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ABSTRACT. In this note we study helices in a complex projective space. We char-
acterize complex projective spaces among Hermitian symmetric spaces by the prop-
erty that all holomorphic circles are closed. We also give examples of helices with
multiple points.

1. Introduction.
A smooth curve v = v(s) parametrized by its arclength s is called a heliz of

order d if there exist orthonormal frame fields {V; = § = Z—Z, -+, Vy} along ~
and positive numbers k1, - -- , kg1 which satisfy the following system of ordinary
equations

(11) V’YVJ(S) = _'L{j—l‘/j—l(s)—i_"{j‘/j-l-l(s)? .] = 17 7da

where Vy = Vg1 = 0 and V5, denotes the covariant differentiation along . The
numbers k; (j = 1,---,d—1) and the orthonormal frame {V3,---,V;} are called
the curvatures and the Frenet frame of 7, respectively. A helix of order 2 is
usually called a circle. That is, for a positive constant k, a circle of curvature k
satisfies the following equations with a unit vector field Y = Y (s) along ~:

(1.2) {Vyy:kY

VY = —k7.

In a Euclidean space R3, helices of order 3 are ordinary helices and circles are
nothing but circles in the sense of Euclidean geometry.

In the recent works [2], [3], [4] and [8], K. Mashimo, K. Tojo and the authors
studied circles in details in a Riemannian symmetric space of rank one. We call
a smooth curve v parametrized by its arclength s closed if there exists sg (# 0)
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with v(s+ sg) = v(s) for every s. The minimal positive sq is called the length of
this closed curve. A curve is said to be open if it is not closed. In these papers
they showed that in symmetric spaces of rank one every circle is a simple curve,
and that for arbitrary positive k£ there exist many open circles and many closed
circles with curvature k.

In the first half of this paper we provide a characterization of a complex pro-
jective space CP"(c) of constant holomorphic sectional curvature ¢ in the class
of compact Hermitian symmetric spaces in terms of some particular circles. In
a Kéahler manifold (M, ( , ),J), circles v are naturally classified by the index
(%, JY), which is constant along v and is called the complex torsion of . In
classes of circles in a Kahler manifold, the most important one is the class of
holomorphic circles. A holomorphic circle is a circle satisfying the condition that
4 and Y span a holomorphic plane, that is, ¥ = J¥ or Y = —J%. For a holo-
morphic circle «y, the equations (1.2) reduce to

(1.3) Vi =kJy or Viy = —kJ4.

We can interpret such circles in terms of physics (see [1]). Our attempt is to
study Kéahler manifolds from the viewpoint of real Riemannian geometry.

Theorem 1. Let M be an n-dimensional compact Hermitian symmetric space.
Suppose that for some k > 0, every holomorphic circle of curvature k in M 1is
closed. Then M is complex analytically isometric to a complex projective space
CP™ with Fubini-Study metric of constant holomorphic sectional curvature.

In a real space form, that is a sphere, a Euclidean space or a hyperbolic space,
every helix is a simple curve, that is a curve which does not have multiple points.
But the aspect of helices is not the same in a complex projective space. In the
latter half of this paper we give examples of closed helices of order 4 with multiple
points in a complex projective space.

2. Characterization of a complex projective space.

In order to prove Theorem 1 we investigate holomorphic circles in M =
CP(e1) x CPY(cz)(= S?(c1) x S%(co)) which is the simplest example of a Her-
mitiam symmetric space of rank 2. Here we denote by S™(c) an n-dimensional
standard sphere of curvature ¢. The following is a key for Theorem 1.

Proposition 1. Let v = ~(s) be a holomorphic circle of curvature k in M =
CP(c1) x CPYep) with the initial unit vector 4(0) = (X1, Xa) € TCP(c1) x
TCP!(cy). Then the following hold:

(1) When X1 =0 (resp. Xo =0), the circle 7y is a simple closed curve with
length \/kQQWTCQ (resp. \/]fchl ).
(2) When X7 # 0 and X2 # 0, we find
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(i) If KAl Xol2 i rational, then the circle v s a simple closed curve.

k2+c || X1
Its length is the least common multiple of
27 2

k2 X1]|? and k2 X2
+c1 || X1| +ea| Xzl

k2 X
(ii) If #'IXZHQ 18 1rrational, then the circle v is a simple open curve.

Proof.

(1) Since in CP1(c) = S?(c) circles of curvature k are small circles with length

\/EQW—JFC, the assertion is obvious (see [11] or [3]).

(2) Let v be a holomorphic circle in M. We just treat the case V+% = kJ5. In
this case we find V., 4;(s) = kJ4i(s) (i = 1,2), where vy(s) = (71(s),72(s)) €
CP(c1) x CPY(cy). We first get that ||¥;(s)| = || X;|| for every s (i = 1,2). In

fact, we see
Vi, (3i(5),%i(s)) = 2(V4,%(s), Fi(s))
= 2k(J%i(s),%i(s)) = 0.

We here set 0;(s) = 7,( ) so that ||6;]] =1 (i = 1,2). We then have

S
[1X: 1]

. 1 : s
Vait) = ¥ ()
k s k
e\ =) = T

This implies that the curve o; = 0;(s) is a holomorphic circle of curvature HTkH in

CP!(c;). Hence, the curve o; is a closed curve with length \/527”7 (1=1,2).
T2 T

Take a point x = (x1,x2) on the circle v in M. If z moves along v with
velocity 1, then the point z; moves along the curve o; with veloc1ty ||X ||. Hence

the circle v is closed if and only if the ratio 2n : =

llx 1|\\/W+Cl ||X2H\/W+C2

k2+co| Xo||2
\/ o X is rational. Thus we get the conclusion. [

As an immediate consequence of Proposition 1 we find the following:

Corollary. If a Kdihler manifold M admits CP' x CP! as a totally geodesic
Kdhler submanifold, then for arbitrary positive k there exist closed holomorphic
circles and open holomorphic circles of curvature k in M.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. It is known that any compact Hermitian symmetric space
of rank d(> 2) admits CP! x CP?! as a totally geodesic Kihler submanifold (see,
[10]). Corollary tells us that our manifold M satisfying the hypothesis of Theorem
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1 is a compact Hermitian symmetric space of rank one, namely M is complex
analytically isometric to CP™. Every holomorphic circle of curvature k(> 0) in

CP™(c) is a closed curve with length \/132”—+C (see, [3]). O

Motivated by Theorem 1, we pose the following problems:

Problem 1. Let M be a simply connected compact Kdahler homogeneous manifold
(i.e. M is a Kdhler C-space). Suppose for some k > 0 every holomorphic circle
of curvature k in M is closed. Then, is M complex analytically isometric to CP"
with Fubini-Study metric of constant holomorphic sectional curvature ?

Problem 2. Let M be a compact Kahler manifold and k be a positive num-
ber. Suppose that all holomorphic circles in M with curvature k are closed with
the same length. Under what conditions can we conclude that M is a complex
projective space?

These are in some sense complex versions of the L.W. Green’s theorem on
closed geodesics (see [7] and [6]).

3. Helices with multiple points in a complex projective space.

In this section we study how to get examples of closed helices with multiple
points in a complex projective space. We shall call a point z = ~(s.) € M
of a closed curve v an n—recurrent point of ~ if there exist n positive numbers
t1 <ty <---<t, satisfying the following three conditions;

(1) &= 1(5.) =50+ 01) = = (50 +tn).
(ii) ¢, is the length of the closed curve 7.
(iii) For any ¢t € (0,t,],if t #¢; (i =1,---,n), then (s« +t) # .

one 4-recurrent point two 2-recurrent points

Note that a closed curve «y is simple if and only if each point on « is 1-recurrent.
When a closed curve vy has an n-recurrent point z = (s, ), we call ¢,_1,; = t;—t;_1
the recurrent time from the point y(s.+t;_1) to the point v(s.+t;) (i =1,--- ,n),
where ty = 0. An n-recurrent point (n > 2) is also called a multiple point.

In order to get our examples of closed helices with multiple points in a complex
projective space, we study a circle of curvature k in a flat torus 72 = S*(ry) x
S1(ry). Here S*(r) denotes a circle (i.e. a 1-dimensional sphere) of radius r. We
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denote by 4 a covering circle of v in R2. Note that the circle 7 is a circle of
radius 1/k in the sense of Euclidean Geometry. This implies that every circle 7
of curvature k in T is a closed curve of length 27 /k.

Here we study multiple points of circles v in a flat torus 7% = S*(r1) x St(rz).
We may set without loss of generality the following initial conditions on a covering
circle 7 in R?:

70 = () (€ ). Xo =300 = (1) (€ Uy R = S0

The principal normal unit vector then satisfies Yy = J (?) or Yo =—J (gl )a
2 2

where J denotes the natural complex structure on R? = C which is given by

J = (1) _01) . In the following, we only discuss the case that Yy, = J*(0).

When Yy = —J%(0), the circle o(s) = v(—s) satisfies Yy = J&(0).
Y1(s)
2(s)

A direct computation yields that the circle Y(s) = <g ) is expressed as

1
F1(s) = —(vg - cos ks + vy -sin ks) — @,
(3.1) ]f k:v
Yo(s) = E(_Ul -cos ks + wvg-sin ks) + ?1

We here prove the following:

Proposition 2. Every circle v of curvature k in a flat torus T? = S1(r1)x St (rg)
is a closed curve of length 27 /k. Moreover, the following hold:

(i) When k > m, v is a simple curve.
(ii) When k < m, ~ has a multiple point.

Proof. For a given circle v we denote by 7 its covering circle in R2.

(i) In this case, since the circle 7 lies in the interior of a fundamental region
F={(x1,22) | 0 < 21 < 27ry, 0 < @y < 27ra} of T? = S*(rq) x S*(ry), the
assertion (i) is obvious.

(ii) By using the expression (3.1) we shall show that the circle v has a multiple
point. We set y(tg) = (0), which implies that 41 (tg) = 27r1p and 2 (tg) = 27raq
for some integers p and q. These, together with the equations (3.1), yield

(3.2) { cos ktg = 2mk(rivep — rav1q) + 1,

sin kto = 27T/€(7“1U1p + Tgvgq).

Hence, when pq # 0, the equations (3.2) give

—Tr1U2p + 12v1q

3.3 k =
(3.3) T r2p2 £ 1242
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We here note the following: If we take another pair (p’,¢’) of integers which is
different from the pair (p, ¢) and satisfies (3.3), then we find by an easy computa-
tion that t{, # to, where t{, is defined in the equations (3.2) by replacing (p, q) by
(p',q’). Therefore the point (0) is 1-recurrent if and only if there does not exist
a pair of integers (p, ¢)(# (0,0)) satisfying (3.3). Hence our discussion shows that

the circle «y is simple if and only if for any (21) (€ S1(1)) there does not exist
2

a pair of integers (p, q)(# (0,0)) satisfying (3.3).

Due to this criterion we can conclude that our circle is not simple. In fact,
when 71 < ro, we set vg = —7wkry1(> —1) and v; = +4/1 — (wkr1)?. Then the
pair (p,q) = (1,0) is a solution of the equation (3.3). And also, when r; > ry, we
set v1 = wkra(< 1) and vy = £4/1 — (wkr2)?. Then the pair (p,q) = (0,1) is a
solution of the equation (3.3). O

By virtue of the discussion in the proof of Proposition 2 we can establish the
following;:

Proposition 3. Let v be a circle of curvature k in a flat torus T? = S*(ry) x
S1(ry). A point y(s.)(€ T?) is an n-recurrent point of v if and only if there exist
(n — 1) pairs of integers (p, q)(# (0,0)) satisfying the following equation ;

—T1V2p + Tr2v1q
T‘%pQ +T%q2

(3.4) wk =

Y

where (vy,v2) € R? denotes the tangent vector 4(sy) of a covering circle 5 in R?
for ~.

From now, by using Proposition 3 we give a class of helices with multiple
points in a complex projective plane CP? with the aid of a well-known isometric
parallel imbedding of a 2-dimensional flat torus into CP? (see [9] for detail).
We consider a Riemann surface N = (S x S1)/p. Here by representing the
first component by S! = {z € C | |2|] = 1} and the second component by
St = {(a1,a2) € R? | (a1)? + (a2)? = 1}, we define the identification ¢ by
¢ ((e",(a1,a2))) = (—€, (—a1, —az)). The Riemannian metric on N is given by
(A+&B+n) = 2(A,B)s1 + 2(€,n) s for tangent vectors A, B € T'S' of the
first component and tangent vectors &,n € T'S! of the second component, where
(, )g1 denotes the canonical metric of S'. We define an isometric imbedding of

N into CP?(4) by

, 1, 2 w0, V2, o, 2 . i
(3.5) f(e, (a1,a2)) =7 (g(e %+ 2a5e 39), ?(e 5 age ??), %mge 39) ,

where 7 : S%(1) — CP?(4) is the Hopf fibration. This isometric imbedding f is
parallel, that is f has the parallel second fundamental form o¢, and totally real.
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We now study images of circles in N under this isometric imbedding. As we

see in [9], the imbedding f maps each geodesic on N to a circle of curvature %

in CP?(4). This circle does not have multiple points, but it is not necessarily
closed in CP?(4). By direct calculations we obtain the following (for details, see

[5])-
Fact. For a circle v of curvature k(> 0) on N, the curve fo~y is a helix of order
4 in CP?(4). More precisely,

(1) when k = , it 1s a helix of proper order 3 with curvatures

_ /3
K1 = i;f@z—\/;

(2) when k # %, it 1s a helix of proper order 4 with curvatures
— g2l o — 8k o _|4K-1]
R1 = k+2;ﬁ2—m7ﬁ3—\/m-
Moreover the helix f o~y is closed of length 27 /k and has a multiple point if and
only if k < \/:i . The number of multiple points is greater than 2.

Combining Fact and Proposition 3, we obtain the following examples.

Examples. (1) When k = ﬁ, the helix f o~ has three 2-recurrent points with

N

the same recurrent time 5 72. Every point on this helix except these is simple.

(2) When k = M the helix f o~ has two 3-recurrent points with the same

reccurent time 2\4_ 7'('2 Every point on this helix except these is simple.

(3) When k = M the helix fo~ has a 6-recurrent point with the same reccurent
time M 2, Every point on this helix except these is simple.

en k = > the helix f o~ has ei -recurrent points.
4Wh k= ¥ the heli ~ has eight 2 t point

4. Remark.
As an immediate consequence of Proposition 2 we establish the following:

Theorem 2. If a Riemannian manifold M admits a flat torus T? = S'(r1) x
S1(rg) as a totally geodesic submanifold, then for any k < 1/(m - min{ry,ra}) we
have a closed circle of curvature k with multiple point. Hence, in particular any
compact symmetric space M of rank d(> 2) has many closed circles with multiple
points.

The authors have an impression that holomorphic circles in Kahler geometry
may play a similar role of geodesics in real Riemannian geometry.
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