,t] def
= sup

0≤s≤t

|x(s)|.

Suppose that x(t) is an unbounded solution, i.e, there exists {un} → ∞ such
that |x(un)| → ∞ as n → ∞. If Q > U , then

0 < V (un, x(·)) ≤ V (u1, x(·)) − (K̄ − K)

∫ un

u1

|x′(s)|ds

= V (u1, x(·)) − (K̄ − K)|x[u1, un]|
≤ V (u1, x(·)) − (K̄ − K)(|x(un)| − |x(u1)|)
→ −∞ as n → ∞,

and so there is a sequence {sn} → ∞ as n → ∞ with Q(x(sn)) = U .
We therefore find t0 ≥ 0 and R > 0 with Q(x(t0)) = U and ‖x‖[0,t0] < L + R.

Because |x(t)| is unbounded, there is the first t2 > t0 with |x(t2)| = L + R, and
therefore, there is t1 ≥ t0 with Q(x(t1)) = U and Q(x(t)) > U on (t1, t2]. Now
on [t1, t2] we have V ′

(3.5)(t, x(·)) ≤ −(K̄ − K)|x′(t)|, and so

W1(|x(t)|) ≤ V (t, x(·)) ≤ V (t1, x(·)) − (K̄ − K)|x[t1, t]|
≤ Q(x(t1)) + W2(‖x‖[0,t1]) − (K̄ − K)|x[t1, t]|
≤ U + D(L + R) − (K̄ − K)|x[t1, t]|,

so that at t = t2 we have

r(L + R) ≤ U + D(L + R) − (K̄ − K)R

or

r + K̄ − K − D ≤ 0,

a contradiction. This completes the proof.

Remark 3.1. Theorem 3.2 for (3.5) with A(t) ≡ A corresponds to Theorem
8.4.2 in [2].

Example 3.2. Consider the scalar equation

x′(t) = (−2 +
1

3
sin t)x(t) +

∫ t

0

e−2(t−s)x(s)ds + sin t.(3.11)
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Then we can take B = 1
4
, K = k = r = 1

2
, ρ = 1

3
, and we have

|x|[k − Kρ − K̄

∫ ∞

t

|C(u, t)|du] ≥ (K̄ − K)[|Ax| + |x|]

1

2
− 1

2
· 1

3
− K̄

∫ ∞

t

e−2(u−t)du ≥ (K̄ − 1

2
)(2 + 1)

1

3
− 1

2
K̄ ≥ 3K̄ − 3

2

K̄ ≤ 11

21
,

so that we can take K̄ = 11
21

, and we obtain
∫ t

0

∫ ∞

t

K̄|C(u, s)|duds =
11

21

∫ t

0

∫ ∞

t

e−2(u−s)duds

=
11

84
(1 − e−2t) ≤ 11

84
= D.

Since all conditions of Theorem 3.2 are satisfied, all solutions of (3.11) are
bounded.

The next result is a theorem of uniform boundedness for (3.5).

Theorem 3.3. Let (3.6) - (3.10) hold and suppose that |F (t)| ≤ ξ and there
exists d > 0 with

k − Kρ − K

2kr

∫ ∞

t

|C(u, t)|du ≥ d.

If there exists m < 1 with

K

r

∫ t

0

∫ ∞

t

|C(u, s)|duds ≤ m,

then solutions of (3.5) are uniformly bounded.

Proof. We define

V (t, x(·)) = [x(t)T Bx(t)]
1

2 +
K

r

∫ t

0

∫ ∞

t

|C(u, s)|du[xT (s)Bx(s)]
1

2 ds

and obtain

V ′
(3.5)(t, x(·)) ≤ −[k − Kρ − K

2kr

∫ ∞

t

|C(u, t)|du]|x|+ K|F (t)|

≤ −2kd[xT Bx]
1

2 + Kξ.

If

[xT Bx]
1

2 ≥ Kξ

2kd

def
= U,

then V ′ ≤ 0.
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If we define Q(x) = [xT Bx]
1

2 , then we have

K

r

∫ t

0

∫ ∞

t

|C(u, s)|du[xT (s)Bx(s)]
1

2 ds

≤ m sup
0≤s≤t

Q(x(s)).

Thus there hold that

Q(x(t)) ≤ V (t, x(·)) ≤ Q(x(t)) + m sup
0≤s≤t

Q(x(s)),

r|x| ≤ Q(x) ≤ 1

2k
|x|,

Q(x) ≥ U implies V ′ ≤ 0.

Let H > 0 be given. We must find D > 0 such that

t0 ≥ 0, t ≥ t0, ‖φ‖[0,t0] ≤ H

imply |x(t, t0, φ)| ≤ D.
For the given H > 0, if ‖φ‖[0,t0] < H, then t ∈ [0, t0] yields Q(φ(t)) ≤ 1

2k
|φ(t)| <

H
2k

and we can find M > max{ U
1−m

, H
2k
}.

We shall show that all solutions are bounded, and so they are continuable. For
x(t) = x(t, t0, φ) either

(a) Q(x(t)) < M for all t ≥ t0, or
(b) there is the first t∗ > t0 with Q(x(t∗)) = M .

If (b) holds, then either
(b1) there is the first t1 > t∗ with Q(x(t1)) = U , or
(b2) Q(x(t)) > U for t ≥ t∗.

Let t̄ ∈ [t∗, t1) be a number such that Q(x(t̄)) is the maximum of Q(x(t)) on
[0, t1]. If (b1) holds, then we claim that Q(x(t̄)) is the maximum of Q(x(t)) on
[0,∞). If not, then there is an interval past t1, say, [t2, t3] with Q(x(t)) ≤ Q(x(t̄))
on [t2, t3] and with Q(x(t)) ≥ U on [t2, t3], Q(x(t2)) = U and Q(x(t3)) = Q(x(t̄)).
This is impossible because V ′

(3.5)(t, x(·)) ≤ 0 on [t2, t3], and so

Q(x(t3)) ≤ V (t3, x(·)) ≤ V (t2, x(·))
< U + m sup

0≤s≤t2

Q(x(s))

≤ U + mQ(x(t̄)) < Q(x(t̄)).

Next, we find a bound of Q(x(t̄)). We have V ′ ≤ 0 on [t∗, t̄], so

Q(x(t̄)) ≤ V (t̄, x(·)) ≤ V (t∗, x(·))
≤ Q(x(t∗)) + m sup

0≤s≤t∗
Q(x(s))

≤ M + mM = M(1 + m)

and this is the bound of Q(x(t)) if case(b1) holds.
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In the case of (b2) we have Q(x(t)) > U for t ≥ t∗, so that V ′ ≤ 0 for t ≥ t∗

implies

r|x(t)| ≤ Q(x(t)) ≤ V (t, x(·))
≤ V (t∗, x(·))
≤ Q(x(t∗)) + m sup

0≤s≤t∗
Q(x(s))

= M + mM = M(1 + m).

Certainly, if case(a) holds we have Q(x(t)) < M < M(1 + m). Thus, in all
cases,

r|x(t)| ≤ Q(x(t)) ≤ M(1 + m),

and so

|x(t)| ≤ M

r
(1 + m)

def
= D.

This shows uniform boundedness and the proof is complete.

Remark 3.2. Theorem 3.2 for (3.5) with A(t) ≡ A corresponds to Theorem
8.4.4 in [2].

Example 3.3. Consider the scalar equation

x′(t) = (−2 +
1

3
sin t)x(t) +

∫ t

0

e−4(t−s)x(s)ds + sin t.(3.12)

Then we can take B = 1
4
, K = k = r = 1

2
, ρ = 1

3
, and we have

k − Kρ − K

2kr

∫ ∞

t

|C(u, t)|du =
1

2
− 1

2
· 1

3
−

1
2

2 · 1
2
· 1

2

∫ ∞

t

e−4(u−t)du

=
1

3
− 1

4
=

1

12
,

so that we can take d = 1
12

. As we have

K

r

∫ t

0

∫ ∞

t

|C(u, s)|duds =

∫ t

0

∫ ∞

t

e−4(u−s)duds

=
1

16
(1 − e−4t) <

1

16
,

we can take m = 1
16

. Thus all conditions of Theorem 3.3 are satisfied, so that
solutions of (3.12) are uniformly bounded.

The next result is a boundedness theorem obtained by using a Liapunov func-
tion instead of a Liapunov functional.

Again we consider the linear system (3.5), where A(t) = A+P (t), A constant,
all characteristic roots of A have negative real parts. Select B = BT with (3.6),
and let α2 and β2 be the smallest and largest (respectively) characteristic roots of
B. By using the Liapunov-Razumikhin method, we obtain the following theorem,
which is deeply related to Theorem 8.2.6 in [2] for (2.4).
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Theorem 3.4. Let the above stated conditions hold and suppose that there is
M > 0 with

∫ t

0

|BC(t, s)|ds ≤ M, t ≥ 0,

where 2βM

α
+ 2ρ|B| < 1. If, in addition, F is bounded, then all solutions of (3.5)

are bounded.

Proof. Define V (t, x) = xT Bx, so that α2|x|2 ≤ V (t, x) ≤ β2|x|2, yielding
W1(|x|) ≤ V (t, x) ≤ W2(|x|), where W1(|x|) = α2|x|2 and W2(|x|) = β2|x|2.
Then we have

V ′
(3.5)(t, x) = −|x|2 + 2xT BP (t)x + 2xT B

∫ t

0

C(t, s)x(s)ds + 2xT BF (t)

≤ −|x|2 + 2|B||P (t)||x|2 + 2|x|
∫ t

0

|BC(t, s)||x(s)|ds

+ 2|x||B|‖F‖[0,∞)

≤ −|x|2 + 2ρ|B||x|2 + 2|x|
∫ t

0

|BC(t, s)||x(s)|ds

+ 2|x||B|‖F‖[0,∞)

= (2ρ|B| − 1)|x|2 + 2|x|
∫ t

0

|BC(t, s)||x(s)|ds

+ 2|x||B|‖F‖[0,∞).

Now, if h2V (t, x(t)) > V (s, x(s)) for 0 ≤ s ≤ t, where h > 1 is a constant to
be determined, then

h2β2|x(t)|2 ≥ h2V (t, x(t)) ≥ V (s, x(s))

≥ α2|x(s)|2

and
hβ

α
|x(t)| ≥ |x(s)|, s ≤ t.

Thus,

V ′
(3.5)(t, x) ≤ (2ρ|B| − 1)|x|2 +

hβ

α
|x(t)|2

∫ t

0

|BC(t, s)|ds + 2|B|‖F‖[0,∞)|x|

and, because 2βM

α
+2ρ|B| < 1, h may be chosen so that h > 1 and 2hβM

α
+2ρ|B| <

1 yielding

V ′
(3.5)(t, x) ≤ [

2hβM

α
+ 2ρ|B| − 1]|x|2 + 2|B|‖F‖[0,∞)|x| ≤ 0

if |x| ≥ 2|B|‖F‖[0,∞)

1 − (2hβM

α
+ 2ρ|B|)

def
= K.

Thus we have

(a) W1(|x|) ≤ V (t, x) ≤ W2(|x|),
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(b) there exists K > 0 so that if x(t) is a solution of (3.5) with |x(t)| ≥ K for
some t ≥ 0 and V (s, x(s)) < v(V (t, x(t))) for 0 ≤ s ≤ t and v(r) > r, then
V ′

(3.5)(t, x) ≤ 0, where v(r) = h2r.
Now, we choose any solution x(t) such that |φ(t)| < H for 0 ≤ t ≤ t0 for some

H > 0. We suppose that L > max{H, K} and choose D > 0 with W2(L) <

W1(D). If this solution is unbounded, then there is t1 > 0 such that

|x(t1)| = D, |x(t)| < D for 0 < t < t1.

If V (t1, x(t1)) ≤ V (t0, φ(t0)), then we would have

W1(|x(t1)|) ≤ V (t1, x(t1)) ≤ V (t0, φ(t0)) ≤ W2(|φ(t0)|)
< W2(L) < W1(D),

and we get |x(t1)| < D, a contradiction. So V (t1, x(t1)) > V (t0, φ(t0)). Since
V (t, x(t)) is continuous in t, there exists t2, 0 < t2 ≤ t1, such that V (t, x(t)) <

V (t2, x(t2)) = V (t1, x(t1)) for 0 ≤ t < t2. Clearly there exists a sequence {τj},
t0 < τj < t2, such that τj → t2 as j → ∞ and

V ′
(3.5)(τj, x(τj)) > 0, j = 1, 2, · · · .(3.13)

Now we have

v(V (t2, x(t2))) − V (t2, x(t2)) = ε > 0,(3.14)

since V (t2, x(t2)) > 0. We claim that there exists an integer j such that

v(V (τj, x(τj))) > V (s, x(s)) for 0 ≤ s ≤ τj.(3.15)

If this were not so, then for each integer j there would exist sj, sj ≤ τj, such
that v(V (τj, x(τj))) ≤ V (sj, x(sj)). From this, it follows easily that for some
s0 < t2 (sj → s0 as j → ∞),

v(V (t2, x(t2))) ≤ V (s0, x(s0)).(3.16)

But from (3.14) and (3.16), we obtain

V (t2, x(t2)) + ε = v(V (t2, x(t2))) ≤ V (s0, x(s0)) < V (t2, x(t2)),

or

ε < 0,

which contradicts to our choice of ε. So we conclude that (3.15) holds for some
integer j. But from (b) we must then have V ′

(3.5)(τj, x(τj)) ≤ 0, contradicting to

(3.13). This completes the proof.

Example 3.4. Consider the scalar equation

x′(t) = (−2 + sin t)x(t) +

∫ t

0

3

4
e−(t−s)x(s)ds + sin t.(3.17)
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Then we can take B = 1
4

and ρ = 1, and we obtain

∫ t

0

|BC(t, s)|ds =

∫ t

0

1

4
· 3

4
e−(t−s)ds

=
3

16
(1 − e−t) ≤ 3

16
,

so that M = 3
16

. As we have

2M + 2ρ|B| = 2 · 3

16
+ 2 · 1

4
=

7

8
< 1

and sin t is bounded, all conditions of Theorem 3.4 are satisfied, so that all solu-
tions of (3.17) are bounded.

Our last result is a boundedness theorem for a nonlinear system. We consider
a nonlinear system

x′(t) = a(x(t)) +

∫ t

0

C(t, s)f(x(s))ds + F (t),(3.18)

where

a(x) = Ax + b(x),

f(x) = Dx + h(x),

A, D and C are n × n matrices, A and D constant, all characteristic roots of
A have negative real parts, C continuous for 0 ≤ s ≤ t < ∞, b(x) and h(x)
continuous satisfying

|b(x)| ≤ γ|x|,
|h(x)| ≤ η|x|

for some γ, η > 0, and F : [0,∞) → Rn is continuous. Select B = BT with
(3.6), and let α2 and β2 be the smallest and largest characteristic roots of B

respectively. By employing the Liapunov-Razumikhin method, we obtain our
last theorem.

Theorem 3.5. Let the above stated conditions hold and suppose that there is
M > 0 with

∫ t

0

|BC(t, s)|ds ≤ M, t ≥ 0,

where 2βM(|D|+η)
α

+ 2γ|B| < 1. If, in addition, F is bounded, then all solutions of
(3.18) are bounded.

Proof. As in the proof of Theorem 3.4, we define V (t, x) = xT Bx, so that
α2|x|2 ≤ V (t, x) ≤ β2|x|2, yielding W1(|x|) ≤ V (t, x) ≤ W2(|x|), where W1(|x|) =
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α2|x|2 and W2(|x|) = β2|x|2. Here we have

V ′
(3.18)(t, x) = −|x|2 + 2xT Bb(x)x + 2xT B

∫ t

0

C(t, s)[Dx(s) + h(x(s))]ds

+ 2xT BF (t)

≤ −|x|2 + 2|B||b(x)||x|

+ 2|x|
∫ t

0

|BC(t, s)|[|D||x(s)|+ |h(x(s))|]ds + 2|x||B|‖F‖[0,∞)

≤ −|x|2 + 2γ|B||x|2 + 2|x|
∫ t

0

|BC(t, s)|[|D|+ η]|x(s)|ds

+ 2|x||B|‖F‖[0,∞)

= (2γ|B| − 1)|x|2 + 2(|D| + η)|x|
∫ t

0

|BC(t, s)||x(s)|ds

+ 2|x||B|‖F‖[0,∞).

Now, if h2V (t, x(t)) > V (s, x(s)) for 0 ≤ s ≤ t, where h > 1 is a constant to
be determined, then

h2β2|x(t)|2 ≥ h2V (t, x(t)) ≥ V (s, x(s)) ≥ α2|x(s)|2

and
hβ

α
|x(t)| ≥ |x(s)|, 0 ≤ s ≤ t.

Thus,

V ′
(3.18)(t, x) ≤ (2γ|B| − 1)|x|2 +

2hβ

α
(|D| + η)|x(t)|2

∫ t

0

|BC(t, s)|ds

+ 2|x||B|‖F‖[0,∞)

and, because 2βM(|D|+η)
α

+ 2γ|B| < 1, h may be chosen so that h > 1 and
2hβM(|D|+η)

α
+ 2γ|B| < 1 yielding

V ′
(3.18)(t, x) ≤ [

2hβM(|D| + η)

α
+ 2γ|B| − 1]|x|2 + 2|B|‖F‖[0,∞)|x|

≤ 0

if |x| ≥ 2|B|‖g‖[0,∞)

1 − (2hβM(|D|+η)
α

+ 2γ|B|)
def
= K.

Thus there hold that

(a) W1(|x|) ≤ V (t, x) ≤ W2(|x|),
(b) there exists K > 0 so that if x(t) is a solution of (3.5) with |x(t)| ≥ K for

some t ≥ 0 and V (s, x(s)) < v(V (t, x(t))) for 0 ≤ s ≤ t and v(r) > r, then
V ′

(3.5)(t, x) ≤ 0, where v(r) = h2r.
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The remaining part can be proved by a similar method to the one used in the
proof of Theorem 3.4. Thus all solutions of (3.18) are bounded. This completes
the proof.

Finally we give an example to Theorem 3.5.

Example 3.5. Consider the scalar nonlinear equation

x′(t) = (−x(t) + b(x(t))) +

∫ t

0

e−(t−s)[
1

4
x(s) + h(x(s))]ds + sin t,(3.19)

where

b(x) =

{

1
2
log(x + 1) if x ≥ 0

−1
2
log(−x + 1) if x < 0

and

h(x) =

{

1
8
sin x log(x + 1) if x ≥ 0

−1
8
sin x log(−x + 1) if x < 0.

Then we can take B = 1
2
, γ = 1

2
, η = 1

8
, and we obtain

∫ t

0

|BC(t, s)|ds =

∫ t

0

1

2
e−(t−s)ds =

1

2
(1 − e−t) ≤ 1

2
,

so that we can take M = 1
2
. As we have

2M(|D| + η) + 2γ|B| = 2 · 1

2
(
1

2
+

1

8
) + 2 · 1

2
· 1

2
=

7

8
< 1

and sin t is bounded, all conditions of Theorem 3.5 are satisfied, so that all solu-
tions of (3.19) are bounded.
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