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Let 1 < p < ∞ and let w be a weight in the Muckenhoupt Ap class.

Suppose Ω is a smooth exterior domain in � n . Let f ∈ Lp,w(Ω) = {f : ‖f‖p,w;Ω =

( �
Ω
|f |pwdx)1/p < ∞}. We consider the Dirichlet problem: −∆u = f on Ω and

u = 0 on ∂Ω ∪ {∞} with f ∈ Lp,w(Ω). We give sufficient conditions for the
Dirichlet problem to have a unique solution u with estimate � |α|=2 ‖D

αu‖p,w;Ω ≤

c‖f‖p,w;Ω.

1. Introduction

Let Ω be an exterior domain whose complement consists of finitely many C1,1

bounded domains (cf. [4, p.94]). Without loss of generality we may assume that
a ball {x : |x| ≤ r0} lies outside Ω. Suppose 1 < p < ∞ and f ∈ Lp,w(Ω) =

{f : ‖f‖p,w;Ω < ∞}, where ‖f‖p,w;Ω =
(∫

Ω
|f |pwdx

)1/p
. Take r1 so large that

R
n \ Ω ⊂ {x : |x| < r1} and let Ω1 = {x ∈ Ω : |x| < r1}. Define the weighted

Beppo Levi space BL2,p,w(Ω) = {u : ‖u‖BL2,p,w(Ω) < ∞}, where

‖u‖BL2,p,w(Ω) = ‖u‖p,w;Ω1
+

∑

|α|=1

‖Dαu‖p,w;Ω1
+

∑

|α|=2

‖Dαu‖p,w;Ω.

The weighted Beppo Levi space BL2,p,w(Ω) and the weighted Sobolev space

W 2,p,w(Ω) = {u : ‖u‖W 2,p,w(Ω) =
∑

|α|≤2

‖Dαu‖p,w;Ω < ∞}.
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have the same local behavior. Besides the obvious implication W 2,p,w(Ω) ⊂
BL2,p,w(Ω), we have the opposite BL2,p,w(Ω′) ⊂ W 2,p,w(Ω), if Ω′ is a bounded
subdomain of Ω. At ∞, however, they behave in completely different ways.

Let us consider the Dirichlet problem

−∆u = f on Ω,(1)

u = 0 on ∂Ω.(2)

Since u must be “small” at ∞ in a certain sense for u ∈ W 2,p,w(Ω), it follows
that (1)-(2) can have no solutions in W 2,p,w(Ω) if f ∈ Lp,w(Ω) is “large” at ∞.
Nevertheless we shall see later in Theorem 3 that (1)-(2) always has a solution in
BL2,p,w(Ω). This is the main reason why we introduce the weighted Beppo Levi
space. If w ≡ 1, then each function space reduces to a usual unweighted one and
is denoted by a symbol without the superscript w.

Let us make the meaning of (2) clear. We take the boundary condition in the
sense of W 1,q(Ω1) for some q > 1, i.e. (2) holds if and only if there are continuous
functions uj vanishing near the boundary ∂Ω and converging to u in W 1,q(Ω1)

for some q > 1. Since w ∈ Ap−ε for some ε > 0, it follows that w−q/(p−q) is
locally integrable for some q with 1 < q < p. Hence the Hölder inequality yields
that Lp,w(Rn) ⊂ Lq

loc(Ω1), and so

(*) Lp,w(Ω)|Ω1
⊂ Lq(Ω1), BL2,p,w(Ω)

∣

∣

Ω1

⊂ W 2,q(Ω1).

Thus the above interpretation of (2) is compatible with (1) for f ∈ Lp,w(Ω).
Let h2 be the Riesz kernel

h2(x) =







γ−1
2 log

1

|x|
if n = 2

γ−1
n |x|2−n if n ≥ 3,

where γ2 = 2π and γn = 4πn/2/Γ(n
2 − 1) if n ≥ 3. In view of the logarithmic

growth of h2 for n = 2, the two dimensional case is somewhat different from the
higher dimensional case. In the sequel we restrict ourselves to the case n ≥ 3.
We shall state the case n = 2 in the final section.

Let us consider first the case when f has compact support. Consider the
boundary condition at ∞:

(3) lim
|x|→∞

u(x) = 0.

Then (1)-(3) has a unique solution.
Maremonti and Solonnikov [6, Theorems 1 and 2] proved the following theorem.
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Theorem A. Let n ≥ 3 and w ≡ 1. Suppose f ∈ Lp(Ω) has compact support.
Then (1)-(3) has a unique solution u. Moreover, the estimate ‖u‖BL2,p(Ω) ≤
c‖f‖p;Ω holds in each one of the following cases:

(i) 1 < p < n/2.
(ii) n/2 ≤ p < n and f satisfies

(4)

∫

Ω

f(x)h2(x)dx = 0.

(iii) p ≥ n and f satisfies (4) and

(5)

∫

Ω

f(x)
∂h2

∂xj
dx = 0 for j = 1, . . . , n.

In [1] we have introduced a subclass Ap,k of the Muckenhoupt Ap class:

Ap,k =

{

w ∈ Ap :

∫

Rn

(1 + |x|)(k−n)p/(p−1)w(x)1/(1−p)dx < ∞

}

.

It is easy to see that

∅ = Ap,n ⊂ Ap,n−1 ⊂ · · · ⊂ Ap,1 ⊂ Ap,0 = Ap;

1 ∈ Ap,2 ⇐⇒ 1 <p < n/2,

1 ∈ Ap,1 \ Ap,2 ⇐⇒ n/2 ≤p < n,

1 ∈ Ap \ Ap,1 ⇐⇒ p ≥ n

(cf. [1, §4]). In view of these facts, we shall show the following generalization of
Theorem A.

Theorem 1. Let n ≥ 3 and w ∈ Ap. Suppose f ∈ Lp,w(Ω) has compact support.
Then (1)-(3) has a unique solution u. Moreover, the estimate

(6) ‖u‖BL2,p,w(Ω) ≤ c‖f‖p,w;Ω.

holds in each one of the following cases:

(i) w ∈ Ap,2.
(ii) w ∈ Ap,1 \ Ap,2 and f satisfies (4).
(iii) w ∈ Ap \ Ap,1 and f satisfies (4) and (5).
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Let us consider next the case when f does not necessarily have compact sup-
port. In this case we cannot expect a solution of (1)-(3). In order to obtain a

solution of (1)-(2) small at ∞ in a sense, we define the subspace BL2,p,w
0 (Ω) of

BL2,p,w(Ω) by

BL2,p,w
0 (Ω) = {u ∈ BL2,p,w(Ω) : there is uj ∈ BL2,p,w(Ω)

such that uj(x) = 0 for |x| > j and lim
j→∞

‖uj − u‖BL2,p,w(Ω) = 0}.

A solution u ∈ BL2,p,w
0 (Ω) of (1)-(2) may be considered to be small at ∞. In

view of (*) and the usual trace argument, we see that the first derivatives of u
exist on ∂Ω, and they are q-th integrable with respect to the surface measure dS
for some q > 1 (see the following Lemma 2). In particular, we can consider the
integral of the normal derivative ∂u/∂n over ∂Ω. We shall prove the following.

Theorem 2. Let n ≥ 3 and w ∈ Ap. Suppose f ∈ Lp,w(Ω).

(i) If w ∈ Ap,2, then there exists a unique solution u ∈ BL2,p,w
0 (Ω) of (1)-(2).

(ii) If w ∈ Ap,1 \ Ap,2, then there exists a unique solution u ∈ BL2,p,w
0 (Ω) of

(1)-(2) satisfying the additional condition:

(7)

∫

∂Ω

∂u

∂n
h2dS = 0.

(iii) If w ∈ Ap \ Ap,1, then there exists a unique solution u ∈ BL2,p,w
0 (Ω) of

(1)-(2) satisfying (7) and

(8)

∫

∂Ω

∂u

∂n

∂h2

∂xj
dS = 0 for j = 1, . . . , n.

In each case the solution u satisfies (6).

Theorem 2 is a generalization of Maremonti and Solonnikov [6, Theorem 3].
However, there is a significant difference between [6] and ours. A layer potential
method and a certain approximation property for Lp(Ω) were the main tools in [6].
Since w ∈ Ap needs to be neither continuous nor isotropic, the arguments in [6]
are not applicable to our weighted case. We shall make use of the same technique
as in [1], e.g. modified Riesz potentials, an approximation of polynomials in
BL2,p,w(Ω) and so on. We shall, in fact, give an explicit representation of the
solutions u of (1)-(2). Although the solutions are not unique, among them there
exists a canonical solution which will be written as the difference of a modified
Riesz potential and its Poisson integral with respect to Ω. We shall show that
this canonical solution satisfies (6). Conditions (4), (5), (7) and (8) will imply
that the solution considered in each statement must coincide with the canonical
one.



DIRICHLET PROBLEM IN AN EXTERIOR DOMAIN 13

2. Preliminaries

In this section we collect some basic Lp estimates which are essentially based
on singular integrals and hence applicable to our weighted version in a straight-
forward fashion. We shall give no proofs since they may be well-known or easy
to prove. We denote by c for a positive constant depending only on n, p, w and
domains whose value may change from one occurrence to the next.

Let us recall first an extension property of BL2,p,w(Ω). Since the weighted
Beppo Levi space BL2,p,w(Ω) and the weighted Sobolev space W 2,p,w(Ω) have
the same local behavior, it follows from Calderón’s extension theorem (see [7,
Chapter VI, 4.8]) that a function in BL2,p,w(Ω) extends to R

n. We have

Lemma 1. If u ∈ BL2,p,w(Ω), then there exists u∗ ∈ BL2,p,w(Rn) such that
u∗ = u on Ω and ‖u∗‖BL2,p,w(Rn) ≤ c‖u‖BL2,p,w(Ω).

We need also a result for the restriction of elements of BL2,p,w(Ω) to ∂Ω. Since
w may degenerate on ∂Ω, it is, in general, impossible to define an appropriate
weighted space over ∂Ω associated with BL2,p,w(Ω). We can, however, give a
coarse result, which is essentially unweighted. In view of (*) and [7, Chapter VI,
4.2] we have

Lemma 2. (i) Let 1 < q < ∞. If f ∈ W 1,q(Ω1), then the trace of f on ∂Ω is
defined and

‖f‖Lq(∂Ω) ≤ c‖f‖W 1,q(Ω1).

(ii) Let w ∈ Ap. Then there exists q > 1 such that if u ∈ BL2,p,w(Ω), then the
traces of u and ∇u on ∂Ω are defined and

‖u‖Lq(∂Ω) + ‖∇u‖Lq(∂Ω) ≤ c‖u‖BL2,p,w(Ω).

Let us recall Lp estimates for solutions of the Dirichlet problem in a bounded
C1,1 domain.

Lemma 3. (cf. [4, Theorem 9.13 and Lemma 9.17]) Let D be a bounded domain
in R

n with a C1,1 boundary portion T ⊂ ∂D. Let u ∈ W 2,p,w(D) be a solution
of ∆u = f in D with u = 0 on T in the sense of W 1,q(D) for some q > 1. Then
for any domain D′

b D ∪ T ,

‖u‖W 2,p,w(D′) ≤ c(‖u‖p,w;D + ‖f‖p,w;D).

Moreover, if T = ∂D, then ‖u‖W 2,p,w(D′) ≤ c‖f‖p,w;D.

Note that the boundary condition in Lemma 3 is weaker than that in [4,
Theorem 9.13]. However, we infer from a careful observation of [4, Lemma 9.12]
that the conclusion remains true.
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3. Modified Riesz potentials

Observe that that −∆h2 is the Dirac measure at the origin, so that −∆(h2 ∗
f) = f if the convolution h2 ∗ f exists. Therefore the first attempt to solve (1)-
(2) begins with consideration on the Riesz potential h2 ∗ f . However, a problem
arises: the convolution h2 ∗ f does not necessarily exist for all f ∈ Lp,w(Ω). This
difficulty can be overcome by means of modified Riesz potentials. Observe that
if y 6= 0, then h2(x − y) has a multiple power series expansion in x1, x2, . . . , xn,
convergent in a neighborhood of the origin. We write

h2(x − y) =
∞
∑

ν=0

aν(x, y),

where, for fixed ν and y 6= 0, aν(x, y) =
∑

|β|=ν
xβ

β!
Dβh2(−y) is a homogeneous

polynomial in x1 to xn of degree ν and continuous in x, y jointly for y 6= 0 (see
[5, Chapter 4]). We set

h2,k(x, y) =

∞
∑

ν=k

aν(x, y)

for k ≥ 0 and write

I2,k(f) =

∫

Rn

h2,k(·, y)f(y)dy,

whenever the right hand side has a meaning. For notational convenience we let
I2,0(f) = I2(f). By definition I2(f) coincides with the convolution h2 ∗ f .

We collect some properties of modified Riesz potentials I2,k(f). No proofs will
be given. We refer to [1]. Note that if f ∈ Lp,w(Rn), 0 ≤ k ≤ 2 and I2,k(f)
exists, then DαI2,k(f) = (Dαh2) ∗ f for |α| ≥ k and

(9)
∑

|α|=2

‖DαI2,k(f)‖p,w;Ω ≤ c‖f‖p,w;Ω

(cf. [2, Theorems I and III] and [1, Lemma 8]). In particular, u = I2,2(f) satisfies
(1). We see that

(10)
|h2(x − y) − h2,k(x, y)| ≤ c

k−1
∑

ν=0

|x|ν |y|2−n−ν ;

|h2,k(x, y)| ≤ c|x|k|y|2−n−k for 2|x| > |y|

(cf. [5, Lemmas 4.1 and 4.2] and [1, Lemma 6]). We infer from Hölder’s inequality
that w ∈ Ap,k if and only if

(11)

∫

Rn

(1 + |x|)2−n−k|f(x)|dx ≤ c‖f‖p,w;Rn

(cf. [1, Theorem 5]). Hence we obtain from (10) and (11) that I2,k(f) exists for
every f ∈ Lp,w(Ω) if and only if w ∈ Ap,2−k. In particular, I2,2(f) exists for
every f ∈ Lp,w(Ω). Therefore we have
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Lemma 4. ([1, Theorem 4]) Let w ∈ Ap. If u ∈ BL2,p,w(Rn), then there are
constants a and bj such that u = I2,2(−∆u) + a +

∑n
j=1 bjxj .

Let us write

BL2,p,w
0 (Rn) = {u ∈ BL2,p,w(Rn) :

there is uj ∈ C∞
0 (Rn) such that lim

j→∞
‖uj − u‖BL2,p,w(Rn) = 0}.

We have given a characterization of BL2,p,w
0 (Rn).

Lemma 5. ([1, Corollary]) Let w ∈ Ap.

(i) BL2,p,w
0 (Rn) = {I2(g) : g ∈ Lp,w(Rn)} ⇐⇒ w ∈ Ap,2.

(ii) BL2,p,w
0 (Rn) = {I2,1(g) + a : g ∈ Lp,w(Rn), a ∈ R} ⇐⇒ w ∈ Ap,1 \Ap,2.

(iii) BL2,p,w
0 (Rn) = {I2,2(g) + a +

∑n
j=1 bjxj : g ∈ Lp,w(Rn), a, bj ∈ R} ⇐⇒

w ∈ Ap \ Ap,1.

In the proof of Lemma 5 we have used the following approximation property.
This may be regarded as an alternative of [6, Lemma 2].

Lemma 6. (cf. [1, Lemma 18]) Let w ∈ Ap. Suppose ε > 0 and R > 0.

(i) If w ∈ Ap,1 \ Ap,2, then there is g ∈ Lp,w(Rn) with compact support such
that g(x) = 0 for |x| < R, ‖g‖p,w;Rn < ε and I2(g)(0) = 1.

(ii) If w ∈ Ap \Ap,1, then there are gj ∈ Lp,w(Rn), j = 1, . . . , n, with compact
support such that gj(x) = 0 for |x| < R, ‖gj‖p,w;Rn < ε and

∂

∂xi
I2(gj)(0) =

{

1 if i = j

0 if i 6= j.

4. Representation of solutions

In this section we shall give an explicit representation of solutions of (1)-(2).
We have observed in the last section that I2,2(f) satisfies (1). In order to obtain
a solution of (1)-(2), we subtract from I2,2(f) a harmonic function in Ω having
the same boundary values. This harmonic function will be given by the Poisson
integral. Let G(x, y) be the Green function for Ω, that is, G(x, y) satisfies

(i) G(·, y)− h2(· − y) is harmonic on Ω;
(ii) G(·, y) vanishes on ∂Ω;
(iii) if n ≥ 3, then G(·, y) tends to zero at ∞; if n = 2, then G(·, y) is bounded

at ∞.

For g ∈ L1(∂Ω) we define the Poisson integral by

PI(g) =
1

γn

∫

∂Ω

∂G(x, y)

∂ny
g(y)dS(y),
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where ny is the inward normal unit vector on ∂Ω and dS(y) stands for the surface
element. We observe that PI(g) is harmonic in Ω, and that if g is continuous,
then PI(g) = g on ∂Ω. Note that PI(g) tends to zero at ∞ if n ≥ 3; PI(g) is
bounded at ∞ if n = 2. We remark that

PI(1) < 1 and PI(h2) ≡ h2 if n ≥ 3;

(12)

PI(1) ≡ 1 and PI(h2) < h2 if n = 2.

By Lemma 2 the trace of I2,k(f) on ∂Ω belongs to Lq(∂Ω). We write PI(I2,k(f))
for the Poisson integral of the trace I2,k(f) on ∂Ω. One may expect that I2,2(f)−
PI(I2,2(f)) is a solution of (1)-(2). This is, in fact, the case.

Theorem 3. Let n ≥ 3 and w ∈ Ap. Suppose f ∈ Lp,w(Ω). Then (1)-(2) has a
solution in BL2,p,w(Ω). Every solution u of (1)-(2) in BL2,p,w(Ω) is represented
as

u = I2,2(f) − PI(I2,2(f)) + a(1 − PI(1)) +
n

∑

j=1

bj(xj − PI(xj)),

where a and bj are constants. Moreover, u = I2,2(f) − PI(I2,2(f)) satisfies (6).

Let us consider first a special case of Theorem 3 when f ≡ 0.

Lemma 7. Let n ≥ 3. If h = a(1 − PI(1)) +
∑n

j=1 bj(xj − PI(xj)), then h

is a harmonic function in BL2,p,w(Ω) satisfying (2), and vice versa. Moreover,
‖h‖BL2,p,w(Ω) ≤ c(|a| +

∑n
j=1 |bj|).

Proof. It is easy to see that h = a(1 − PI(1)) +
∑n

j=1 bj(xj − PI(xj)) is a

harmonic function vanishing continuously on ∂Ω, and hence satisfying (2). Since
DαPI(g)(x) = O(|x|2−n−|α|) as |x| → ∞ for g ∈ L1(∂Ω), it follows from (11)
that

∑

|α|=2

‖Dαh‖p,w;Ω\Ω1
≤ c(|a| +

n
∑

j=1

|bj|).

We have from Lemma 3

‖h‖W 2,p,w(Ω1) ≤ c(|a| +
n

∑

j=1

|bj|),

whence h ∈ BL2,p,w(Ω) and the required norm estimate follows.
Conversely, suppose h ∈ BL2,p,w(Ω) is a harmonic function in Ω such that

h = 0 on ∂Ω in the sense of W 1,q(Ω1) for some q > 1. In view of [4, Lemma
9.16] we see that h = 0 on ∂Ω in the sense of W 1,q(Ω1) for any q > 1, and
hence h = 0 on ∂Ω continuously. By Lemma 1 we extend h to R

n so that the
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extension h∗ belongs to BL2,p,w(Rn). From Lemma 4 we can find a and bj such
that h∗ = I2,2(−∆h∗) + a +

∑n
j=1 bjxj . Since ∆h∗ is concentrated on R

n \ Ω,

it follows I2(−∆h∗) exists and h∗ = I2(−∆h∗) + a +
∑n

j=1 bjxj with different

constants a and bj. Observe that I2(−∆h∗), P I(1) and PI(xj) tend to zero at
∞, and hence

lim
|x|→∞, x∈Ω

h(x) − (a(1 − PI(1)) +

n
∑

j=1

bj(xj − PI(xj))) = 0.

Therefore the maximum principle yields h = a(1−PI(1))+
∑n

j=1 bj(xj−PI(xj)).

Proof of Theorem 3. Let u0 = I2,2(f) − PI(I2,2(f)). We have seen that u0

satisfies (1). In order to prove (2) let {fε} be a regularization of f such that
fε → f in Lp,w(Ω). Since I2,2(fε) is continuous, it follows that the continuous
function uε = I2,2(fε) − PI(I2,2(fε)) satisfies

−∆uε = fε on Ω,

uε = 0 on ∂Ω.

Let 1 < q < n/(n − 1). We have from (10)

∫

Ω1

|h2,2(x, y)|qdx ≤ c(1 + |y|)−nq.

Hence Minkowski’s inequality for integrals (see [7, p.271]) and (11) yield

(13) ‖I2,2(fε)‖q;Ω1
≤ c‖fε‖p,w;Ω.

Similarly ‖ ∂
∂xj

I2,2(fε)‖q;Ω1
≤ c‖fε‖p,w;Ω. By Lemma 2 the trace of I2,2(fε) on ∂Ω

satisfies
‖I2,2(fε)‖L1(∂Ω) ≤ c‖fε‖p,w;Ω.

By the estimate ∂G(x, y)/∂ny ≤ cδ(x)|x − y|−n with δ(x) = dist(x, ∂Ω) for x, y
near the boundary (cf. [8]), we have supy∈∂Ω

∫

Ω1

|∂G(x, y)/∂ny|
q
dx < ∞. Hence

Minkowski’s inequality for integrals yields

‖PI(I2,2(fε))‖q;Ω1
≤ c‖I2,2(fε)‖L1(∂Ω) ≤ c‖fε‖p,w;Ω.

Therefore we infer from (13) and Lemma 3 that

‖uε‖W 2,q(Ω1) ≤ c‖fε‖p,w;Ω.
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In particular, uε → u0 in W 1,q(Ω1), so that u0 = 0 in the sense of W 1,q(Ω1). Thus
(2) holds. Consequently, u = I2,2(f)−PI(I2,2(f))+a(1−PI(1))+

∑n
j=1 bj(xj −

PI(xj)) is a solution of (1)-(2) and vice versa by Lemma 7.

Finally let us prove the norm estimate for u0. To this end let r2 > r1, Ω2 =
{x ∈ Ω : |x| < r2} and take η ∈ C∞

0 (Rn) such that 0 ≤ η ≤ 1 on R
n, η = 1

on {|x| ≤ r1} and η = 0 on {|x| ≥ r2}. Let u1 = ηu0 and u2 = (1 − η)u0. An
elementary calculation shows that

‖∆u1‖p,w;Ω ≤ c(‖f‖p,w;Ω + ‖∇u0‖p,w;Ω2\Ω1
+ ‖u0‖p,w;Ω2\Ω1

).

By (10) we can compare DαI2,2(f) (|α| ≤ 1) and the maximal function Mf
locally, and obtain

∑

|α|≤1

‖DαI2,2(f)‖p,w;Ω2
≤ c‖f‖p,w;Ω.

By the estimate of the Green function we have

sup
x∈Ω2\Ω1

|Dα(PI(I2,2(f)))(x)| ≤ c‖I2,2(f)‖L1(∂Ω) ≤ c‖f‖p,w;Ω

for |α| ≤ 1. Hence

(14) ‖∆u1‖p,w;Ω ≤ c‖f‖p,w;Ω.

Since u1 vanishes on {|x| = r2} continuously and on ∂Ω1 in the sense of W 1,q(Ω2)
for 1 < q < n/(n − 1), it follows from Lemma 3 that

‖u1‖W 2,p,w(Ω2) ≤ c‖f‖p,w;Ω.

By Lemma 1 we extend u2 to R
n and represent it on Ω as u2 = I2,2(−∆u2)+a+

∑n
j=1 bjxj . Then by (9) and (14)

∑

|α|=2

‖Dαu2‖p,w;Ω ≤ c‖∆u2‖p,w;Ω = c‖∆u − ∆u1‖p,w;Ω ≤ c‖f‖p,w;Ω.

Consequently, (6) holds for u = u0. The proof is complete.

Since u ∈ BL2,p,w
0 (Ω) extends to u∗ ∈ BL2,p,w

0 (Rn) by Lemma 1, we have from
Lemma 5 the following theorem.
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Theorem 4. Let n ≥ 3 and w ∈ Ap. Suppose f ∈ Lp,w(Ω). Then every solution

u of (1)-(2) in BL2,p,w
0 (Ω) is represented as follows:

(i) If w ∈ Ap,2, then u = I2(f) − PI(I2(f)).
(ii) If w ∈ Ap,1 \ Ap,2, then u = I2,1(f) − PI(I2,1(f)) + a(1 − PI(1)), where

a is a constant.
(iii) If w ∈ Ap \ Ap,1, then u = I2,2(f) − PI(I2,2(f)) + a(1 − PI(1)) +

∑n
j=1 bj(xj − PI(xj)), where a and bj are constants.

In each case the canonical solution I2,k(f)− PI(I2,k(f)), (k = 0, 1, 2 for (i), (ii),
(iii), respectively), satisfies (6).

Proof. Only (6) may require a proof. We have observed (6) for (iii) in Theorem
3. Suppose w ∈ Ap,2. Writing

I2,2(f) = I2(f) − (

∫

Ω

h2(−y)f(y)dy +
n

∑

j=1

xj

∫

Ω

∂h2

∂xj
(−y)f(y)dy)

= I2(f) − (a′ +

n
∑

j=1

b′jxj),

we obtain from (11) that |a′| ≤ c‖f‖p,w;Ω, |b′j | ≤ c‖f‖p,w;Ω. Hence from Theorem
3 and Lemma 7 we have

‖I2(f) − PI(I2(f))‖BL2,p,w(Ω)

≤ ‖I2,2(f) − PI(I2,2(f))‖BL2,p,w(Ω) +
∥

∥

∥
a′(1 − PI(1)) +

n
∑

j=1

b′j(xj − PI(xj))
∥

∥

∥

BL2,p,w(Ω)

≤ c‖f‖p,w;Ω.

Thus (6) follows for (i). We can prove (6) similarly for (ii).

5. Proof of Theorems 1 and 2

Proof of Theorem 1. Since f is of compact support, it follows that I2(f) exists,
lim|x|→∞ I2(f)(x) = 0 and

I2(f) = I2,1(f) +

∫

Ω

h2(−y)f(y)dy

= I2,2(f) +

∫

Ω

h2(−y)f(y)dy +
n

∑

j=1

xj

∫

Ω

∂h2

∂xj
(−y)f(y)dy.

Hence Theorem 3 and the maximum principle say that u = I2(f) − PI(I2(f))
is a unique solution of (1)-(3) in all cases of (i)-(iii). Conditions (4) and (5)
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imply that u coincides with the canonical solutions I2,1(f) − PI(I2,1(f)) and
I2,2(f) − PI(I2,2(f)) in the cases of (ii) and (iii), respectively. Therefore the
norm estimate follows from Theorem 4.

Proof of Theorem 2. Since (i) has been proved in Theorem 4, we shall prove (ii)
and (iii). Let us prove first the unicity. To this end it is sufficient to show that
if v = 1 − PI(1), vi = xi − PI(xi), then

∫

∂Ω

∂v

∂n
h2dS = 1,(15)

∫

∂Ω

∂vi

∂n

∂h2

∂xj
dS =

{

1 if i = j

0 if i 6= j.

Let R > 0 be sufficiently large. Then the Green formula yields
∫

∂Ω

∂v

∂n
h2dS =

∫

|x|=R

(

∂v

∂n
h2 −

∂h2

∂n
v

)

dS.

Since PI(1) = O(|x|2−n) and ∇PI(1) = O(|x|1−n), it follows that
∫

∂Ω

∂v

∂n
h2dS = − lim

R→∞

∫

|x|=R

∂h2

∂n
dS = 1.

A similar calculation shows the second assertion.
What remains is to prove that if w ∈ Ap,1\Ap,2, then u = I2,1(f)−PI(I2,1(f))

satisfies (7); and that if w ∈ Ap \ Ap,1, then u = I2,2(f) − PI(I2,2(f)) satisfies
(7) and (8). Suppose w ∈ Ap,1 \ Ap,2. Let u = I2,1(f) − PI(I2,1(f)). Take
ε > 0. Split u into u1 + u2, where uj = I2,1(fj)−PI(I2,1(fj)), f1 = χ|x|<Rf and
f2 = χ|x|>Rf . Take R > 0 so large that ‖f2‖p,w;Ω < ε and ‖DαI2,1(f2)‖∞;Ω1

< ε
for |α| ≤ 2. Then

∣

∣

∣

∣

∫

∂Ω

∂u2

∂n
h2dS

∣

∣

∣

∣

< cε.

Observe that
u1 = I2(f1) − PI(I2(f1)) − a(1 − PI(1)),

where a =
∫

Ω
h2f1dx. By Lemma 6 we find a compactly supported function

g ∈ Lp,w(Ω) such that

g(x) = 0 for |x| < r2 with r2 > r1,

‖g‖p,w;Ω < ε,

I2(g)(0) =

∫

h2gdx = 1,

|I2(g)− 1| < ε on Ω1,

|u1 − u3| < ε on Ω1,
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where u3 = I2(f1 − ag) − PI(I2(f1 − ag)). Observe that u1 − u3 is harmonic on
Ω2 = {x ∈ Ω : |x| < r2} and vanishes continuously on ∂Ω. Hence,

‖∇(u1 − u3)‖∞;Ω1
≤ c‖u1 − u3‖∞;Ω2

≤ cε

(see [8, Theorem 2.4 and its proof]); in particular
∥

∥

∥

∥

∂u1

∂n
−

∂u3

∂n

∥

∥

∥

∥

∞;∂Ω

≤ cε.

Since u3 tends to zero at ∞, it follows from the Green formula that
∫

∂Ω

∂u3

∂n
h2dS =

∫

Ω

∆u3h2dx = −

∫

Ω

(f1 − ag)h2dx = 0.

Therefore
∣

∣

∣

∣

∫

∂Ω

∂u1

∂n
h2dS

∣

∣

∣

∣

< cε.

Since ε > 0 is arbitrary, (7) follows. In the case of (iii) we can prove (7) and (8)
by using the functions gj appearing in Lemma 6. Details are left to the reader.
The proof is complete.

6. Two dimensional case

Now let us consider the two dimensional case. Hereafter we let n = 2. In view
of the Phragmén-Lindelöf principle, the boundary condition at ∞ becomes

(3’) lim sup
|x|→∞

|u(x)| < ∞.

We see from (12) that 1−PI(1) for n ≥ 3 is replaced by h2 −PI(h2). Note also
that if f has compact support, then

I2,1(f) − PI(I2,1(f)) = I2(f) − PI(I2(f));

lim
|x|→∞

(I2(f)(x)− ch2(x)) = 0 with c =

∫

Ω

fdx.

Moreover, since PI(h2) is harmonic at ∞, it follows from [3, (2.73) Proposition]
that

lim
R→∞

∫

|x|=R

∂

∂n
PI(h2)dS = 0.

Hence we have an alternative of (15):
∫

∂Ω

∂

∂n
(h2 − PI(h2))dS = 1.

Using these facts, we obtain the following counterparts of Theorems 1-4. Since
Ap,2 = ∅, we have two cases in each theorem.
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Theorem 1’. Let n = 2 and w ∈ Ap. Suppose f ∈ Lp,w(Ω) has compact support.
Then (1)-(2) and (3’) have a unique solution u. Moreover, (6) holds in each one
of the following cases:

(i) w ∈ Ap,1 \ Ap,2 and f satisfies

(4’)

∫

Ω

f(x)dx = 0.

(ii) w ∈ Ap \ Ap,1 and f satisfies (4’) and (5).

Theorem 2’. Let n = 2 and w ∈ Ap. Suppose f ∈ Lp,w(Ω).

(i) If w ∈ Ap,1 \ Ap,2, then there exists a unique solution u ∈ BL2,p,w
0 (Ω) of

(1)-(2) satisfying the additional condition:

(7’)

∫

∂Ω

∂u

∂n
dS = 0.

(ii) If w ∈ Ap \ Ap,1, then there exists a unique solution u ∈ BL2,p,w
0 (Ω) of

(1)-(2) satisfying (7’) and (8).

In each case the solution u satisfies (6).

Theorem 3’. Let n = 2 and w ∈ Ap. Suppose f ∈ Lp,w(Ω). Then (1)-(2) has a
solution in BL2,p,w(Ω). Every solution u of (1)-(2) in BL2,p,w(Ω) is represented
as

u = I2,2(f) − PI(I2,2(f)) + c(h2 − PI(h2)) +
n

∑

j=1

bj(xj − PI(xj)),

where c and bj are constants. Moreover, u = I2,2(f) − PI(I2,2(f)) satisfies (6).

Theorem 4’. Let n = 2 and w ∈ Ap. Suppose f ∈ Lp,w(Ω). Then every solution

u of (1)-(2) in BL2,p,w
0 (Ω) is represented as follows:

(i) If w ∈ Ap,1 \Ap,2, then u = I2,1(f)−PI(I2,1(f))+ c(h2 −PI(h2)), where
c is a constant.

(ii) If w ∈ Ap \ Ap,1, then u = I2,2(f) − PI(I2,2(f)) + c(h2 − PI(h2)) +
∑n

j=1 bj(xj − PI(xj)), where c and bj are constants.

In each case the canonical solution I2,k(f) − PI(I2,k(f)), (k = 1, 2 for (i), (ii)
respectively), satisfies (6).
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